The Use of Dual Cyclodextrin Chiral Selector Systems in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: An Overview
Abstract
:1. Introduction
2. Applications of Dual CD Systems in the Analysis of Pharmaceuticals
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BGE | Background electrolyte |
CD | Cyclodextrin |
CE | Capillary electrophoresis |
CM-β-CD | Carboxymethyl-β-CD |
COX-2 | Cyclooxygenase-2 |
CS | Chiral selector |
DM-β-CD | Heptakis(2,6-di-O-methyl)-β-CD |
DoE | Design of Experiments |
HP-β-CD | Hydroxypropyl-β-CD |
HP-γ-CD | Hydroxypropyl-γ-CD |
HPLC | High performance liquid chromatography |
HS-β-CD | Heptakis-6-sulfato-β-cyclodextrin |
M-β-CD | Methyl-β-CD |
MEKC | Micellar electrokinetic chromatography method |
MPA-β-CD | 6-monodeoxy-6-mono-(3-hydroxy)-propylamino-β CD |
NH2-β-CD | Amino-β-cyclodextrin |
NMR- | Nuclear magnetic resonance spectroscopy |
NSAID | Non-steroidal anti-inflammatory drug |
PIP-β-CD | Mono-6-deoxy-6-piperdine-β-cyclodextrin |
PMMA-β-CD | Permethyl-6-monoamino-6-monodeoxy-β-CD |
QbD | Quality by Design |
S-β-CD | Sulfated-β-CD |
SBE-β-CD | Sulfobutyl ether β-CD |
TM-β-CD | Heptakis(2,3,6-tri-O-methyl)-β-CD |
References
- Brooks, W.H.; Guida, W.C.; Daniel, K.G. The significance of chirality in drug design and development. Curr. Top Med. Chem. 2011, 11, 760–770. [Google Scholar] [CrossRef]
- De Camp, W.H. Chiral drugs: The FDA perspective on manufacturing and control. J. Pharm. Biomed. Anal. 1993, 11, 167–1172. [Google Scholar] [CrossRef]
- Gübitzm, G.; Schmid, M.G. Chiral separation principles in chromatographic and electromigration techniques. Mol. Biotechnol. 2006, 32, 159–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, S.; Zeng, H.; Song, H. Chiral separation of pharmaceuticals by high performance liquid chromatography. Curr. Pharm. Anal. 2010, 6, 114–130. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Beesley, T.E. Applications of enantiomeric gas chromatography: A review. J. Liq. Chrom. Relat. Tech. 2005, 28, 1075–1114. [Google Scholar] [CrossRef]
- Martens, J.; Bhushan, R. Importance of enantiomeric purity and its control by thin-layer chromatography. J. Pharm. Biomed. Anal. 1990, 8, 259–269. [Google Scholar] [CrossRef]
- De Klerck, K.; Mangelings, D.; Vander Heyden, Y. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J. Pharm. Biomed. Anal. 2012, 69, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T.J. Determination of Enantiomeric Purity and Absolute Configuration by NMR Spectroscopy. In Stereoselective Synthesis of Drugs and Natural Products; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–24. [Google Scholar]
- Flack, H.D.; Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 2008, 20, 681–690. [Google Scholar] [CrossRef]
- Fanali, S.; Chankvetadze, B. Some thoughts about enantioseparation in capillary electrophoresis. Electrophoresis 2019, 40, 2420–2437. [Google Scholar] [CrossRef]
- Reminek, R.; Foret, H. Capillary electrophoretic methods for quality control analysis of pharmaceuticals: A review. Electrophoresis 2021, 42, 19–37. [Google Scholar] [CrossRef]
- Chankvetadze, B. Enantiomer migration order in chiral capillary electrophoresis. Electrophoresis 2002, 23, 4022–4035. [Google Scholar] [CrossRef] [PubMed]
- Rezanka, P.; Navrátilová, K.; Rezanka, M.; Král, V.; Sýkora, D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 2014, 35, 2701–2721. [Google Scholar] [CrossRef] [PubMed]
- Escuder-Gilabert, L.; Martín-Biosca, Y.; Medina-Hernández, M.J.; Sagrado, S. Cyclodextrins in capillary electrophoresis: Recent developments and new trends. J. Chromatogr. A 2014, 1357, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, L.; Servais, A.C.; Fillet, M.; Salgado, A.; Crommen, J.; Chankvetadze, B. Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy. J. Chromatogr. A 2012, 1267, 206–216. [Google Scholar] [CrossRef]
- Saz, J.M.; Marina, M.L. Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J. Chromatogr. A 2016, 1467, 79–94. [Google Scholar] [CrossRef]
- Fillet, M.; Hubert, P.; Crommen, J. Method development strategies for the enantioseparation of drugs by capillary electrophoresis using cyclodextrins as chiral additives. Electrophoresis 1998, 19, 2834–2840. [Google Scholar] [CrossRef]
- Wren, S.A.C.; Rowe, R.C. Theoretical aspects of chiral separation in capillary electrophoresis. J. Chromatogr. A 1992, 603, 235–241. [Google Scholar] [CrossRef]
- Fillet, M.; Hubert, P.; Crommen, J. Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J. Chromatogr. A 2000, 875, 123–134. [Google Scholar] [CrossRef]
- Dubský, P.; Dvořák, M.; Ansorge, M. Affinity capillary electrophoresis: The theory of electromigration. Anal. Bioanal. Chem. 2016, 408, 8623–8641. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Contemporary theory of enantioseparations in capillary electrophoresis. J. Chromatogr. A 2018, 1567, 2–25. [Google Scholar] [CrossRef]
- Müllerová, L.; Dubský, P.; Gaš, B. Twenty years of development of dual and multi-selector models in capillary electrophoresis: A review. Electrophoresis 2014, 35, 2688–2700. [Google Scholar] [CrossRef]
- Lurie, I.S.; Klein, R.F.; Dal Cason, T.A.; LeBelle, M.J.; Brenneisen, R.; Weinberger, R.E. Chiral resolution of cationic drugs of forensic interest by capillary electrophoresis with mixtures of neutral and anionic cyclodextrins. Anal. Chem. 1994, 66, 4019–4026. [Google Scholar] [CrossRef]
- Anigbogu, V.C.; Cooper, C.L.; Sepaniak, M.J. Separation of stereoisomers of aminoglutethimide using three capillary electrophoretic techniques. J. Chromat. A 1995, 2, 343–349. [Google Scholar] [CrossRef]
- Lelièvre, F.; Gareil, P.; Bahaddi, Y.; Galons, H. Intrinsic selectivity in capillary electrophoresis for chiral separations with dual cyclodextrin systems. Anal. Chem. 1997, 69, 393–401. [Google Scholar] [CrossRef]
- Fillet, M.; Hubert, P.; Crommen, J. Enantioseparation of nonsteroidal anti-inflammatory drugs by capillary electrophoresis using mixtures of anionic and uncharged beta-cyclodextrins as chiral additives. Electrophoresis 1997, 18, 1013–1018. [Google Scholar] [CrossRef]
- Fillet, M.; Fotsing, L.; Crommen, J. Enantioseparation of uncharged compounds by capillary electrophoresis using mixtures of anionic and neutral β-cyclodextrin derivatives. J. Chromatogr. A 1998, 817, 113–119. [Google Scholar] [CrossRef]
- Fillet, M.; Chankvetadze, B.; Crommen, J.; Blaschke, G. Designed combination of chiral selectors for adjustment of enantioseparation selectivity in capillary electrophoresis. Electrophoresis 1999, 20, 2691–2697. [Google Scholar] [CrossRef] [Green Version]
- Fillet, M.; Fotsing, L.; Bonnard, J.; Crommen, J. Stereoselective determination of S-naproxen in tablets by capillary electrophoresis. J. Pharm. Biomed. Anal. 1998, 18, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Meyring, M.; Chankvetadze, B.; Blaschke, G. Enantioseparation of thalidomide and its hydroxylated metabolites using capillary electrophoresis with various cyclodextrins and their combinations as chiral buffer additives. Electrophoresis 1999, 20, 2425–2431. [Google Scholar] [CrossRef]
- Meyring, M.; Mühlenbrock, C.; Blaschke, G. Investigation of the stereoselective in vitro biotransformation of thalidomide using a dual cyclodextrin system in capillary electrophoresis. Electrophoresis 2000, 21, 3270–3279. [Google Scholar] [CrossRef]
- Blaschke, G.; Meyring, M.; Mühlenbrock, C.; Chankvetadze, B. Recent results of biotransformation of drugs: Investigation of the in vitro biotransformation of thalidomide using a dual cyclodextrin system in capillary electrophoresis. Farmaco 2002, 57, 551–554. [Google Scholar] [CrossRef]
- Abushoffa, A.M.; Fillet, M.; Hubert, P.; Crommen, J. Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems. J. Chromatogr. A 2002, 948, 321–329. [Google Scholar] [CrossRef]
- Abushoffa, A.M.; Fillet, M.; Servais, A.C.; Hubert, P.; Crommen, J. Enhancement of selectivity and resolution in the enantioseparation of uncharged compounds using mixtures of oppositely charged cyclodextrins in capillary electrophoresis. Electrophoresis 2003, 24, 343–350. [Google Scholar] [CrossRef]
- Pérez-Maseda, C.; Calvet, C.; Cuberes, R.; Frigola, J. Determination of enantiomeric purity of a novel COX-2 anti-inflammatory drug by capillary electrophoresis using single and dual cyclodextrin systems. Electrophoresis 2003, 24, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Tábi, T.; Magyar, K.; Szöko, E. Chiral characterization of deprenyl-N-oxide and other deprenyl metabolites by capillary electrophoresis using a dual cyclodextrin system in rat urine. Electrophoresis 2003, 24, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Hou, W.; Zhu, C. Enantiomer separation of miconazole by capillary electrophoresis with dual cyclodextrin systems. Anal. Sci. 2003, 19, 1509–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaufour, M.; Morin, P.; Ribet, J.P. Chiral separation of the four stereoisomers of a novel antianginal agent using a dual cyclodextrin system in capillary electrophoresis. J. Sep. Sci. 2005, 28, 529–533. [Google Scholar] [CrossRef]
- Lorin, M.; Delépée, R.; Morin, P.; Ribet, J.P. Quantification of very low enantiomeric impurity of efaroxan using a dual cyclodextrin system by capillary electrophoresis. Anal. Chim. Acta 2007, 5, 139–145. [Google Scholar] [CrossRef]
- Chu, B.L.; Guo, B.; Zuo, H.; Wang, Z.; Lin, J.M. Simultaneous enantioseparation of antiparkinsonian medication rotigotine and related chiral impurities by capillary zone electrophoresis using dual cyclodextrin system. J. Pharm. Biomed. Anal. 2008, 46, 854–859. [Google Scholar] [CrossRef]
- Sungthong, B.; Jác, P.; Scriba, G.K. Development and validation of a capillary electrophoresis method for the simultaneous determination of impurities of escitalopram including the R-enantiomer. J. Pharm. Biomed. Anal. 2008, 46, 959–965. [Google Scholar] [CrossRef]
- Jamali, B.; Bjørnsdottir, I.; Cornett, C.; Honoré Hansen, S. Investigation of a dual CD chiral CE system for separation of glitazone compounds. Electrophoresis 2009, 30, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Wongwan, S.; Sungthong, B.; Scriba, G.K. CE assay for simultaneous determination of charged and neutral impurities in dexamphetamine sulfate using a dual CD system. Electrophoresis 2010, 31, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Lipka, E.; Danel, C.; Yous, S.; Bonte, J.P.; Vaccher, C. Dual CD system in capillary electrophoresis for direct separation of the four stereoisomers of agonist and antagonist melatoninergic ligands. Electrophoresis 2010, 31, 1529–1532. [Google Scholar] [CrossRef]
- Wagner, Z.; Tábi, T.; Jakó, T.; Zachar, G.; Csillag, A.; Szökő, E. Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal. Bioanal. Chem. 2012, 404, 2363–2368. [Google Scholar] [CrossRef]
- Sohajda, T.; Szakács, Z.; Szente, L.; Noszál, B.; Béni, S. Chiral recognition of imperanene enantiomers by various cyclodextrins: A capillary electrophoresis and NMR spectroscopy study. Electrophoresis 2012, 33, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Wan Ibrahim, W.A.; Abd Wahib, S.M.; Hermawan, D.; Sanagi, M.M.; Aboul-Enein, H.Y. Separation of selected imidazole enantiomers using dual cyclodextrin system in micellar electrokinetic chromatography. Chirality 2013, 25, 328–335. [Google Scholar] [CrossRef]
- Lipka, E.; Landagaray, E.; Ettaoussi, M.; Yous, S.; Vaccher, C. Enhanced detection for determination of enantiomeric purity of novel agomelatine analogs by EKC using single and dual cyclodextrin systems. Electrophoresis 2014, 35, 2785–2792. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.; Song, J.; Guo, X. Enantioseparation of meptazinol and its three intermediate enantiomers by capillary electrophoresis using a new cationic β-cyclodextrin derivative in single and dual cyclodextrin systems. Biomed. Chromatogr. 2014, 28, 868–874. [Google Scholar] [CrossRef]
- Znaleziona, J.; Fejős, I.; Ševčík, J.; Douša, M.; Béni, S.; Maier, V. Enantiomeric separation of tapentadol by capillary electrophoresis--study of chiral selectivity manipulation by various types of cyclodextrins. J. Pharm. Biomed. Anal. 2015, 105, 10–16. [Google Scholar] [CrossRef]
- Orlandini, S.; Pasquini, B.; Del Bubba, M.; Pinzauti, S.; Furlanetto, S. Quality by design in the chiral separation strategy for the determination of enantiomeric impurities: Development of a capillary electrophoresis method based on dual cyclodextrin systems for the analysis of levosulpiride. J. Chromatogr. A 2015, 1380, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Melani, F.; Pasquini, B.; Caprini, C.; Gotti, R.; Orlandini, S.; Furlanetto, S. Combination of capillary electrophoresis, molecular modeling, and NMR to study the enantioselective complexation of sulpiride with double cyclodextrin systems. J. Pharm. Biomed. Anal. 2015, 114, 265–271. [Google Scholar] [CrossRef]
- Szabó, Z.I.; Tóth, C.; Hancu, G.; Muntean, D.L. Simultaneous chiral separation of four H1-antihistamines by capillary zone electrophoresis using a dual cyclodextrin system. Chromatographia 2015, 78, 1377–1384. [Google Scholar] [CrossRef]
- Nováková, Z.; Pejchal, V.; Fischer, J.; Česla, P. Chiral separation of benzothiazole derivatives of amino acids using capillary zone electrophoresis. J. Sep. Sci. 2017, 40, 798–803. [Google Scholar] [CrossRef]
- Delplanques, T.; Boulahjar, R.; Charton, J.; Houze, C.; Howsam, M.; Servais, A.C.; Fillet, M.; Lipka, E. Single and dual cyclodextrins systems for the enantiomeric and diastereoisomeric separations of structurally related dihydropyridone analogues. Electrophoresis 2017, 38, 1922–1931. [Google Scholar] [CrossRef] [PubMed]
- Sandbaumhüter, F.A.; Theurillat, R.; Thormann, W. Separation of hydroxynorketamine stereoisomers using capillary electrophoresis with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin. Electrophoresis 2017, 38, 1878–1885. [Google Scholar] [CrossRef] [PubMed]
- Papp, L.A.; Hancu, G.; Gyéresi, Á.; Kelemen, H.; Szabó, Z.I.; Noszál, B.; Dubský, P.; Tóth, G. Chiral separation of lansoprazole and rabeprazole by capillary electrophoresis using dual cyclodextrin systems. Electrophoresis 2019, 40, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Harnisch, H.; Scriba, G.K.E. Capillary electrophoresis method for the determination of (R)-dapoxetine, (3S)-3-(dimethylamino)-3-phenyl-1-propanol, (S)-3-amino-3-phenyl-1-propanol and 1-naphthol as impurities of dapoxetine hydrochloride. J. Pharm. Biomed. Anal. 2019, 162, 257–263. [Google Scholar] [CrossRef]
- Krait, S.; Heuermann, M.; Scriba, G.K.E. Development of a capillary electrophoresis method for the determination of the chiral purity of dextromethorphan by a dual selector system using quality by design methodology. J. Sep. Sci. 2018, 41, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Dubský, P.; Svobodová, J.; Gas, B. Model of CE enantioseparation systems with a mixture of chiral selectors. Part I. Theory of migration and interconversion. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 875, 30–34. [Google Scholar] [CrossRef]
- Casado, N.; Saz, J.M.; García, M.Á.; Marina, M.L. Modeling-based optimization of the simultaneous enantiomeric separation of multicomponent mixtures of phenoxy acid herbicides using dual cyclodextrin systems by capillary electrophoresis. J. Chromatogr. A 2020, 1610, 460552. [Google Scholar] [CrossRef]
- Lurie, I.S. Separation selectivity in chiral and achiral capillary electrophoresis with mixed cyclodextrins. J. Chromatogr. A 1997, 792, 297–307. [Google Scholar] [CrossRef]
- de Koster, N.; Clark, C.P.; Kohler, I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021, 42, 38–57. [Google Scholar] [CrossRef]
- Salgado, A.; Chankvetadze, B. Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis. J. Chromatogr. A 2016, 1467, 95–144. [Google Scholar] [CrossRef]
- Dubský, P.; Müllerová, L.; Dvořák, M.; Gaš, B. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: Part I. Theory. J. Chromatogr. A 2015, 1384, 142–146. [Google Scholar] [CrossRef]
- Klein-Júnior, L.C.; Mangelings, D.; Vander Heyden, Y. Experimental design methodologies for the optimization of chiral separations: An overview. Methods Mol. Biol. 2019, 1985, 453–478. [Google Scholar] [CrossRef]
- Servais, A.C.; Fillet, M. Application of dual-cyclodextrin systems in capillary electrophoresis enantioseparations. Methods Mol. Biol. 2019, 1985, 357–364. [Google Scholar] [CrossRef]
- Krait, S.; Konjaria, M.L.; Scriba, G.K.E. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017–2020). Electrophoresis 2021. [Google Scholar] [CrossRef]
- Dubský, P.; Svobodová, J.; Tesarová, E.; Gas, B. Model of CE enantioseparation systems with a mixture of chiral selectors. Part II. Determination of thermodynamic parameters of the interconversion in chiral and achiral environments separately. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 875, 35–41. [Google Scholar] [CrossRef]
Electrophoretic Conditions | Chiral Selector | Analyte | Reference |
---|---|---|---|
25 mM Tris-phosphoric acid, pH 2.45, 10% methanol, 30 kV, 30 °C, UV 210 nm | 5 mM DM-β-CD, 1 mM SBE-β-CD | amphetamine, metamphetamine, methcathinone, propoxyphene—bulk substances | [23] |
10 mM phosphate-6 mM borax, pH 9.0, 50% methanol, 10 kV, UV 205 nm | 1 mM β-CD, 5 mM CM-β-CD | aminogluthetimide—bulk substance | [24] |
34 mM phosphoric acid, pH 2.30, 20 kV, 25 °C, UV 240 nm (calprofen, flurbiprofen), 210 nm (ketoprofen), 230 nm (naproxen), 254 nm (suprofen) | 10 mM TM-β-CD, 20 mM NH2-β-CD | carprofen, flurbiprofen, ketoprofen, naproxen, suprofen—bulk substances | [25] |
100 mM phosphoric acid-triethanolamine, pH 3.0, −25 kV, 25 °C, 230 nm (carprofen, fenoprofen, flurbiprofen), 210 nm (ibuprofen), 280 nm (indoprofen, ketoprofen, sulindac, suprofen, tiaprofenic acid). | 15 mM TM-β-CD, 5 mM SBE-β-CD | carprofen, fenoprofen, flurbiprofen, ibuprofen, indoprofen, ketoprofen, sulindac, surprofen, tiaprofenic acid—bulk substances | [26] |
100 mM phosphoric acid-triethanolamine, pH 3.0, −25 kV, 25 °C, UV 210 nm 100 mM phosphoric acid-triethanolamine, pH 5.0, −25 kV, 25 °C, UV 210 nm | 10 mM TM-β-CD (DM-β-CD), 5 mM SBE-β-CD 10 mM TM-β-CD (DM-β-CD), 10 mM CM-β-CD | chlormezanone, chlorthalidone, hexobarbital, mephenytoin, mephobarbital, pentobarbital, secobarbital, thiopental—bulk substances | [27] |
100 mM phosphoric acid, pH 3.0, 25 kV, 25 °C, UV 210 nm | 10 mM TM-β-CD, 5 mM CM-β-CD | brompheniramine, chlorpheniramine, dimethindene, ephedrine, verapamil—bulk substances | [28] |
100 mM phosphoric acid-triethanolamine, pH 3.0, −25 kV, 25 °C, UV 210 nm | 20 mM TM-β-CD, 5 mM SBE-β-CD | naproxen chiral purity—tablets | [29] |
5 mM ammonium acetate, pH 4.5, −30 kV, 25 °C, UV 210 nm | 12 mg/mL β-CD, 12 mg/mL SBE-β-CD | thalidomide, 3 hydroxylated metabolites—rat liver fractions | [31] |
100 mM phosphoric acid-triethanolamine, pH 2.5, −25 kV, 25 °C, UV 214 nm | 20 mM TM-β-CD, 3 mM HS-β-CD | fenoprofen, flurbiprofen, ibuprofen, ketoprofen—bulk substances | [33] |
100 mM phosphoric acid-triethanolamine, pH 2.5, 25 kV, 25 °C, UV 214 nm | 4 mM HS-β-CD, 18 mM PMMA--β-CD | fenoprofen, flurbiprofen, ibuprofen, ketoprofen—bulk substances | [34] |
50 mM sodium tetraborate, 30% methanol, pH 9.2, 30 kV, 20 °C, UV 315 nm | 0.5 mM DM-β-CD, 7.1 mM SBE- β-CD | COX-2 inhibitor, chiral impurities—bulk substances | [35] |
20 mM Tris-phosphate, pH 2.7, 25 kV, 20 °C, UV 214 nm | 9 mM DM-β-CD, 0,5% CM-β-CD | deprenyl, deprenyl metabolites—rat urine | [36] |
50 mM sodium tetraborate, 50 mM SDS, 1 M urea, pH 9.5, UV 214 nm | 15 mM β-CD, 15 mM MPC- β-CD | miconazole—bulk substance | [37] |
30 mM phosphate, pH 6.4, 30 kV, 20 °C, UV 214 nm | 10 mM HP-γ-CD, 10 mM CM- β-CD | benzoaxathiepin antianginal agent, chiral impurities—bulk substances | [38] |
100 mM phosphoric acid-triethanolamine, pH 3.0, 20 kV, 25 °C, UV 214 nm | 7,5 mM DM- β-CD, 3 mM CM-β-CD | efaroxan, chiral impurity—bulk substance | [39] |
100 mM sodium phosphate buffer, pH 2.5, −20 kV, 20 °C, UV 200 nm | 2% (w/v) M-β-CD, 2% (w/v) S-β-CD | rotigotone, chiral impurities—bulk substances | [40] |
20 mM phosphate, pH 2.5, −20 kV, 28 °C, UV 205 nm | 0.5 mg/mL β-CD, 22 mg/mL S-β-CD | S-citalopram—chiral purity—bulk substance, tablets | [41] |
50 mM sodium tetraborate, pH 9.7, 15 kV, 30 °C, UV 200 nm | 3 mM DM-β-CD, 12 mM SBE-β-CD | balaglitazone, pioglitazone, rosiglitazone—bulk substance | [42] |
50 mM phosphate, pH 3.0, −10 kV, 20 °C, UV 200 nm | 80 mg/mL SBE-β-CD, 25 mg/mL S- β-CD | dexamphetamine -chiral purity—bulk substances | [43] |
25 mM phosphoric acid-triethanolamine, pH 2.5, 25 kV, 20 °C, UV 190 nm | 10 mM γ-CD, 1.5% (w/v) HS-β-CD | agonist and antagonist melatoninergic ligands—bulk substances | [44] |
75 mM sodium tetraborate, pH 9.0, 30 kV, 20 °C, UV 210 nm | 10 mM MPA- β-CD, 12.5 mM SBE-γ-CD | imperanene | [46] |
35 mM phosphate, 50 mM SDS, pH 7.0, 15% (v/v) acetonitrile, 27 kV, 20 °C, UV 210 nm | 35 mM HP-γ-CD, 10 mM DM-β-CD | fenticonazole, isoconazole, tioconazole—spiked urine sample, pharmaceutical preparation | [47] |
25 mm phosphate, pH 2.5, 25 kV, 25 °C, UV 227 nm | 10 mM MMA-β-CD, 5% (w/v) S-γ-CD | agomelatine analogues—bulk substances | [48] |
20 mM phosphate, pH 3.0, 20 kV, 20 °C, UV 237, 271 nm | 40 mM HP-β-CD, 5 mM PIP-β-CD | meptanizol, 4 intermediates—bulk substances | [49] |
50 mM phosphate, pH 2.5, 25 kV, 15 °C, UV 210 nm | 0.1% (w/v) HP-β-CD, 0.5% (w/v) HP-γ-CD | tapentadol—bulk substances | [50] |
5 mM Britton Robinson buffer, pH 3.45, 14 kV, 16 °C, UV 214 nm | 34 mM M-β-CD, 10 mM S-β-CD | sulpiride—bulk substance | [52] |
25 mM phosphate, pH 7.0, 25 kV, 25 °C, UV 214 nm | 10 mM β-CD, 15 mM SBE-β-CD | brompheniramine, chlorpheniramine, cetirizine, promethazine—bulk substances, tablets | [53] |
100 mM phosphate, pH 3.5, 24 kV, 17 °C, UV 220 nm | 10 mM β CD, 10 mM HP-β-CD (leucine) 10 mM β CD, 10 mM HP-γ-CD (phenylalanine) | benzothiazole derivatives of leucine and phenylalanine—bulk substances | [54] |
50 mM phosphate, pH 3.0, 20 kV, 20 °C, UV 200 nm | 5 mM S-β-CD, 0.1%b HS-γ-CD | ketamine metabolites—plasma samples | [56] |
25 mM phosphate, pH 7.0, 20 kV, 18 °C, UV 210 nm | 20 mM γ-CD, 10 mM SBE-β-CD (lansoprazole) 30 mM γ-CD, 15 mM SBE-β-CD (rabeprazole) | lansoprazole, rabeprazole—bulk substances | [57] |
50 mM phosphate, pH 6.3, 20 kV, 20 °C, UV 210 nm | 40.2 mg/mL DM-β-CD, 45 mM S-γ-CD | dapoxetine—chiral purity—bulk substance, tablets | [58] |
30 mM phosphate, pH 6.5, 9 kV, 15 °C, UV 200 nm | 14 mg/mL M-β-CD, 16 mg/mL S-β-CD | dextrometorphan—chiral purity—bulk substance, capsules | [59] |
50 mM phosphate, pH 7.0, 25 kV, 15 °C, UV 200 nm | 4 mM HP-β-CD, 16 mM TM-β-CD | phenoxy acid herbicides—bulk substances | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hancu, G.; Papp, L.A.; Tóth, G.; Kelemen, H. The Use of Dual Cyclodextrin Chiral Selector Systems in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: An Overview. Molecules 2021, 26, 2261. https://doi.org/10.3390/molecules26082261
Hancu G, Papp LA, Tóth G, Kelemen H. The Use of Dual Cyclodextrin Chiral Selector Systems in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: An Overview. Molecules. 2021; 26(8):2261. https://doi.org/10.3390/molecules26082261
Chicago/Turabian StyleHancu, Gabriel, Lajos Attila Papp, Gergő Tóth, and Hajnal Kelemen. 2021. "The Use of Dual Cyclodextrin Chiral Selector Systems in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: An Overview" Molecules 26, no. 8: 2261. https://doi.org/10.3390/molecules26082261