Unraveling the Impacts of Germination on the Volatile and Fatty Acid Profile of Intermediate Wheatgrass (Thinopyrum intermedium) Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Germination on the FA Profile of IWG
2.2. Effect of Germination on the Volatile Profile of IWG
2.2.1. Fiber Selection
2.2.2. Optimization of Extraction Conditions
2.2.3. MHE Optimization
3. Materials and Methods
3.1. Samples
3.2. Chemicals and Reagents
3.3. FA Profile
3.4. Volatile Profile
3.4.1. SPME Fiber Coating Selection
3.4.2. Optimization of SPME Extraction Conditions
3.4.3. Identification and Quantification of Volatiles from IWG by HS-SPME-GC/MS
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chapman, E.A.; Thomsen, H.C.; Tulloch, S.; Correia, P.M.P.; Luo, G.; Najafi, J.; DeHaan, L.R.; Crews, T.E.; Olsson, L.; Lundquist, P.-O.; et al. Perennials as Future Grain Crops: Opportunities and Challenges. Front. Plant Sci. 2022, 13, 898769. [Google Scholar] [CrossRef] [PubMed]
- Cetiner, B.; Shamanin, V.P.; Tekin-Cakmak, Z.H.; Pototskaya, I.V.; Koksel, F.; Shepelev, S.S.; Aydarov, A.N.; Ozdemir, B.; Morgounov, A.I.; Koksel, H. Utilization of Intermediate Wheatgrass (Thinopyrum intermedium) as an Innovative Ingredient in Bread Making. Foods 2023, 12, 2109. [Google Scholar] [CrossRef]
- Bajgain, P.; Zhang, X.; Jungers, J.M.; DeHaan, L.R.; Heim, B.; Sheaffer, C.C.; Wyse, D.L.; Anderson, J.A. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 2020, 14, 288–297. [Google Scholar] [CrossRef]
- Loehr, L.A.; Bajgain, P.; Selfridge, C.; Annor, G.; Ismail, B.P. Impact of processing and storage on rancidity markers in commercial and novel cultivar candidates of intermediate wheatgrass (Thinopyrum intermedium). Cereal Chem. 2024, 101, 594–610. [Google Scholar] [CrossRef]
- Kernza. Available online: https://kernza.org/consumers/ (accessed on 6 June 2024).
- Cho, D.-H.; Lim, S.-T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Mei, J.; Yu, W.; Li, Y. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC–MS and chemometric methods. Food Res. Int. 2017, 91, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Jin, Z.; Schwarz, P.; Rao, J.; Chen, B. Unraveling the role of germination days on the aroma variations of roasted barley malts via gas chromatography-mass spectrometry based untargeted and targeted flavoromics. Food Chem. 2023, 426, 136563. [Google Scholar] [CrossRef]
- Kathuria, D.; Hamid; Chavan, P.; Jaiswal, A.K.; Thakur, A.; Dhiman, A.K. A Comprehensive Review on Sprouted Seeds Bioactives, the Impact of Novel Processing Techniques and Health Benefits. Food Rev. Int. 2024, 40, 370–398. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, X.; Wang, L.; Zhang, W.; Song, Y.; Zhao, S.; Yang, X.; Liu, X. Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chem. 2024, 445, 138693. [Google Scholar] [CrossRef]
- Akkad, R.; Buchko, A.; Soladoye, P.O.; Han, J.; Curtis, J.M. A study of the sensory attributes of flours and crackers made from sprouted and unsprouted faba beans. LWT 2023, 179, 114650. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef] [PubMed]
- Canellas, E.; Vera, P.; Nerín, C. Multiple headspace-solid phase microextraction for the determination of migrants coming from a self-stick label in fresh sausage. Food Chem. 2016, 197, 24–29. [Google Scholar] [CrossRef]
- Gómez-Ríos, G.A.; Gionfriddo, E.; Poole, J.; Pawliszyn, J. Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction–Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART). Anal. Chem. 2017, 89, 7240–7248. [Google Scholar] [CrossRef] [PubMed]
- Squara, S.; Caratti, A.; Fina, A.; Liberto, E.; Koljančić, N.; Špánik, I.; Genova, G.; Castello, G.; Bicchi, C.; de Villiers, A.; et al. Artificial intelligence decision making tools in food metabolomics: Data fusion unravels synergies within the hazelnut (Corylus avellana L.) metabolome and improves quality prediction. Food Res. Int. 2024, 194, 114873. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Gu, Z.; Rao, J.; Chen, B. Changes in odor characteristics of pulse protein isolates from germinated chickpea, lentil, and yellow pea: Role of lipoxygenase and free radicals. Food Chem. 2020, 314, 126184. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Lan, Y.; Rao, J.; Chen, B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem. 2019, 280, 83–95. [Google Scholar] [CrossRef]
- Kim, H.-J.; Han, J.-A.; Lim, S.-T.; Cho, D.-H. Effects of germination and roasting on physicochemical and sensory characteristics of brown rice for tea infusion. Food Chem. 2021, 350, 129240. [Google Scholar] [CrossRef]
- Akkad, R.; Buchko, A.; Johnston, S.P.; Han, J.; House, J.D.; Curtis, J.M. Sprouting improves the flavour quality of faba bean flours. Food Chem. 2021, 364, 130355. [Google Scholar] [CrossRef] [PubMed]
- Sgorbini, B.; Cagliero, C.; Liberto, E.; Rubiolo, P.; Bicchi, C.; Cordero, C. Strategies for Accurate Quantitation of Volatiles from Foods and Plant-Origin Materials: A Challenging Task. J. Agric. Food Chem. 2019, 67, 1619–1630. [Google Scholar] [CrossRef]
- Bicchi, C.; Cordero, C.; Liberto, E.; Sgorbini, B.; Rubiolo, P. 4.01–Headspace Sampling in Flavor and Fragrance Field. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Oxford, UK, 2012; pp. 1–25. Available online: https://www.sciencedirect.com/science/article/pii/B9780123813732001253 (accessed on 10 August 2024).
- Lima, A.F.; da Silva Oliveira, W.; de Oliveira Garcia, A.; Vicente, E.; Godoy, H.T. Identifying markers volatiles in Brazilian virgin oil by multiple headspace solid-phase microextraction, and chemometrics tools. Food Res. Int. 2023, 167, 112697. [Google Scholar] [CrossRef]
- Bertola, M.; Righetti, L.; Gazza, L.; Ferrarini, A.; Fornasier, F.; Cirlini, M.; Lolli, V.; Galaverna, G.; Visioli, G. Perenniality, more than genotypes, shapes biological and chemical rhizosphere composition of perennial wheat lines. Front. Plant Sci. 2023, 14, 1172857. [Google Scholar] [CrossRef]
- Christie, W.W.; Han, X. Chapter 8—Gas chromatographic analysis of fatty acid derivatives. In Lipid Analysis, 4th ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 159–180. Available online: https://www.sciencedirect.com/science/article/pii/B9780955251245500089 (accessed on 10 August 2024).
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Raß, M.; Schein, C.; Matthäus, B. Virgin sunflower oil. Eur. J. Lipid Sci. Technol. 2008, 110, 618–624. [Google Scholar] [CrossRef]
- Rico, D.; Peñas, E.; García, M.d.C.; Martínez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Frias, J.; Martín-Diana, A.B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Kumar, R.R.; Bhargava, D.V.; Pandit, K.; Goswami, S.; Mukesh Shankar, S.; Singh, S.P.; Rai, G.K.; Tara Satyavathi, C.; Praveen, S. Lipase—The fascinating dynamics of enzyme in seed storage and germination—A real challenge to pearl millet. Food Chem. 2021, 361, 130031. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D.; Johnson, S.R.; Cao, X.; Li, J.; Nam, J.W.; Jaworski, J.G.; Ohlrogge, J.B.; Browse, J. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc. Natl. Acad. Sci. USA 2014, 111, 1204–1209. [Google Scholar] [CrossRef]
- Brijs, K.; Courtin, C.M.; Goesaert, H.; Gebruers, K.; Delcour, J.A.; Shewry, P.R.; Henry, R.J.; Nicolas, J.; Potus, J.; Garcia, R.; et al. CHAPTER 11—Enzymes and Enzyme Inhibitors Endogenous to Wheat. In Wheat, 4th ed.; Khan, K., Shewry, P.R., Eds.; AACC International Press: Saint Paul, MN, USA, 2009; pp. 401–435. Available online: https://www.cerealsgrains.org/publications/onlinebooks/grainscience/Wheat/Pages/Chapter11Abstract.aspx (accessed on 10 August 2024).
- Bao, Y.; Du, J.; Xu, C.; Wang, M.; Wang, B.; Xiao, L.; Cheng, K.; Dong, L. Detailed temperature-dependent study of linoleic acid oxidative decomposition into volatile compounds in the heating process. J. Food Process. Preserv. 2022, 46, e16445. [Google Scholar] [CrossRef]
- Frérot, E. Fats and Oils. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 31–32. Available online: https://link.springer.com/chapter/10.1007/978-3-319-26932-0_11 (accessed on 10 August 2024).
- Risticevic, S.; Vuckovic, D.; Lord, H.L.; Pawliszyn, J. 2.21—Solid-Phase Microextraction. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Oxford, UK, 2012; pp. 419–460. Available online: https://www.sciencedirect.com/science/article/pii/B9780123813732000557 (accessed on 10 August 2024).
- Oliveira, W.S.; Shepelev, I.; Dias, F.F.G.; Reineccius, G.A. Advances in sample preparation for volatile profiling of plant proteins: Fundamentals and future perspectives. Adv. Sample Prep. 2024, 10, 100111. [Google Scholar] [CrossRef]
- Nascimento, L.E.S.; Thapa, B.; Oliveira, W.d.S.; Rodrigues, P.R.; Godoy, H.T.; Anderson, J.L. Multivariate optimization for extraction of 2-methylimidazole and 4-methylimidazole from açaí-based food products using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography–mass spectrometry. Food Chem. 2024, 444, 138593. [Google Scholar] [CrossRef] [PubMed]
- Shirey, R.E. 4—SPME Commercial Devices and Fibre Coatings. In Handbook of Solid Phase Microextraction; Pawliszyn, J., Ed.; Elsevier: Oxford, UK, 2012; pp. 99–133. Available online: https://www.sciencedirect.com/science/article/pii/B9780124160170000048 (accessed on 10 August 2024).
- Tena, M.T.; Carrillo, J.D. Multiple solid-phase microextraction: Theory and applications. TrAC Trends Anal. Chem. 2007, 26, 206–214. Available online: https://www.sciencedirect.com/science/article/pii/S0165993607000106 (accessed on 10 August 2024). [CrossRef]
- Cordero, C.; Guglielmetti, A.; Sgorbini, B.; Bicchi, C.; Allegrucci, E.; Gobino, G.; Baroux, L.; Merle, P. Odorants quantitation in high-quality cocoa by multiple headspace solid phase micro-extraction: Adoption of FID-predicted response factors to extend method capabilities and information potential. Anal. Chim. Acta 2019, 1052, 190–201. [Google Scholar] [CrossRef] [PubMed]
- TUM Odorant Database. Available online: https://www.leibniz-lsb.de/datenbanken/leibniz-lsbtum-odorant-database/odorantdb/ (accessed on 30 August 2024).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 30 August 2024).
- Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727 (accessed on 9 July 2024).
- Wüst, M. Biosynthesis of Plant-Derived Odorants. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–10. Available online: https://link.springer.com/chapter/10.1007/978-3-319-26932-0_2 (accessed on 10 August 2024).
- Bailly, C.; Bogatek-Leszczynska, R.; Côme, D.; Corbineau, F. Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci. Res. 2002, 12, 47–55. [Google Scholar] [CrossRef]
- Tan, Y.; Li, D.; Hua, J.; Luo, S.; Liu, Y.; Li, S. Localization of a defensive volatile 4-hydroxy-4-methylpentan-2-one in the capitate glandular trichomes of Oenothera glazioviana. Plant Divers. 2017, 39, 154–159. [Google Scholar] [CrossRef]
- Niebler, J. Incense Materials. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 13–14. Available online: https://link.springer.com/chapter/10.1007/978-3-319-26932-0_4 (accessed on 10 August 2024).
- Burger, P.; Casale, A.; Kerdudo, A.; Michel, T.; Laville, R.; Chagnaud, F.; Fernandez, X. New insights in the chemical composition of benzoin balsams. Food Chem. 2016, 210, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Miao, A.; Zhao, G.; Liu, X.; Wu, H.; Luo, J.; Gong, H.; Zheng, X.; Deng, L.; Ma, C. Assessment of the ‘taro-like’ aroma of pumpkin fruit (Cucurbita moschata D.) via E-nose, GC–MS and GC-O analysis. Food Chem. X 2022, 15, 100435. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Zi, L.; Xu, N.; Guo, Z.; Chen, B.; Hua, Y.; Guo, L. Comprehensive analysis of the dynamic changes of volatile and non-volatile metabolites in boletus edulis during processing by HS-SPME-GC–MS and UPLC-MS/MS analysis. Food Chem. X 2024, 22, 101487. [Google Scholar] [CrossRef]
- Boatright, J.; Negre, F.; Chen, X.; Kish, C.M.; Wood, B.; Peel, G.; Orlova, I.; Gang, D.; Rhodes, D.; Dudareva, N. Understanding in Vivo Benzenoid Metabolism in Petunia Petal Tissue. Plant Physiol. 2004, 135, 1993–2011. [Google Scholar] [CrossRef]
- Dias, F.F.G.; Augusto-Obara, T.R.; Hennebelle, M.; Chantieng, S.; Ozturk, G.; Taha, A.Y.; Vieira, T.M.F.d.S.; Leite Nobrega de Moura Bell, J.M. Effects of industrial heat treatments on bovine milk oxylipins and conventional markers of lipid oxidation. Prostaglandins Leukot. Essent. Fat. Acids 2020, 152, 102040. [Google Scholar] [CrossRef]
- Akkad, R.; Kharraz, E.; Han, J.; House, J.D.; Curtis, J.M. Characterisation of the volatile flavour compounds in low and high tannin faba beans (Vicia faba var. minor) grown in Alberta, Canada. Food Res. Int. 2019, 120, 285–294. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, T.F.F.; Meinhart, A.D.; de Souza, T.C.L.; Teixeira Filho, J.; Godoy, H.T. Phenolic compounds from yerba mate based beverages—A multivariate optimisation. Food Chem. 2016, 190, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Kamgang Nzekoue, F.; Angeloni, S.; Caprioli, G.; Cortese, M.; Maggi, F.; Marconi, U.M.B.; Perali, A.; Ricciutelli, M.; Sagratini, G.; Vittori, S. Fiber–Sample Distance, An Important Parameter To Be Considered in Headspace Solid-Phase Microextraction Applications. Anal. Chem. 2020, 92, 7478–7484. [Google Scholar] [CrossRef]
- Pati, S.; Tufariello, M.; Crupi, P.; Coletta, A.; Grieco, F.; Losito, I. Quantification of Volatile Compounds in Wines by HS-SPME-GC/MS: Critical Issues and Use of Multivariate Statistics in Method Optimization. Processes 2021, 9, 662. [Google Scholar] [CrossRef]
- Wang, Y.; O’Reilly, J.; Chen, Y.; Pawliszyn, J. Equilibrium in-fibre standardisation technique for solid-phase microextraction. J. Chromatogr. A 2005, 1072, 13–17. [Google Scholar] [CrossRef]
C14:0 | C15:0 | C16:0 | C16:1 | C18:0 | C18:1cis | C18:2n-6 | C18:3n-6 | C18:3n-3 | C20:0 | C20:1n-9 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 0.03 ± 0.02 A | 0.02 ± 0.00 AB | 2.6 ± 0.4 A | 0.03 ± 0.00 C | 0.24 ± 0.16 A | 3.74 ± 0.44 A | 13.76 ± 1.58 A | 0.05 ± 0.02 AB | 1.12 ± 0.10 AB | 0.02 ± 0.00 A | 0.17 ± 0.01 AB |
10-2 | 0.02 ± 0.00 A | 0.02 ± 0.00 B | 2.13 ± 0.09 AB | 0.03 ± 0.01 C | 0.16 ± 0.07 A | 2.97 ± 0.25 ABC | 10.92 ± 0.77 AB | 0.03 ± 0.00 AB | 1.03 ± 0.05 B | 0.02 ± 0.00 A | 0.15 ± 0.01 AB |
10-4 | 0.03 ± 0.03 A | 0.02 ± 0 AB | 2.59 ± 0.23 A | 0.05 ± 0.01 ABC | 0.26 ± 0.17 A | 3.63 ± 0.46 AB | 13.17 ± 1.99 AB | 0.04 ± 0.00 AB | 1.3 ± 0.19 A | 0.02 ± 0.02 A | 0.19 ± 0.03 A |
10-6 | 0.02 ± 0.00 A | 0.02 ± 0.00 B | 1.96 ± 0.12 C | 0.04 ± 0.00 BC | 0.17 ± 0.06 A | 2.67 ± 0.09 C | 10.28 ± 0.69 B | 0.03 ± 0.00 B | 1.06 ± 0.06 AB | 0.02 ± 0.00 A | 0.13 ± 0.01 C |
15-2 | 0.02 ± 0.00 A | 0.02 ± 0.00 AB | 2.3 ± 0.13 AB | 0.05 ± 0.01 BC | 0.14 ± 0.01 A | 3.29 ± 0.23 ABC | 11.82 ± 0.57 AB | 0.06 ± 0.01 A | 1.08 ± 0.06 AB | 0.02 ± 0.00 A | 0.17 ± 0.02 AB |
15-4 | 0.02 ± 0.01 A | 0.02 ± 0.00 AB | 2.26 ± 0.12 AB | 0.05 ± 0.00 ABC | 0.24 ± 0.12 A | 3.23 ± 0.17 ABC | 11.79 ± 0.69 AB | 0.05 ± 0.01 AB | 1.13 ± 0.06 AB | 0.03 ± 0.00 A | 0.18 ± 0.02 AB |
15-6 | 0.02 ± 0.00 A | 0.02 ± 0.00 AB | 2.05 ± 0.10 C | 0.06 ± 0.01 ABC | 0.15 ± 0.01 A | 2.71 ± 0.18 C | 10.34 ± 0.67 B | 0.04 ± 0.01 AB | 0.98 ± 0.05 B | 0.02 ± 0.00 A | 0.14 ± 0.01 AB |
20-2 | 0.02 ± 0.00 A | 0.02 ± 0.00 AB | 2.22 ± 0.12 AB | 0.05 ± 0.00 ABC | 0.18 ± 0.07 A | 3.13 ± 0.19 ABC | 11.23 ± 0.73 AB | 0.04 ± 0.00 AB | 0.99 ± 0.07 B | 0.03 ± 0.00 A | 0.17 ± 0.01 AB |
20-4 | 0.03 ± 0.00 A | 0.02 ± 0.00 A | 2.23 ± 0.12 AB | 0.07 ± 0.02 AB | 0.21 ± 0.02 A | 2.9 ± 0.07 BC | 10.86 ± 0.57 AB | 0.04 ± 0.00 AB | 0.95 ± 0.04 B | 0.03 ± 0.00 A | 0.16 ± 0.00 AB |
20-6 | 0.03 ± 0.01 A | 0.02 ± 0.00 A | 2.17 ± 0.17 AB | 0.08 ± 0.02 A | 0.24 ± 0.05 A | 2.88 ± 0.31 BC | 10.9 ± 0.95 AB | 0.03 ± 0.01 B | 0.95 ± 0.09 B | 0.03 ± 0.00 A | 0.15 ± 0.02 AB |
Trial | Temp (°C) | Time (min) | Total Area |
---|---|---|---|
1 | −1 (39.40) | −1 (34.36) | 669,149,921 |
2 | 1 (60.60) | −1 (34.36) | 733,292,935 |
3 | −1 (39.40) | 1 (55.64) | 750,239,779 |
4 | 1 (60.60) | 1 (55.64) | 845,258,191 |
5 | −1.41 (35.00) | 0 (45.00) | 656,168,788 |
6 | 1.41 (65.00) | 0 (45.00) | 846,707,555 |
7 | 0 (50.00) | −1.41 (30.00) | 639,981,632 |
8 | 0 (50.00) | 1.41 (60.00) | 808,548,691 |
9 | 0 (50.00) | 0 (45.00) | 711,222,561 |
10 | 0 (50.00) | 0 (45.00) | 734,532,059 |
11 | 0 (50.00) | 0 (45.00) | 672,019,319 |
12 | 0 (50.00) | 0 (45.00) | 669,149,921 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean of Squares (MS) | F Cal | F Tab |
---|---|---|---|---|---|
Regression (R) | 5.03 × 1016 | 5 | 1.01 × 1016 | 12.39 | 5.05 |
Residue (r) | 4.06 × 1015 | 5 | 8.12 × 1014 | ||
Lack of fit | 2.06 × 1015 | 3 | 6.88 × 1014 | 0.69 | 19.6 |
Pure error | 1.97 × 1015 | 2 | 9.99 × 1014 | ||
Total | 5.44 × 1016 | 10 |
RT | Compounds | Odor Descriptors A | RI | RI Tab | Δ | Identification | β |
---|---|---|---|---|---|---|---|
Alcohols | |||||||
3.11 | 3-methyl-1-butanol | Malty | 776 | 735 | 24 | RI, MS, STD | 0.78 |
3.6 | 1-pentanol | Fruity, ethereal | 795 | 780 | 15 | RI, MS | 0.78 |
4.08 | 2,3-butanediol | Butter-like | 813 | 819 | −6 | RI, MS | 0.78 |
5.86 | 1-hexanol | Grassy | 883 | 880 | 3 | RI, MS | 0.78 |
6.73 | 2-heptanol | Coconut-like | 916 | 900 | 16 | RI, MS, STD | 0.90 |
7.94 | 1-butoxy-2-propanol | Ether-like B | 953 | 947 | 6 | RI, MS | 0.78 |
8.96 | 1-heptanol | Fruity, soapy | 984 | 975 | 9 | RI, MS, STD | 0.78 |
9.3 | 1-octen-3-ol | Mushroom-like | 994 | 986 | 8 | RI, MS, STD | 0.72 |
11.15 | Benzyl alcohol | Bitter almond-like | 1047 | 1042 | 5 | RI, MS | 0.78 |
12.37 | 2-octen-1-ol | Soapy | 1081 | 1067 | 14 | RI, MS | 0.51 |
12.51 | 1-octanol | Soapy | 1085 | 1076 | 9 | RI, MS | 0.78 |
13.94 | Phenylethyl alcohol | Floral | 1124 | 1121 | 3 | RI, MS | 0.78 |
16.34 | p-menthan-3-ol | Peppermint-like | 1191 | 1170 | 21 | RI, MS | 0.78 |
Aldehydes | |||||||
4.22 | Hexanal | Grassy | 819 | 817 | 2 | RI, MS, STD | 0.89 |
5.44 | 2-hexenal | Green apple-like | 866 | 854 | 12 | RI, MS | 0.89 |
6.79 | Heptanal | Fatty | 918 | 907 | 11 | RI, MS | 0.89 |
8.51 | 2-heptenal | Green apple-like | 970 | 978 | −8 | RI, MS, STD | 0.51 |
8.65 | Benzaldehyde | Almond-like | 974 | 965 | 9 | RI, MS, STD | 0.51 |
10.11 | Octanal | Green | 1018 | 1007 | 11 | RI, MS, STD | 0.89 |
11.49 | Phenylacetaldehyde | Floral | 1056 | 1053 | 3 | RI, MS | 0.89 |
12.04 | 2-octenal | Fatty | 1072 | 1061 | 11 | RI, MS, STD | 0.51 |
13.74 | Nonanal | Soapy | 1119 | 1108 | 11 | RI, MS, STD | 0.89 |
15.7 | 2-nonenal | Fatty | 1173 | 1171 | 2 | RI, MS | 0.51 |
Ketones | |||||||
5.11 | 4-hydroxy-4-methyl-2-pentanone | Mint-like B | 854 | 850 | 4 | RI, MS, STD | 0.54 |
5.5 | 5-methyl-2-hexanone | Ethereal | 869 | 857 | 12 | RI, MS | 0.84 |
6.41 | 2-heptanone | Fruity | 904 | 898 | 6 | RI, MS, STD | 0.54 |
6.98 | γ-butyrolactone | Sweety | 923 | 922 | 1 | RI, MS | 0.54 |
11.3 | 3-octen-2-one | Floral, spicy | 1051 | 1046 | 5 | RI, MS | 0.54 |
11.73 | γ-caprolactone | Fruity | 1063 | 1055 | 8 | RI, MS, STD | 0.54 |
12.25 | Acetophenone | Foxy | 1077 | 1073 | 4 | RI, MS, STD | 0.54 |
12.42 | 3,5-octadien-2-one | Fatty, fruity | 1082 | 1093 | 11 | RI, MS | 0.54 |
22.51 | γ-nonalactone | Coconut-like | 1369 | 1368 | 1 | RI, MS | 0.54 |
Acids | |||||||
5.28 | 3-methyl-butanoic acid | Sweaty | 860 | 834 | 26 | RI, MS | 0.78 |
6.24 | Pentanoic acid | Sweaty, fruity | 897 | 875 | 22 | RI, MS | 0.90 |
22.94 | Decanoic acid | Soapy, musty | 1382 | 1380 | 2 | RI, MS | 0.90 |
39.51 | Hexadecanoic acid | Waxy B | 1967 | 1960 | 7 | RI, MS | 0.90 |
Esters | |||||||
9.86 | Butyl butanoate | Sweet, fruity | 1011 | 993 | 18 | RI, MS | 0.64 |
20.04 | Bornyl acetate | Pine-like | 1296 | 1291 | 5 | RI, MS | 0.64 |
40.37 | Ethyl palmitate | Waxy B | 2001 | 1996 | 5 | RI, MS | 0.90 |
44.18 | Ethyl cis,cis-9,12-octadecadienoate | - | 2166 | 2159 | 7 | RI, MS | 0.90 |
44.34 | (E)-9-octadecenoic acid ethyl ester | - | 2173 | 2174 | −1 | RI, MS | 0.90 |
Terpenes | |||||||
7.74 | 2-pinene | Resin-like | 947 | 939 | 8 | RI, MS | 0.90 |
8.39 | Dehydrosabinene | - | 966 | 957 | 9 | RI, MS | 0.90 |
10.25 | 3-carene | Terpene-like | 1022 | 1017 | 5 | RI, MS | 0.90 |
10.82 | p-cymene | Petrol-like | 1038 | 1030 | 8 | RI, MS | 0.90 |
10.98 | Limonene | Citrus-like | 1042 | 1032 | 10 | RI, MS, STD | 0.88 |
24.91 | trans-α-bergamotene | Woody-like | 1444 | 1441 | 3 | RI, MS | 0.88 |
Hydrocarbons and others | |||||||
5.63 | Ethylbenzene | Petrol-like B | 874 | 868 | 6 | RI, MS | 0.90 |
6.47 | Styrene | Balsam-like | 906 | 895 | 11 | RI, MS | 0.90 |
7.42 | (1-methylethyl)-benzene | Petrol-like B | 937 | 929 | 8 | RI, MS, STD | 0.90 |
9.63 | 2-pentylfuran | Vegetable-like | 1004 | 1010 | −6 | RI, MS | 0.90 |
15.89 | 2-methyl-undecane | - | 1178 | 1167 | 11 | RI, MS | 0.64 |
16.11 | 3-methyl-undecane | - | 1184 | 1171 | 13 | RI, MS | 0.64 |
16.49 | Naphthalene | Smoky | 1195 | 1196 | −1 | RI, MS, STD | 0.64 |
16.86 | 1-dodecene | - | 1205 | 1192 | 13 | RI, MS | 0.64 |
22.06 | Heptylcyclohexane | - | 1356 | 1345 | 11 | RI, MS | 0.64 |
26.83 | 1-pentadecene | - | 1504 | 1494 | 10 | RI, MS | 0.90 |
29.17 | 3-methyl-pentadecane | - | 1582 | 1566 | 16 | RI, MS | 0.90 |
Compounds | LOQ (mg·kg−1) | Linear Range (mg·kg−1) | Equation | R2 | Precision | |
---|---|---|---|---|---|---|
Intraday | Interday | |||||
2-Heptanol | 0.54 | 0.54–16.0 | y = 920,915x − 219,377 | 0.993 | 18.0 | 14.1 |
Cumene | 0.49 | 0.49–14.79 | y = 46,063x + 155,054 | 0.999 | 5.9 | 6.0 |
1-Octen-3-ol | 0.48 | 0.48–14.86 | y = 700,623x − 223,938 | 0.991 | 15.1 | 9.9 |
Octanal | 0.45 | 0.45–17.66 | y = 46,063x + 155,054 | 0.999 | 7.9 | 5.3 |
Limonene | 0.21 | 0.21–15.06 | y = 466,801x + 127,215 | 0.991 | 12.5 | 9.0 |
Trans-2-Octenal | 0.40 | 0.40–15.35 | y = 140,548x + 31,426 | 0.992 | 14.4 | 8.8 |
Acetophenone | 0.41 | 0.41–14.76 | y = 671,632x + 103,442 | 0.998 | 13.1 | 7.4 |
Naphthalene | 0.44 | 0.44–14.92 | y = 1,730,517x − 194,167 | 0.992 | 8.1 | 4.8 |
Variables | Levels | ||||
---|---|---|---|---|---|
−1.41 | −1 | 0 | 1 | 1.41 | |
Temperature (°C) (X1) | 35.00 | 39.40 | 50.00 | 60.60 | 65.00 |
Time (min) (X2) | 30.00 | 34.36 | 45.00 | 55.64 | 60.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, W.S.; Chen, Q.; Edleman, D.; Annor, G.A.; Dias, F.F.G. Unraveling the Impacts of Germination on the Volatile and Fatty Acid Profile of Intermediate Wheatgrass (Thinopyrum intermedium) Seeds. Molecules 2024, 29, 4268. https://doi.org/10.3390/molecules29174268
Oliveira WS, Chen Q, Edleman D, Annor GA, Dias FFG. Unraveling the Impacts of Germination on the Volatile and Fatty Acid Profile of Intermediate Wheatgrass (Thinopyrum intermedium) Seeds. Molecules. 2024; 29(17):4268. https://doi.org/10.3390/molecules29174268
Chicago/Turabian StyleOliveira, Wellington S., Qianqian Chen, Dana Edleman, George A. Annor, and Fernanda F. G. Dias. 2024. "Unraveling the Impacts of Germination on the Volatile and Fatty Acid Profile of Intermediate Wheatgrass (Thinopyrum intermedium) Seeds" Molecules 29, no. 17: 4268. https://doi.org/10.3390/molecules29174268