Enhancing the Shelf Life of Sous-Vide Red Deer Meat with Piper nigrum Essential Oil: A Study on Antimicrobial Efficacy against Listeria monocytogenes
Abstract
:1. Introduction
2. Results
2.1. Microbial Counts
2.2. Microbial Strains Isolated for Red Deer Meat Samples
3. Discussion
4. Materials and Methods
4.1. Preparation of Samples of Red Deer Meat
- (i)
- Control: After being placed in polythene bags, without a vacuum, red deer meat samples were processed in a water bath at 50–65 °C for 5–20 min. The samples were then stored at 4 °C for 2 weeks.
- (ii)
- Control vacuum: After being vacuum-packed in polyethylene bags, red deer meat samples were processed in a water bath for 5–20 min at 50 to 65 °C. The samples were then stored at 4 °C for 2 weeks.
- (iii)
- Essential oil: After being treated with 1% PNEO and vacuum-packed, red deer meat samples were processed in a water bath for 5–20 min at 50 to 65 °C. The samples were then stored at 4 °C for 2 weeks.
- (iv)
- Listeria monocytogenes: After being inoculated with L. monocytogenes and vacuum-packed, red deer meat samples were processed in a water bath for 5–20 min at 50 to 65 °C. The samples were then stored at 4 °C for 2 weeks.
- (v)
- Essential oil + Listeria monocytogenes: After being treated with 1% PNEO, inoculated with L. monocytogenes and vacuum-packed red deer meat samples were processed in a water bath for 5–20 min at 50 to 65 °C. The samples were then stored at 4 °C for 2 weeks.
4.2. Bacteria Strain Preparation
4.3. Essential Oil Characteristic
4.4. Microbial Analyses
4.5. Identification of Microorganisms Using Mass Spectrometry
4.6. Statistic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A.; Szendrő, Z. The Role of Rabbit Meat as Functional Food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Okuskhanova, E.; Assenova, B.; Rebezov, M.; Amirkhanov, K.; Yessimbekov, Z.; Smolnikova, F.; Nurgazezova, A.; Nurymkhan, G.; Stuart, M. Study of Morphology, Chemical, and Amino Acid Composition of Red Deer Meat. Vet. World 2017, 10, 623–629. [Google Scholar] [CrossRef]
- Naveena, B.; Khansole, P.S.; Shashi Kumar, M.; Krishnaiah, N.; Kulkarni, V.V.; Deepak, S. Effect of Sous Vide Processing on Physicochemical, Ultrastructural, Microbial and Sensory Changes in Vacuum Packaged Chicken Sausages. Food Sci. Technol. Int. 2017, 23, 75–85. [Google Scholar] [CrossRef]
- Soriano, A.; Cruz, B.; Gómez, L.; Mariscal, C.; García Ruiz, A. Proteolysis, Physicochemical Characteristics and Free Fatty Acid Composition of Dry Sausages Made with Deer (Cervus elaphus) or Wild Boar (Sus scrofa) Meat: A Preliminary Study. Food Chem. 2006, 96, 173–184. [Google Scholar] [CrossRef]
- Ketselashvili, D.V.; Myshalova, O.M.; Seregin, S.A.; Marchenko, S.V. Chemical Composition and Technological Properties of Maral Meat. Meat Ind. 2011, 3, 38–41. [Google Scholar]
- Hoffman, L.C.; Wiklund, E. Game and Venison—Meat for the Modern Consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef]
- Assenova, B.; Okuskhanova, E.; Yessimbekov, Z.; Korzhikenova, N.; Rebezov, M.; Dragoev, S. Trace and Toxic Elements in Meat of Maral (Red deer) Grazing in Kazakhstan. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1425–1433. [Google Scholar]
- Uzakov, Y.M.; Kaimbayeva, L.A. Using of Meat and By-Products of Marals in the Production of Meat Products. Meat Ind. 2015, 8, 40–43. [Google Scholar]
- Daszkiewicz, T.; Janiszewski, P.; Wajda, S. Quality Characteristics Of Meat From Wild Red Deer (Cervus elaphus L.) Hinds And Stags. J. Muscle Foods 2009, 20, 428–448. [Google Scholar] [CrossRef]
- Wiklund, E.; Dobbie, P.; Stuart, A.; Littlejohn, R.P. Seasonal Variation in Red Deer (Cervus elaphus) Venison (M. longissimus dorsi) Drip Loss, Calpain Activity, Colour and Tenderness. Meat Sci. 2010, 86, 720–727. [Google Scholar] [CrossRef]
- Dzięciołowski, R.; Babińska-Werka, J.; Wasilewski, M.; Goszczyński, J. Physical Condition of Red Deer in a High Density Population. Acta Theriol. 1996, 41, 93–105. [Google Scholar] [CrossRef]
- Sergelidis, D.; Abrahim, A. Adaptive Response of Listeria monocytogenes to Heat and Its Impact on Food Safety. Food Control 2009, 20, 1–10. [Google Scholar] [CrossRef]
- Smelt, J.P.P.M.; Brul, S. Thermal Inactivation of Microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54, 1371–1385. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, V.; Apelt, J.; Reich, F.; Klein, G. Microbiological Quality of Freshly Shot Game in Germany. Meat Sci. 2008, 78, 414–419. [Google Scholar] [CrossRef]
- Avagnina, A.; Nucera, D.; Grassi, M.A.; Ferroglio, E.; Dalmasso, A.; Civera, T. The Microbiological Conditions of Carcasses from Large Game Animals in Italy. Meat Sci. 2012, 91, 266–271. [Google Scholar] [CrossRef]
- Paulsen, P. Hygiene and Microbiology of Meat from Wild Game: An Austrian View. In Game Meat Hygiene in Focus; Paulsen, P., Bauer, A., Vodnansky, M., Winkelmayer, R., Smulders, F.J.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 19–37. ISBN 978-90-8686-723-3. [Google Scholar]
- Onyeaka, H.; Nwabor, O.; Jang, S.; Obileke, K.; Hart, A.; Anumudu, C.; Miri, T. Sous Vide Processing: A Viable Approach for the Assurance of Microbial Food Safety. J. Sci. Food Agric. 2022, 102, 3503–3512. [Google Scholar] [CrossRef]
- Wen, J.; Smelt, J.P.P.M.; Vischer, N.O.E.; De Vos, A.L.; Setlow, P.; Brul, S. Heat Activation and Inactivation of Bacterial Spores: Is There an Overlap? Appl. Environ. Microbiol. 2022, 88, e02324-21. [Google Scholar] [CrossRef]
- Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A Review on Mechanisms and Commercial Aspects of Food Preservation and Processing. Agric. Food Secur. 2017, 6, 51. [Google Scholar] [CrossRef]
- Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes 2023, 11, 590. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Gál, R.; Čmiková, N.; Prokopová, A.; Kačániová, M. Antilisterial and Antimicrobial Effect of Salvia officinalis Essential Oil in Beef Sous-Vide Meat during Storage. Foods 2023, 12, 2201. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, A.R.; Alves, M.; Silva, J.A.; Saraiva, C. The Antimicrobial Effect of Rosemary and Thyme Essential Oils Against Listeria monocytogenes in Sous Vide Cook-Chill Beef During Storage. Procedia Food Sci. 2016, 7, 173–176. [Google Scholar] [CrossRef]
- Kito, M.; Takimoto, R.; Onji, Y.; Yoshida, T.; Nagasawa, T. Purification and Characterization of an ε-Poly-l-Lysine-Degrading Enzyme from the ε-Poly-l-Lysine-Tolerant Chryseobacterium sp. OJ7. J. Biosci. Bioeng. 2003, 96, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhu, Z.; Huang, Z.; Wang, H.; Liang, Y.; Wang, K.; Lei, Q.; Liang, M. Characterisation and Free Radical Scavenging Activities of Novel Red Pigment from Osmanthus Fragrans’ Seeds. Food Chem. 2009, 112, 909–913. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Chaudhry, N.M.; Tariq, P. Bactericidal Activity of Black Pepper, Bay Leaf, Aniseed and Coriander against Oral Isolates. Pak. J. Pharm. Sci. 2006, 19, 214–218. [Google Scholar]
- Thiel, A.; Buskens, C.; Woehrle, T.; Etheve, S.; Schoenmakers, A.; Fehr, M.; Beilstein, P. Black Pepper Constituent Piperine: Genotoxicity Studies in Vitro and in Vivo. Food Chem. Toxicol. 2014, 66, 350–357. [Google Scholar] [CrossRef]
- Pradhan, K.J.; Variyar, P.S.; Bandekar, J.R. Antimicrobial Activity of Novel Phenolic Compounds from Green Pepper (Piper nigrum L.). LWT—Food Sci. Technol. 1999, 32, 121–123. [Google Scholar] [CrossRef]
- Zou, L.; Hu, Y.-Y.; Chen, W.-X. Antibacterial Mechanism and Activities of Black Pepper Chloroform Extract. J. Food Sci. Technol. 2015, 52, 8196–8203. [Google Scholar] [CrossRef]
- Butt, M.S.; Pasha, I.; Sultan, M.T.; Randhawa, M.A.; Saeed, F.; Ahmed, W. Black Pepper and Health Claims: A Comprehensive Treatise. Crit. Rev. Food Sci. Nutr. 2013, 53, 875–886. [Google Scholar] [CrossRef]
- Meghwal, M.; Goswami, T.K. Piper nigrum and Piperine: An Update. Phytother. Res. 2013, 27, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.C.; Kim, S.-H.; Kim, M.J.; Yang, H.J.; Rhyu, M.-R.; Park, J.-H. Piperine, a Component of Black Pepper, Decreases Eugenol-induced cAMP and Calcium Levels in Non-chemosensory 3T3-L1 Cells. FEBS Open Bio 2015, 5, 20–25. [Google Scholar] [CrossRef]
- Patil, K.; Adhikari, M.; Rubinelli, P.; Desiree, K.; Vierck, K.R.; Acuff, J.C. Evaluating the Safety of Sous-Vide Cooking for Beef Products Inoculated with Single Strains of Salmonella enterica and Escherichia coli O157. J. Food Prot. 2024, 87, 100252. [Google Scholar] [CrossRef] [PubMed]
- Kunová, S.; Sendra, E.; Haščík, P.; Vuković, N.L.; Vukić, M.D.; Hsouna, A.B.; Mnif, W.; Kačániová, M. Microbiological Quality of Deer Meat Treated with Essential Oil Litsea cubeba. Animals 2022, 12, 2315. [Google Scholar] [CrossRef]
- Cenci-Goga, B.; Iulietto, M.; Sechi, P.; Borgogni, E.; Karama, M.; Grispoldi, L. New Trends in Meat Packaging. Microbiol. Res. 2020, 11, 56–67. [Google Scholar] [CrossRef]
- Sun, S.; Sullivan, G.; Stratton, J.; Bower, C.; Cavender, G. Effect of HPP treatment on the safety and quality of beef steak intended for sous vide cooking. LWT 2017, 86, 185–192. [Google Scholar] [CrossRef]
- Abel, N.; Rotabakk, B.T.; Rustad, T.; Ahlsen, V.B.; Lerfall, J. Physiochemical and Microbiological Quality of Lightly Processed Salmon (Salmo salar L.) Stored Under Modified Atmosphere. J. Food Sci. 2019, 84, 3364–3372. [Google Scholar] [CrossRef]
- Sauvala, M.; Johansson, P.; Björkroth, J.; Fredriksson-Ahomaa, M. Microbiological Quality and Safety of Vacuum-Packaged White-Tailed Deer Meat Stored at 4 °C. Int. J. Food Microbiol. 2023, 390, 110110. [Google Scholar] [CrossRef]
- Klein, G.; Schütze, B. Handbuch der Mikrobiologischen Beurteilung von Lebensmitteln; Behr: Santa Ana, CA, USA, 2011; ISBN 3-89947-779-0. [Google Scholar]
- Obwegeser, T.; Stephan, R.; Hofer, E.; Zweifel, C. Shedding of Foodborne Pathogens and Microbial Carcass Contamination of Hunted Wild Ruminants. Vet. Microbiol. 2012, 159, 149–154. [Google Scholar] [CrossRef]
- Sales, J.; Kotrba, R. Meat from Wild Boar (Sus scrofa L.): A Review. Meat Sci. 2013, 94, 187–201. [Google Scholar] [CrossRef]
- Hansson, I.B. Microbiological Meat Quality in High- and Low-Capacity Slaughterhouses in Sweden. J. Food Prot. 2001, 64, 820–825. [Google Scholar] [CrossRef]
- Zweifel, C.; Fischer, R.; Stephan, R. Microbiological Contamination of Pig and Cattle Carcasses in Different Small-Scale Swiss Abattoirs. Meat Sci. 2008, 78, 225–231. [Google Scholar] [CrossRef]
- Johansson, P.; Jääskeläinen, E.; Nieminen, T.; Hultman, J.; Auvinen, P.; Björkroth, K.J. Microbiomes in the Context of Refrigerated Raw Meat Spoilage. Meat Muscle Biol. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Jääskeläinen, E.; Hultman, J.; Parshintsev, J.; Riekkola, M.-L.; Björkroth, J. Development of Spoilage Bacterial Community and Volatile Compounds in Chilled Beef under Vacuum or High Oxygen Atmospheres. Int. J. Food Microbiol. 2016, 223, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.; Donnison, A.; Brightwell, G. Factors Affecting Microbial Spoilage and Shelf-Life of Chilled Vacuum-Packed Lamb Transported to Distant Markets: A Review. Meat Sci. 2014, 98, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Pothakos, V.; Devlieghere, F.; Villani, F.; Björkroth, J.; Ercolini, D. Lactic Acid Bacteria and Their Controversial Role in Fresh Meat Spoilage. Meat Sci. 2015, 109, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neves, E.; Abrantes, A.C.; Vieira-Pinto, M.; Müller, A. Wild Game Meat—A Microbiological Safety and Hygiene Challenge? Curr. Clin. Microbiol. Rep. 2021, 8, 31–39. [Google Scholar] [CrossRef]
- Paulsen, P.; Winkelmayer, R. Seasonal Variation in the Microbial Contamination of Game Carcasses in an Austrian Hunting Area. Eur. J. Wildl. Res. 2004, 50, 157–159. [Google Scholar] [CrossRef]
- Sasaki, Y.; Goshima, T.; Mori, T.; Murakami, M.; Haruna, M.; Ito, K.; Yamada, Y. Prevalence and Antimicrobial Susceptibility of Foodborne Bacteria in Wild Boars (Sus scrofa) and Wild Deer (Cervus nippon) in Japan. Foodborne Pathog. Dis. 2013, 10, 985–991. [Google Scholar] [CrossRef]
- Abel, T.; Boulaaba, A.; Lis, K.; Abdulmawjood, A.; Plötz, M.; Becker, A. Inactivation of Listeria monocytogenes in Game Meat Applying Sous Vide Cooking Conditions. Meat Sci. 2020, 167, 108164. [Google Scholar] [CrossRef]
- Becker, A.; Boulaaba, A.; Pingen, S.; Röhner, A.; Klein, G. Low Temperature, Long Time Treatment of Porcine M. Longissimus Thoracis et Lumborum in a Combi Steamer under Commercial Conditions. Meat Sci. 2015, 110, 230–235. [Google Scholar] [CrossRef]
- Christensen, L.; Tørngren, M.A.; Gunvig, A. How to Obtain Safe and Tender Pork When Cooking at “Low Temperature, Long Time”(LTLT). In Proceedings of the 56th International Congress of Meat Science and Technology, Jeju, Republic of Korea, 15–20 August 2010; p. 127. [Google Scholar]
- Awaisheh, S.S. Efficacy of Fir and Qysoom essential oils, alone and in combination, in controlling Listeria monocytogenes in vitro and in RTE meat products model. Food Control 2013, 34, 657–661. [Google Scholar] [CrossRef]
- Nikolić, M.M.; Jovanović, K.K.; Marković, T.L.; Marković, D.L.; Gligorijević, N.N.; Radulović, S.S.; Kostić, M.; Glamočlija, J.M.; Soković, M.D. Antimicrobial Synergism and Cytotoxic Properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel Essential Oils. J. Pharm. Pharmacol. 2017, 69, 1606–1614. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Pan, D.-D.; Cao, J.-X.; Shao, X.-F.; Chen, Y.-J.; Sun, Y.-Y.; Ou, C.-R. Effect of black pepper essential oil on the quality of fresh pork during storage. Meat Sci. 2016, 117, 130–136. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, G.; Pan, D.; Wang, Y.; Dang, Y.; Liu, J.; Jiang, M.; Cao, J. The effect of coating incorporated with black pepper essential oil on the lipid deterioration and aroma quality of Jinhua ham. J. Food Meas. Charact. 2019, 13, 2740–2750. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Murru, N.; Yu, Z.; Kerkhof, P.-J.; Neola, B.; Joossens, M.; Proroga, Y.T.R.; Houf, K. Assessment of Microbial Communities on Freshly Killed Wild Boar Meat by MALDI-TOF MS and 16S rRNA Amplicon Sequencing. Int. J. Food Microbiol. 2019, 301, 51–60. [Google Scholar] [CrossRef]
- Asakura, H.; Kawase, J.; Ikeda, T.; Honda, M.; Sasaki, Y.; Uema, M.; Kabeya, H.; Sugiyama, H.; Igimi, S.; Takai, S. Microbiological Quality Assessment of Game Meats at Retail in Japan. J. Food Prot. 2017, 80, 2119–2126. [Google Scholar] [CrossRef]
- Zgomba Maksimovic, A.; Zunabovic-Pichler, M.; Kos, I.; Mayrhofer, S.; Hulak, N.; Domig, K.J.; Mrkonjic Fuka, M. Microbiological Hazards and Potential of Spontaneously Fermented Game Meat Sausages: A Focus on Lactic Acid Bacteria Diversity. LWT 2018, 89, 418–426. [Google Scholar] [CrossRef]
- Wachtel, M.R.; Charkowski, A.O. Cross-Contamination of Lettuce with Escherichia coli O157:H7. J. Food Prot. 2002, 65, 465–470. [Google Scholar] [CrossRef]
- Pires, H.; Cardoso, L.; Lopes, A.P.; Fontes, M.D.C.; Santos-Silva, S.; Matos, M.; Pintado, C.; Roque, N.; Fonseca, L.F.; Morgado, I.; et al. Hunting for Answers: Assessing Brucella Spp. Seroprevalence and Risks in Red Deer and Wild Boar in Central Portugal. Pathogens 2024, 13, 242. [Google Scholar] [CrossRef]
- Vuković, N.L.; Vukić, M.; Branković, J.; Petrović, V.; Galovičova, L.; Čmikova, N.; Kačaniova, M. The Antimicrobial and Antibiofilm Potential of the Piper nigrum L. Essential Oil: In Vitro, in Situ, and in Silico Study. Ind. Crops Prod. 2024, 209, 118075. [Google Scholar] [CrossRef]
- Kačániová, M.; Čmiková, N.; Kluz, M.I.; Akacha, B.B.; Saad, R.B.; Mnif, W.; Waszkiewicz-Robak, B.; Garzoli, S.; Hsouna, A.B. Anti-Salmonella Activity of Thymus serpyllum Essential Oil in Sous Vide Cook–Chill Rabbit Meat. Foods 2024, 13, 200. [Google Scholar] [CrossRef]
Treatment | Temperature (°C) | Time (min) | Total Count of Bacteria (log CFU/g) | ||
---|---|---|---|---|---|
Day of Storage | |||||
1 | 7 | 14 | |||
Control | 50 | 5 | 3.52 ± 0.03 b,A | 3.79 ± 0.09 a,A | 3.88 ± 0.11 a,A |
10 | 3.40 ± 0.07 b,B | 3.69 ± 0.07 a,A | 3.78 ± 0.07 a,A | ||
15 | 3.29 ± 0.03 c,C | 3.48 ± 0.04 b,B | 3.62 ± 0.06 a,B | ||
20 | 3.24 ± 0.04 b,C | 3.35 ± 0.09 ab,BC | 3.52 ± 0.06 a,BC | ||
55 | 5 | 3.17 ± 0.04 b,D | 3.33 ± 0.08 ab,C | 3.44 ± 0.11 a,C | |
10 | 3.06 ± 0.04 b,E | 3.23 ± 0.12 a,C | 3.40 ± 0.05 a,C | ||
15 | 2.62 ± 0.06 c,F | 2.87 ± 0.12 b,D | 3.09 ± 0.04 a,D | ||
20 | 2.39 ± 0.06 c,G | 2.62 ± 0.06 b,E | 2.85 ± 0.06 a,E | ||
60 | 5 | 2.18 ± 0.07 b,H | 2.45 ± 0.09 a,E | 2.65 ± 0.12 a,EF | |
10 | n.d. c,I | 2.25 ± 0.08 b,F | 2.45 ± 0.09 a,F | ||
15 | n.d. c,I | 1.87 ± 0.09 b,G | 2.24 ± 0.11 a,G | ||
20 | n.d. c,I | 1.56 ± 0.12 b,H | 1.83 ± 0.15 a,H | ||
65 | 5 | n.d. c,I | 1.22 ± 0.10 b,I | 1.66 ± 0.10 a,HI | |
10 | n.d. b,I | n.d. b,J | 1.55 ± 0.12 a,I | ||
15 | n.d. b,I | n.d. b,J | 1.38 ± 0.04 a,J | ||
20 | n.d. b,I | n.d. b,J | 1.20 ± 0.07 a,K | ||
Control vacuum | 50 | 5 | 3.43 ± 0.02 c,A | 3.54 ± 0.08 b,A | 3.71 ± 0.06 a,A |
10 | 3.18 ± 0.06 b,B | 3.35 ± 0.11 b,A | 3.58 ± 0.06 a,B | ||
15 | 2.69 ± 0.03 c,C | 2.87 ± 0.10 b,B | 3.20 ± 0.03 a,C | ||
20 | 2.41 ± 0.06 b,D | 2.63 ± 0.16 ab,B | 2.77 ± 0.11 a,D | ||
55 | 5 | 2.34 ± 0.12 b,D | 2.41 ± 0.03 b,C | 2.57 ± 0.03 a,E | |
10 | 2.17 ± 0.05 b,E | 2.39 ± 0.05 a,C | 2.47 ± 0.06 a,F | ||
15 | 2.07 ± 0.02 c,F | 2.23 ± 0.04 b,D | 2.33 ± 0.05 a,G | ||
20 | 1.86 ± 0.09 b,G | 2.14 ± 0.06 a,E | 2.27 ± 0.16 a,GH | ||
60 | 5 | n.d. b,H | 1.87 ± 0.10 a,F | 2.05 ± 0.07 a,H | |
10 | n.d. b,H | n.d. b,G | 1.87 ± 0.11 a,H | ||
15 | n.d. b,H | n.d. b,G | 1.55 ± 0.12 a,I | ||
20 | n.d. b,H | n.d. b | 1.33 ± 0.10 a,IJ | ||
65 | 5 | n.d. b,H | n.d. b,G | 1.16 ± 0.07 a,J | |
10 | n.d. a,H | n.d. a,G | n.d. a,K | ||
15 | n.d. a,H | n.d. a,G | n.d. a,K | ||
20 | n.d. a,H | n.d. a,G | n.d. a,K | ||
Essential oil | 50 | 5 | 3.20 ± 0.06 c,A | 3.40 ± 0.06 b,A | 3.60 ± 0.14 a,A |
10 | 3.14 ± 0.06 b,A | 3.31 ± 0.04 a,A | 3.39 ± 0.06 a,B | ||
15 | 2.93 ± 0.06 b,B | 3.04 ± 0.08 b,B | 3.33 ± 0.12 a,BC | ||
20 | 2.71 ± 0.04 c,C | 2.87 ± 0.09 b,BC | 3.18 ± 0.06 a,C | ||
55 | 5 | 2.49 ± 0.06 b,D | 2.78 ± 0.06 a,CD | 2.91 ± 0.07 a,D | |
10 | 2.63 ± 0.12 a,CD | 2.66 ± 0.10 a,D | 2.76 ± 0.09 a,D | ||
15 | 2.20 ± 0.03 c,E | 2.35 ± 0.09 b,E | 2.53 ± 0.04 a,E | ||
20 | 1.84 ± 0.07 c,F | 2.14 ± 0.07 b,F | 2.37 ± 0.04 a,F | ||
60 | 5 | n.d. c,G | 1.77 ± 0.12 b,G | 2.23 ± 0.08 a,G | |
10 | n.d. b,G | n.d. b,H | 2.06 ± 0.07 a,H | ||
15 | n.d. b,G | n.d. b,H | 1.52 ± 0.12 a,I | ||
20 | n.d. b,G | n.d. b,H | 1.38 ± 0.14 a,I | ||
65 | 5 | n.d. a,G | n.d. a,H | n.d. a,J | |
10 | n.d. a,G | n.d. a,H | n.d. a,J | ||
15 | n.d. a,G | n.d. a,H | n.d. a,J | ||
20 | n.d. a,G | n.d. a,H | n.d. a,J | ||
Listeria monocytogenes | 50 | 5 | 3.45 ± 0.10 b,A | 3.77 ± 0.10 a,A | 3.88 ± 0.10 a,A |
10 | 3.41 ± 0.04 b,A | 3.65 ± 0.11 ab,AB | 3.74 ± 0.08 a,AB | ||
15 | 3.16 ± 0.05 b,B | 3.54 ± 0.08 a,B | 3.66 ± 0.11 a,B | ||
20 | 2.77 ± 0.13 c,C | 3.24 ± 0.09 b,C | 3.41 ± 0.06 a,C | ||
55 | 5 | 2.38 ± 0.04 c,D | 2.87 ± 0.11 b,D | 3.17 ± 0.06 a,D | |
10 | 2.18 ± 0.07 c,E | 2.45 ± 0.11 b,E | 2.80 ± 0.06 a,E | ||
15 | 2.00 ± 0.06 c,F | 2.34 ± 0.10 b,E | 2.52 ± 0.07 a,F | ||
20 | 1.87 ± 0.10 b,FG | 2.07 ± 0.11 b,F | 2.41 ± 0.12 a,F | ||
60 | 5 | 1.73 ± 0.05 c,G | 1.96 ± 0.08 b,F | 2.12 ± 0.04 a,G | |
10 | n.d. b,H | n.d. b,G | 2.06 ± 0.07 a,G | ||
15 | n.d. b,H | n.d. b,G | 1.82 ± 0.06 a,H | ||
20 | n.d. b,H | n.d. b,G | 1.72 ± 0.04 a,I | ||
65 | 5 | n.d. b,H | n.d. b,G | 1.34 ± 0.12 a,JK | |
10 | n.d. b,H | n.d. b,G | 1.39 ± 0.14 a,J | ||
15 | n.d. b,H | n.d. b,G | 1.17 ± 0.05 a,K | ||
20 | n.d. b,H | n.d. b,G | 1.09 ± 0.02 a,L | ||
Essential oil + Listeria monocytogenes | 50 | 5 | 3.44 ± 0.02 b,A | 3.66 ± 0.11 a,A | 3.80 ± 0.12 a,A |
10 | 3.23 ± 0.03 b,B | 3.56 ± 0.11 a,A | 3.70 ± 0.05 a,A | ||
15 | 2.78 ± 0.07 b,C | 3.22 ± 0.10 a,B | 3.43 ± 0.11 a,B | ||
20 | 2.57 ± 0.04 c,D | 2.88 ± 0.10 b,C | 3.28 ± 0.13 a,B | ||
55 | 5 | 2.43 ± 0.04 b,E | 2.76 ± 0.13 a,C | 2.86 ± 0.10 a,C | |
10 | 2.07 ± 0.11 c,F | 2.45 ± 0.11 b,D | 2.71 ± 0.05 a,C | ||
15 | 1.92 ± 0.07 c,FG | 2.25 ± 0.07 b,E | 2.49 ± 0.14 a,D | ||
20 | 1.86 ± 0.09 b,G | 1.97 ± 0.03 b,F | 2.32 ± 0.03 a,D | ||
60 | 5 | n.d. b,H | n.d. b,G | 2.13 ± 0.07 a,E | |
10 | n.d. b,H | n.d. b,G | 1.87 ± 0.11 a,F | ||
15 | n.d. b,H | n.d. b,G | 1.78 ± 0.07 a,F | ||
20 | n.d. b,H | n.d. b,G | 1.64 ± 0.04 a,G | ||
65 | 5 | n.d. b,H | n.d. b,G | 1.22 ± 0.02 a,H | |
10 | n.d. b,H | n.d. b,G | 1.19 ± 0.06 a,H | ||
15 | n.d. b,H | n.d. b,G | 1.12 ± 0.06 a,I | ||
20 | n.d. b,H | n.d. b,G | 1.03 ± 0.03 a,I |
Treatment | Temperature (°C) | Time (min) | Coliforms Bacteria (log CFU/g) | ||
---|---|---|---|---|---|
Day | |||||
1 | 7 | 14 | |||
Control | 50 | 5 | n.d. c,A | 3.61 ± 0.04 b,A | 3.77 ± 0.10 a,A |
10 | n.d. c,A | 3.46 ± 0.06 b,B | 3.67 ± 0.11 a,A | ||
15 | n.d. b,A | 3.25 ± 0.08 a,C | 3.37 ± 0.12 a,B | ||
20 | n.d. c,A | 2.87 ± 0.10 b,D | 3.26 ± 0.17 a,B | ||
55 | 5 | n.d. c,A | 2.52 ± 0.06 b,E | 2.81 ± 0.16 a,C | |
10 | n.d. b,A | 2.25 ± 0.07 a,F | 2.60 ± 0.23 a,C | ||
15 | n.d. a,A | n.d. a,G | n.d. a,D | ||
20 | n.d. a,A | n.d. a,G | n.d. a,D | ||
60 | 5 | n.d. a,A | n.d. a,G | n.d. a,D | |
10 | n.d. a,A | n.d. a,G | n.d. a,D | ||
15 | n.d. a,A | n.d. a,G | n.d. a,D | ||
20 | n.d. a,A | n.d. a,G | n.d. a,D | ||
65 | 5 | n.d. a,A | n.d. a,G | n.d. a,D | |
10 | n.d. a,A | n.d. a,G | n.d. a,D | ||
15 | n.d. a,A | n.d. a,G | n.d. a,D | ||
20 | n.d. a,A | n.d. a,G | n.d. a,D | ||
Control vacuum | 50 | 5 | n.d. b,A | 2.87 ± 0.11 a,A | 3.08 ± 0.17 a,A |
10 | n.d. c,A | 2.45 ± 0.10 b,B | 2.81 ± 0.16 a,A | ||
15 | n.d. b,A | 1.86 ± 0.12 a,C | 2.11 ± 0.13 a,B | ||
20 | n.d. c,A | 1.54 ± 0.10 b,D | 1.77 ± 0.12 a,C | ||
55 | 5 | n.d. c,A | 1.33 ± 0.09 b,E | 1.58 ± 0.06 a,D | |
10 | n.d. a,A | n.d. a,F | n.d. a,E | ||
15 | n.d. a,A | n.d. a,F | n.d. a,E | ||
20 | n.d. a,A | n.d. a,F | n.d. a,E | ||
60 | 5 | n.d. a,A | n.d. a,F | n.d. a,E | |
10 | n.d. a,A | n.d. a,F | n.d. a,E | ||
15 | n.d. a,A | n.d. a,F | n.d. a,E | ||
20 | n.d. a,A | n.d. a,F | n.d. a,E | ||
65 | 5 | n.d. a,A | n.d. a,F | n.d. a,E | |
10 | n.d. a,A | n.d. a,F | n.d. a,E | ||
15 | n.d. a,A | n.d. a,F | n.d. a,E | ||
20 | n.d. a,A | n.d. a,F | n.d. a,E | ||
Essential oil | 50 | 5 | n.d. b,A | 2.34 ± 0.11 a,A | 2.55 ± 0.22 a,A |
10 | n.d. c,A | 1.14 ± 0.08 b,B | 1.80 ± 0.17 a,B | ||
15 | n.d. b,A | n.d. b,C | 1.59 ± 0.16 a,B | ||
20 | n.d. a,A | n.d. a,C | n.d. a,C | ||
55 | 5 | n.d. a,A | n.d. a,C | n.d. a,C | |
10 | n.d. a,A | n.d. a,C | n.d. a,C | ||
15 | n.d. a,A | n.d. a,C | n.d. a,C | ||
20 | n.d. a,A | n.d. a,C | n.d. a,C | ||
60 | 5 | n.d. a,A | n.d. a,C | n.d. a,C | |
10 | n.d. a,A | n.d. a,C | n.d. a,C | ||
15 | n.d. a,A | n.d. a,C | n.d. a,C | ||
20 | n.d. a,A | n.d. a,C | n.d. a,C | ||
65 | 5 | n.d. a,A | n.d. a,C | n.d. a,C | |
10 | n.d. a,A | n.d. a,C | n.d. a,C | ||
15 | n.d. a,A | n.d. a,C | n.d. a,C | ||
20 | n.d. a,A | n.d. a,C | n.d. a,C | ||
Listeria monocytogenes | 50 | 5 | n.d. c,A | 2.21 ± 0.08 b,A | 3.12 ± 0.13 a,A |
10 | n.d. c,A | 1.87 ± 0.11 b,B | 2.78 ± 0.11 a,B | ||
15 | n.d. b,A | n.d. b,C | 2.24 ± 0.09 a,C | ||
20 | n.d. b,A | n.d. b,C | 1.87 ± 0.11 a,D | ||
55 | 5 | n.d. a,A | n.d. a,C | n.d. a,E | |
10 | n.d. a,A | n.d. a,C | n.d. a,E | ||
15 | n.d. a,A | n.d. a,C | n.d. a,E | ||
20 | n.d. a,A | n.d. a,C | n.d. a,E | ||
60 | 5 | n.d. a,A | n.d. a,C | n.d. a,E | |
10 | n.d. a,A | n.d. a,C | n.d. a,E | ||
15 | n.d. a,A | n.d. a,C | n.d. a,E | ||
20 | n.d. a,A | n.d. a,C | n.d. a,E | ||
65 | 5 | n.d. a,A | n.d. a,C | n.d. a,E | |
10 | n.d. a,A | n.d. a,C | n.d. a,E | ||
15 | n.d. a,A | n.d. a,C | n.d. a,E | ||
20 | n.d. a,A | n.d. a,C | n.d. a,E | ||
Essential oil + Listeria monocytogenes | 50 | 5 | n.d. c,A | 1.86 ± 0.12 b,A | 2.31 ± 0.09 a,A |
10 | n.d. b,A | n.d. b,B | 2.20 ± 0.23 a,A | ||
15 | n.d. b,A | n.d. b,B | 1.77 ± 0.11 a,B | ||
20 | n.d. a,A | n.d. a,B | n.d. a,C | ||
55 | 5 | n.d. a,A | n.d. a,B | n.d. a,C | |
10 | n.d. a,A | n.d. a,B | n.d. a,C | ||
15 | n.d. a,A | n.d. a,B | n.d. a,C | ||
20 | n.d. a,A | n.d. a,B | n.d. a,C | ||
60 | 5 | n.d. a,A | n.d. a,B | n.d. a,C | |
10 | n.d. a,A | n.d. a,B | n.d. a,C | ||
15 | n.d. a,A | n.d. a,B | n.d. a,C | ||
20 | n.d. a,A | n.d. a,B | n.d. a,C | ||
65 | 5 | n.d. a,A | n.d. a,B | n.d. a,C | |
10 | n.d. a,A | n.d. a,B | n.d. a,C | ||
15 | n.d. a,A | n.d. a,B | n.d. a,C | ||
20 | n.d. a,A | n.d. a,B | n.d. a,C |
Temperature (°C) | Time (min) | Listeria monocytogenes (log CFU/g) | |||
---|---|---|---|---|---|
Day | |||||
1 | 7 | 14 | |||
Control | 50 | 5 | n.d. a,A | n.d. a,A | n.d. a,A |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
55 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
60 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
65 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
Control vacuum | 50 | 5 | n.d. a,A | n.d. a,A | n.d. a,A |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
55 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
60 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
65 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
Essential oil | 50 | 5 | n.d. a,A | n.d. a,A | n.d. a,A |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
55 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
60 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
65 | 5 | n.d. a,A | n.d. a,A | n.d. a,A | |
10 | n.d. a,A | n.d. a,A | n.d. a,A | ||
15 | n.d. a,A | n.d. a,A | n.d. a,A | ||
20 | n.d. a,A | n.d. a,A | n.d. a,A | ||
Listeria monocytogenes | 50 | 5 | 3.17 ± 0.05 a,A | 2.83 ± 0.05 b,A | 3.10 ± 0.12 a,A |
10 | 2.45 ± 0.11 a,B | 2.44 ± 0.11 a,B | 2.55 ± 0.10 a,B | ||
15 | 2.20 ± 0.08 ab,C | 2.06 ± 0.07 b,C | 2.24 ± 0.09 a,C | ||
20 | n.d. b,D | 1.74 ± 0.06 a,D | 1.91 ± 0.12 a,D | ||
55 | 5 | n.d. b,D | 1.28 ± 0.06 a,E | 1.37 ± 0.07 a,E | |
10 | n.d. a,D | n.d. a,F | n.d. a,F | ||
15 | n.d. a,D | n.d. a,F | n.d. a,F | ||
20 | n.d. a,D | n.d. a,F | n.d. a,F | ||
60 | 5 | n.d. a,D | n.d. a,F | n.d. a,F | |
10 | n.d. a,D | n.d. a,F | n.d. a,F | ||
15 | n.d. a,D | n.d. a,F | n.d. a,F | ||
20 | n.d. a,D | n.d. a,F | n.d. a,F | ||
65 | 5 | n.d. a,D | n.d. a,F | n.d. a,F | |
10 | n.d. a,D | n.d. a,F | n.d. a,F | ||
15 | n.d. a,D | n.d. a,F | n.d. a,F | ||
20 | n.d. a,D | n.d. a,F | n.d. a,F | ||
Essential oil + Listeria monocytogenes | 50 | 5 | 2.89 ± 0.08 a,A | 2.56 ± 0.11 b,a | 2.69 ± 0.16 ab,A |
10 | 2.32 ± 0.14 ab,B | 2.20 ± 0.06 b,B | 2.37 ± 0.07 a,B | ||
15 | n.d. b,C | 1.97 ± 0.19 a,B | 2.24 ± 0.17 a,B | ||
20 | n.d. a,C | n.d. a,C | n.d. a,C | ||
55 | 5 | n.d. a,C | n.d. a,C | n.d. a,C | |
10 | n.d. a,C | n.d. a,C | n.d. a,C | ||
15 | n.d. a,C | n.d. a,C | n.d. a,C | ||
20 | n.d. a,C | n.d. a,C | n.d. a,C | ||
60 | 5 | n.d. a,C | n.d. a,C | n.d. a,C | |
10 | n.d. a,C | n.d. a,C | n.d. a,C | ||
15 | n.d. a,C | n.d. a,C | n.d. a,C | ||
20 | n.d. a,C | n.d. a,C | n.d. a,C | ||
65 | 5 | n.d. a,C | n.d. a,C | n.d. a,C | |
10 | n.d. a,C | n.d. a,C | n.d. a,C | ||
15 | n.d. a,C | n.d. a,C | n.d. a,C | ||
20 | n.d. a,C | n.d. a,C | n.d. a,C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačániová, M.; Čmiková, N.; Ban, Z.; Garzoli, S.; Elizondo-Luevano, J.H.; Ben Hsouna, A.; Ben Saad, R.; Bianchi, A.; Venturi, F.; Kluz, M.I.; et al. Enhancing the Shelf Life of Sous-Vide Red Deer Meat with Piper nigrum Essential Oil: A Study on Antimicrobial Efficacy against Listeria monocytogenes. Molecules 2024, 29, 4179. https://doi.org/10.3390/molecules29174179
Kačániová M, Čmiková N, Ban Z, Garzoli S, Elizondo-Luevano JH, Ben Hsouna A, Ben Saad R, Bianchi A, Venturi F, Kluz MI, et al. Enhancing the Shelf Life of Sous-Vide Red Deer Meat with Piper nigrum Essential Oil: A Study on Antimicrobial Efficacy against Listeria monocytogenes. Molecules. 2024; 29(17):4179. https://doi.org/10.3390/molecules29174179
Chicago/Turabian StyleKačániová, Miroslava, Natália Čmiková, Zhaojun Ban, Stefania Garzoli, Joel Horacio Elizondo-Luevano, Anis Ben Hsouna, Rania Ben Saad, Alessandro Bianchi, Francesca Venturi, Maciej Ireneusz Kluz, and et al. 2024. "Enhancing the Shelf Life of Sous-Vide Red Deer Meat with Piper nigrum Essential Oil: A Study on Antimicrobial Efficacy against Listeria monocytogenes" Molecules 29, no. 17: 4179. https://doi.org/10.3390/molecules29174179