Source Analysis and Bioavailability of Soil Cadmium in Poyang Lake Plain of China Based on Principal Component Analysis and Positive Definite Matrix Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample and Analysis
2.3. Statistical Analysis
2.4. Risk Assessment Methods
3. Results
3.1. Enrichment Characteristics and Spatial Distribution
3.2. Geochemical Fractions and Bioavailability Characteristics
4. Discussion
4.1. Source Analysis
4.1.1. Inference Analysis Based on PCA
4.1.2. Contribution Rate Based on PMF
4.2. Effect Factors on Bioavailable Cd
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 1004388. [Google Scholar] [CrossRef]
- Palumbo, B.; Angelone, M.; Bellanca, A.; Dazzi, C.; Hauser, S.; Neri, R.; Wilson, J. Influence of Inheritance and Pedogenesis on Heavy Metal Distribution in Soils of Sicily, Italy. Geoderma 2000, 95, 247–266. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection, Ministry of Land and Resources; Survey, Bulletin of National Soil: Beijing, China, 2014.
- Wang, H.X.; Li, X.; Chen, Y.; Li, Z.; Chen, J. Geochemical Behavior and Potential Health Risk of Heavy Metals in Basalt-derived Agricultural Soil and Crops: A Case Study from Xuyi County, Eastern China. Sci. Total. Environ. 2020, 729, 139058. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Chon, H.; Marton, L. Mobility and Accumulation of Selenium and its Relationship with Other Heavy Metals in the System Rocks/Soils-Crops in Areas Covered by Black Shale in Korea. J. Geochem. Explor. J. Assoc. Explor. Geochem. 2010, 107, 161–168. [Google Scholar] [CrossRef]
- Reimann, C.; Garrett, R.G. Geochemical Background—Concept and Reality. Sci. Total Environ. 2005, 350, 12–27. [Google Scholar] [CrossRef]
- Quezada-Hinojosa, R.P.; Matera, V.; Adatte, T.; Rambeau, C.; FöLlmi, K.B. Cadmium Distribution in Soils Covering Jurassic Olitic Limestone with High Cd Contents in the Swiss Jura. Geoderma 2009, 150, 287–301. [Google Scholar] [CrossRef]
- Quezada-Hinojosa, R.P.; FöLlmi, K.B.; Verrecchia, E.; Adatte, T.; Matera, V. Speciation and Multivariable Analyses of Geogenic Cadmium in Soils at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 125, 10–32. [Google Scholar] [CrossRef]
- Wen, Y.B.; Li, W.; Yang, Z.Y.; Zhang, Q.; Ji, J. Enrichment and Source Identification of Cd and Other Heavy Metals in Soils with High Geochemical Background in the Karst Region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Z.; Chen, Z.J.; Xiao, T.F.; Zhu, Z.; Jia, S.; Sun, J.; Ning, Z.; Gao, T.; Liu, C. Enrichment and Environmental Availability of Cadmium in Agricultural Soils Developed on Cd-rich Black Shale in Southwestern China. Environ. Sci. Pollut. Res. 2022, 29, 36243–36254. [Google Scholar] [CrossRef]
- Xie, X.J.; Ren, T.X.; Sun, H.Z. Geochemical Atlas of China; Geological Publishing House: Beijing, China, 2012. [Google Scholar]
- Cheng, H.X.; Yang, Z.F.; Xi, X.H.; Zhao, C.; Zhao, H.; Zhang, J.; Luo, J.; Tang, J.; Liu, Y.; Zhuang, G.; et al. Strategy and Tactics for Tracing and Source Tracking of Cd Anomalies Along the Changjiang River Basin. Quat. Sci. 2005, 25, 285–291. [Google Scholar]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy Metals in Agricultural Soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef]
- Han, Z.X.; Wang, X.Q.; Chi, Q.H.; Zhang, B.M.; Tian, M. Occurrence and Source Identification of Heavy Metals in the Alluvial Soils of Pearl River Delta Region, South China. China Environ. Sci. 2018, 38, 3455–3463. [Google Scholar]
- Xie, S.W.; Liu, C.S.; He, B.; Chen, M.; Gao, T.; Wei, X. Geochemical Fractionation and Source Identification of Pb and Cd in Riparian Soils and River Sediments from Three Lower Reaches Located in the Pearl River Delta. Int. J. Environ. Res. Public Health 2022, 19, 13819. [Google Scholar] [CrossRef] [PubMed]
- Mapel-Hernández, M.D.; Altrin, A.; Botello, A.V.; Reynoso, L. Bioavailability of Cd and Pb in Sediments of the National Park Veracruz Reef System, Gulf of Mexico—ScienceDirect. Appl. Geochem. 2021, 133, 105085. [Google Scholar] [CrossRef]
- Nganje, T.N.; Edet, A.; Cuthbert, S.; Adamu, C.I.; Hursthouse, A.S. The Concentration, Distribution and Health Risk from Potentially Toxic Elements in the Soil—Plant—Water System Developed on Black Shales in SE Nigeria. J. Afr. Earth Sci. 2020, 165, 103806. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, T.; Zhu, Z.; Ma, L.; Ning, Z. Geogenic Pollution, Fractionation and Potential Risks of Cd and Zn in Soils from a Mountainous Region Underlain by Black Shale. Sci. Total Environ. 2020, 760, 143426. [Google Scholar] [CrossRef]
- Yu, D.Y.; Wang, Y.H.; Ding, F.; Chen, X.; Wang, J. Comparison of Analysis Methods of Soil Heavy Metal Pollution Sources in China in Last Ten Years. Chin. J. Soil Sci. 2021, 54, 1000–1008. [Google Scholar]
- Duan, W.L.; He, B.; Nover, D.; Yang, G.S.; Chen, W.; Meng, H.F.; Zou, S.; Liu, C.M. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef]
- Chu, X.D.; Wang, H.; Zheng, F.; Huang, C.; Xu, C.; Wu, D. Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season. Water 2021, 13, 1654. [Google Scholar] [CrossRef]
- Kuang, H.F.; Hu, C.H.; Wu, G.L.; Chen, M. Combination of PCA and PMF to apportion the sources of heavy metals in surface sediments from Lake Poyang during the wet season. J. Lake Sci. 2020, 32, 964–976. [Google Scholar]
- Dai, L.J.; Wang, L.Q.; Li, L.F.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate Geostatistical Analysis and Source Identification of Heavy Metals in the Sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, X. Multivariate and Geostatistical Analyses of Heavy Metal Pollution from Different Sources among Farmlands in the Poyang Lake Region, China. J. Soil. Sediments 2019, 19, 2472–2484. [Google Scholar] [CrossRef]
- Li, Y.H.; Kuang, H.F.; Hu, C.H.; Ge, G. Source Apportionment of Heavy Metal Pollution in Agricultural Soils around the Poyang Lake Region Using UNMIX Model. Sustainability 2021, 13, 5272. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, X.R. Cd Contamination Status and Cost-benefits Analysis in Agriculture Soils of Yangtze River basin—ScienceDirect. Environ. Pollut. 2019, 254, 112962. [Google Scholar] [CrossRef]
- Li, W.M.; Yang, Z.F.; Zhou, L.; Tang, M.; Yuan, G.; Liu, C. Geochemical Characteristic and Fluxes of Heavy Metals in Water System of the Poyang Lake. Geoscience 2014, 28, 512–522. [Google Scholar]
- Jiangxi Provincial Bureau of Geology and Mineral Resources Exploration and Development. Regional Geology of China: Jiangxi; Geological Publishing House: Beijing, China, 2017. [Google Scholar]
- Jiangxi Provincial Land use Administration. Jiangxi Soil; China Agricultural Science and Technology Press: Beijing, China, 1991. [Google Scholar]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Gupta, S.; Gadi, R.; Sharma, S.K.; Mandal, T.K. Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustain. Cities Soc. 2018, 39, 52–67. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J. Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. Int. J. Environ. Res. Public Health 2022, 19, 10502. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, D.; Pavlovic, P.; Mrvic, V.; Saljnikov, E.; Perovic, V.; Jaramaz, D.; Sikiric, B. Using Different Receptor Models to Determine the Sources of Available Forms of Potentially Toxic Elements in Rasina District—A Case Study. Catena 2023, 222, 106865. [Google Scholar] [CrossRef]
- Anaman, R.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef]
- Saba, T.; Su, S. Tracking Polychlorinated Biphenyls (PCBs) Congener Patterns in Newark Bay Surface Sediment Using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF). J. Hazard. Mater. 2013, 260C, 634–643. [Google Scholar] [CrossRef] [PubMed]
- He, J.L.; Xu, G.G.; Zhu, H.M. Study on the Background Value of Soil Environment in Jiangxi Province; China Environmental Science Press: Beijing, China, 2006. [Google Scholar]
- GB15618; Soil Environmental Quality: Risk Control Standard for Soil of Agricultural Land. Chinese Standard: Beijing, China, 2018.
- Deng, S.; Duan, J.H.; Ning, M.H.; Tan, L.; Pu, G.; Chen, J.; Qi, X.; Jiang, S.; Xie, T.; Lie, Y. Accumulation and Pollution Risks of Heavy Metals in Soils and Agricultural Products from a Typical Black Shale Region with High Geological Background. Environ. Sci. 2023, 44, 2234–2242. [Google Scholar]
- Wang, J.X.; Hou, Q.Y.; Ye, D.J.; Yang, Z.; Yu, T. Differences of Cadmium Mobility in Paddy Soils from Different Parent Materials in the Pearl River Delta and Its Influencing Factors. Geoscience 2023, 37, 197–207. [Google Scholar]
- Zhang, J.H.; Wang, K.Y.; Li, H.; Chen, H.Q.; Zhao, A.N. Factors Affecting Bioavailability of Heavy Metal Elements Pb and Cd in Soil of the Tongguan Gold Ore District and Their Significance. Geol. Bull. China 2014, 33, 1188–1195. [Google Scholar]
- Rao, C.R.M.; Sahuquillo, A.; Sanchez, J.F.L. A Review of the Different Methods Applied in Environmental Geochemistry For Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water Air Soil Pollut. 2008, 189, 291–333. [Google Scholar] [CrossRef]
- Zheng, D.M.; Wang, Q.C.; Li, Z.B. Comparative Study of Mercury Pollution in Two Different Typical Cities of Northern China: Coal-consumed and Industrial Cities. Earth Environ. 2007, 35, 273–278. [Google Scholar]
- Zheng, D.; Zhou, C.H.; Shen, Y.C. Dictionary of Geographical Regionalization and Planning; China Water Conservancy and Hydropower Press: Beijing, China, 2012. [Google Scholar]
- Hou, Q.Y.; Yang, Z.F.; Yang, X.Y.; Yang, Y.; Lai, M. Study of distribution of geochemical speciation of cadmium and factors controlling the distribution in paddy soil profiles, Chengdu Plain, Southwest China. Earth Sci. Front. 2008, 15, 36–46. [Google Scholar]
- Zhang, J.W.; Wang, X.N.; Li, J.; Luo, J.J.; Wang, X.S.; Ai, S.H.; Cheng, H.G.; Liu, Z.T. Bioavailability (BA)-based risk assessment of soil heavy metals in provinces of China through the predictive BA-models. J. Hazard. Mater. 2024, 465, 133327. [Google Scholar] [CrossRef]
- Uddin, M.K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Akkajit, P.; Tongcumpou, C. Fractionation of Metals in Cadmium Contaminated Soil: Relation and Effect on Bioavailable Cadmium. Geoderma 2010, 156, 126–132. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Behavioural Properties of Trace Metals in Soils. Appl. Geochem. 1993, 8, 3–9. [Google Scholar] [CrossRef]
- Adriano, D. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals; Springer: New York, NY, USA, 2001. [Google Scholar]
- Pawlik, A.; Phillips, J.D.; Šamonil, P. Roots, Rock, and Regolith: Biomechanical and Biochemical Weathering by Trees and its Impact on Hillslopes—A Critical Literature Review. Earth-Sci. Rev. 2016, 159, 142–159. [Google Scholar] [CrossRef]
- Maksimović, J.; Pivić, R.; Stanojković-Sebić, A.; Jovković, M.; Jaramaz, D.; Dinić, Z. Influence of Soil Type on the Reliability of the Prediction Model for Bioavailability of Mn, Zn, Pb, Ni and Cu in the Soils of the Republic of Serbia. Agronomy 2021, 11, 141. [Google Scholar] [CrossRef]
- Wen, Y.B.; Wang, Y.Y.; Ji, W.B.; Wei, N.; Liao, Q.L.; Huang, D.L.; Song, Y.X. Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China. Agronomy 2023, 13, 2230. [Google Scholar] [CrossRef]
Fraction | Extractant | Extraction Method |
---|---|---|
Soluble fraction | Distilled water (pH = 7.0) | 25 mL, shake 30 min at 25 °C |
Ion exchangeable fraction | 1 mol/L MgCl2·6H2O (pH = 7.0) | 25 mL, shake 30 min at 25 °C |
Easily mobilizable fraction | 1 mol/L NaAc–Hac (pH = 5.0) | 25 mL, shake 1 h at 25 °C |
Labile OM fraction | 1 mol/L Na4P2O7·10H2O (pH = 10.0) | 25 mL, shake 40 min at 25 °C |
Fe–Mn oxides fraction | 0.25 mol/L HONH3Cl–HCl | 25 mL, shake 1 h at 25 °C |
Refractory OM fraction | 30% H2O2–HNO3 (pH = 2.0) | 8 mL, water bath 3 h at 83 °C, shake 10 h at 25 °C |
Residual fraction | HCl–HNO3–HClO4 (1:1:1) | 0.2 g residual sample + 5 mL HCl–HNO3–HClO4 solution |
Sample | Parent Material | N | Range | Average | Standard Deviation | CV (%) | Exceedance Rate (%) | Pn |
---|---|---|---|---|---|---|---|---|
Topsoil | Quaternary sediments | 2014 | 0.02~8.12 | 0.30 | 0.56 | 170 | 26.3 | 19.2 |
Quaternary residues | 468 | 0.02~0.33 | 0.10 | 0.06 | 55 | 0.21 | 0.82 | |
Black shale | 929 | 0.02~3.21 | 0.12 | 0.14 | 117 | 1.94 | 7.57 | |
Metamorphic rocks | 344 | 0.02~0.32 | 0.10 | 0.06 | 55 | 0.30 | 0.80 | |
Magmatic rocks | 44 | 0.03~0.53 | 0.10 | 0.08 | 80 | 2.27 | 1.27 | |
Study area | 3799 | 0.02~8.12 | 0.21 | 0.39 | 183 | 14.6 | 19.2 | |
Root soil | / | 140 | 0.03~0.65 | 0.16 | 0.09 | 56 | 6.43 | 1.58 |
Indexes | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Cd | −0.17 | 0.63 | −0.07 | 0.54 |
Pb | −0.07 | 0.87 | 0.20 | 0.01 |
Zn | 0.28 | 0.87 | 0.01 | 0.19 |
As | 0.71 | −0.02 | −0.19 | 0.34 |
Cr | 0.82 | −0.29 | −0.02 | 0.17 |
Ni | 0.88 | 0.11 | −0.01 | −0.03 |
Cu | 0.36 | 0.44 | 0.00 | 0.11 |
Hg | 0.15 | −0.03 | 0.23 | 0.76 |
N | −0.24 | 0.05 | 0.91 | 0.09 |
P | −0.02 | 0.11 | 0.53 | 0.37 |
S | 0.08 | −0.01 | 0.85 | −0.07 |
K | −0.22 | 0.82 | −0.01 | −0.29 |
Fe | 0.87 | 0.07 | −0.29 | −0.13 |
Al | 0.68 | 0.58 | −0.04 | −0.30 |
SOC | −0.25 | 0.02 | 0.92 | 0.11 |
Initial Eigenvalue | 4.15 | 3.38 | 2.40 | 1.23 |
Cumulative Variance (%) | 24.1 | 45.7 | 65.0 | 74.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Jiang, H.; Gao, Y.; Zhou, Q.; Qie, H. Source Analysis and Bioavailability of Soil Cadmium in Poyang Lake Plain of China Based on Principal Component Analysis and Positive Definite Matrix Factor. Minerals 2024, 14, 514. https://doi.org/10.3390/min14050514
Wen B, Jiang H, Gao Y, Zhou Q, Qie H. Source Analysis and Bioavailability of Soil Cadmium in Poyang Lake Plain of China Based on Principal Component Analysis and Positive Definite Matrix Factor. Minerals. 2024; 14(5):514. https://doi.org/10.3390/min14050514
Chicago/Turabian StyleWen, Bangyong, Hongyu Jiang, Yuan Gao, Qiangqiang Zhou, and Haiman Qie. 2024. "Source Analysis and Bioavailability of Soil Cadmium in Poyang Lake Plain of China Based on Principal Component Analysis and Positive Definite Matrix Factor" Minerals 14, no. 5: 514. https://doi.org/10.3390/min14050514