Bioleaching of Metals from E-Waste Using Microorganisms: A Review
Abstract
:1. Introduction
2. Environmental and Health Effects of E-Waste
3. Bioleaching of Metals from E-Waste
3.1. Bioleaching by Chemolithotrophic Microorganisms
3.2. Bioleaching by Heterotrophic Microorganisms
3.2.1. Bioleaching by Heterotrophic Cyanogenic Bacteria
3.2.2. Bioleaching by Heterotrophic Fungi
4. Mechanisms of the Bioleaching of Metals from E-Waste
4.1. Acidolysis
4.2. Redoxolysis
4.3. Complexolysis
4.4. Biosorption
4.5. Bioaccumulation
5. Strategies for the Biorecovery of Metals from E-Waste
5.1. One-Step Bioleaching
5.2. Two-Step Bioleaching
5.3. Spent Medium Bioleaching
6. Influence of Bioprocess Parameters on the Bioleaching of Metals
6.1. pH
6.2. Temperature
6.3. Pulp Density
6.4. Culture Medium
6.5. Aeration
6.6. Type and Physiology of Microorganisms
6.7. Leaching Substrate
7. Techniques for the Large-Scale Bioleaching of Metals from E-Waste
7.1. Statistical Optimization of Bioprocess Parameters
7.2. Bioreactor Bioleaching Experiments
7.3. Use of Genetically Engineered Microorganisms
8. Challenges Affecting the Commercial Bioleaching of Metals from E-Waste
- Metabolite (e.g., cyanide, organic acids) production by microbial strains may be limited due to different optimal pH required by organisms for the growth and lixiviant secretion. In other words, dissimilar pH demands for microbial growth and metabolite production are challenging for a fruitful metal bioleaching experiment. Therefore, it is necessary to optimize the pH for metabolite production, without preventing the growth of the organisms. This can be achieved by statistical experimental designs (RSM or ANN), the use of a bioreactor, or the use of metabolically engineered organisms with a high pH tolerance.
- Metal recovery from e-waste using microorganisms is low in comparison to chemical leaching, since bio-lixiviant concentrations are also relatively low. As a result, processing conditions and leaching parameters must be modified to enhance metal dissolution.
- The toxicity of e-waste is a great challenge for the bioleaching process, as this affects the growth of organisms for metabolite production. Conventionally, high-throughput screening of microbial strains is carried out for the selection of organisms with a large tolerance to toxic metal ions. Furthermore, the organisms are allowed to reach a particular growth phase, in which maximal cell density and optimal biolixiviant production are attained before the addition of waste materials into the bioleaching medium. In addition, the toxicity of e-waste to microbes can be combated using autochthonous organisms that are native to waste materials. The exploration of indigenous organisms could be of great significant to metal bioleaching, since these microbes can be assumed to perform better in their native environments compared with exotic organisms.
- The long duration of bioleaching is a crucial drawback that affects the large-scale (commercial) recovery of metals from e-waste.
- An efficient reclamation of metals from the bioleaching medium at a low cost is a great obstacle hindering the industrial recovery of metals from e-waste.
9. Conclusions and Recommendations for Future Perspectives
- The slow kinetics of metal recovery from e-waste can be ameliorated using suitable concentrations of metal ions (e.g., Ag+, Cu++, Hg++, Co++, Bi+++, etc.) or non-metal ions (such as activated carbon and quartz) catalysts in the bioleaching medium as an efficient and cost-effective technique for the development of a successful large-scale bioleaching process. In addition, the cocktail use of these catalysts in the bioleaching of metals from e-waste should be encouraged, as this combination may induce greater catalysis, resulting in better microbe–mineral interactions with a consequential effect on improving metal yields.
- Exploration of the leaching potential of unidentified or genetically modified microorganisms including thermophilic fungi, bacteria, and archaea under different bioprocess conditions can be a better alternative for enhanced metal recovery from e-waste. The genetic modification makes the engineered organisms highly efficient for metal recovery and rapidly adaptable to environmental changes when compared to wild-type strains. It involves enhancing the expression of genes that encode for biolixiviant production.
- Further research should be carried out on the proper understanding of community distribution, synergistic relationships, and mechanisms of actions of mixed or a consortium of microbial strains for the bioleaching of metals from e-waste.
- The utilization of non-conventional carbon sources, including agro-industrial wastes such as corncobs, rice bran, straw, mango-peels, etc., should be encouraged as a cost-effective and eco-friendly substrate for the cultivation of microbes for improved secretion of metabolite for metal recovery from e-waste.
- Due to the complexity of e-waste, which consists of a variety of metals, further studies should be geared toward application of hybrid technology for the efficient and enhanced extraction of metals from waste materials. This involves the integration of an assortment of leaching technologies (such as biological, chemical, and physical processes) for the effective recovery of metals from e-waste.
- Prior to the bio-extraction process, the toxic level of e-waste can be reduced through the development of a novel physico-mechanical technique for the separation of hazardous components of the waste materials from non-hazardous elements.
- Microbial cells can be immobilized on natural (e.g., cellulose, agar, alginate) or synthetic (such as polypropylene, polyvinyl, polyurethane) support materials for the efficient recovery of metals during the bioleaching process. In addition, the immobilization of microorganisms on a suitable carrier increases the stability of the immobilized cells over a broad range of temperatures and pH, and permits the reusability of the immobilized organisms with a decrease in operational costs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Liu, X.; Zhang, X.; Xhu, M.; Tan, W. bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron-sulfur oxidizing bacteria. Bioresour. Bioprocess 2018, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Faraji, F.; Ramsay, J.; Ghahreman, A. A review of biocyanidation as a sustainable route for cold recovery from primary and secondary low-grade resources. J. Clean. Prod. 2021, 296, 126457. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Leeke, G.A.; El-Eskandarany, M.S.; Van Haute, M.; Constantinou, A.; Dewil, R.; Baeyens, J. On the implementation of the circular economy route for e-waste management: A critical review and an analysis for the case of the State of Kuwait. J. Environ. Manag. 2022, 323, 116181. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; International Telecommunication Union: Geneva, Switzerland; International Solid Waste Association: Vienna, Austria, 2020. [Google Scholar]
- Singh, N.; Ogunseitan, O.A. Disentangling the worldwide web of e-waste and climate change co-benefits. Circ. Econ. 2022, 1, 100011. [Google Scholar] [CrossRef]
- Dutta, D.; Rautela, R.; Gujjala, L.K.S.; Kundu, D.; Sharma, P.; Tembhare, M.; Kumar, S. A review on recovery processes of metals from E-waste: A green perspective. Sci. Total Environ. 2023, 859, 160391. [Google Scholar] [CrossRef]
- Ichikowitz, R.; Hattingh, T.S. Consumer e-waste recycling in South Africa. S. Afr. J. Ind. Eng. 2020, 31, 44–57. [Google Scholar] [CrossRef]
- Balde, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor United Nations University (UNU); International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association: Vienna, Austria, 2017. [Google Scholar]
- Magoda, K.; Mekuto, L. Biohydrometallurgical recovery of metals from waste electronic equipment: Current status and proposed process. Recycling 2022, 7, 67. [Google Scholar] [CrossRef]
- Kudpeng, K.; Bohu, T.; Morris, C.; Thiravetyan, P.; Kaksonen, A.H. Bioleaching of gold from sulfidic gold ore concentrate and electronic waste by Roseovarius tolerans and Roseovarius mucosus. Microorganisms 2020, 8, 1783. [Google Scholar] [CrossRef]
- Dutta, D.; Goel, S.; Kumar, S. Health risk assessment for exposure to heavy metals in soils in and around E-waste dumping site. J. Environ. Chem. Eng. 2022, 10, 107269. [Google Scholar] [CrossRef]
- Ilyas, S.; Lee, J. Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. ChemBioEng Rev. 2014, 1, 148–169. [Google Scholar] [CrossRef]
- Tan, Q.; Li, J.; Zeng, X. Rare earth elements recovery from waste fluorescent lamps: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 749–776. [Google Scholar] [CrossRef]
- Davis, C.; Heart, S. Electronic waste: The local government perspective in Queensland. Aust. Resour. Conserv. Recycl. 2008, 52, 1031–1039. [Google Scholar] [CrossRef]
- Van Yken, J.; Boxall, N.J.; Cheng, K.Y.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. E-waste recycling and resource recovery: A review on technologies, barriers and enablers with a focus on Oceania. Metals 2021, 11, 1313. [Google Scholar] [CrossRef]
- Pant, D.; Joshi, D.; Upreti, M.K.; Kotnala, R.K. Chemical and biological extraction of metals present in e-waste: A hybrid technology. Waste Manag. 2012, 32, 979–990. [Google Scholar] [CrossRef]
- Jung, M.; Yoo, K.; Alorro, R.D. Dismantling of electric and electronic components from waste printed circuit boards by hydrochloric acid leaching with stannic ions. Mater. Trans. 2017, 58, 1076–1080. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Wang, Z.; Zhong, Y.W.; Guo, L.; Gao, J.T.; Chen, K.Y.; Cheng, H.J.; Guo, Z.C. Supergravity separation for revering metals from waste printed circuit boards. Chem. Eng. J. 2017, 326, 540–550. [Google Scholar] [CrossRef]
- Shin, D.; Jeong, J.; Lee, S.; Pandey, B.D.; Lee, J. Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria. Miner. Eng. 2013, 48, 20–24. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, H.S.; Kumar, S. Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr. Microbiol. 2018, 75, 194–201. [Google Scholar] [CrossRef]
- Li, J.; Wen, J.; Guo, Y.; An, N.; Liang, C.; Ge, Z. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy 2020, 194, 105260. [Google Scholar] [CrossRef]
- Liang, C.J.; Li, J.Y.; Ma, C.J. Review on cyanogenic bacteria for gold recovery from e-waste. Adv. Mater. Res. 2014, 878, 355–367. [Google Scholar] [CrossRef]
- Abdel Azim, A.; Bellini, R.; Vizzarro, A.; Bassani, I.; Piri, C.F.; Menin, B. Highlighting the role of archaea in urban mine waste exploitation and valorisation. Recycling 2023, 8, 20. [Google Scholar] [CrossRef]
- Priya, A.; Hait, S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ. Sci. Pollut. Res. Int. 2017, 24, 6989–7008. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, C.; Ma, C. Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J. Mater Cycles Waste Manag. 2015, 17, 529–539. [Google Scholar] [CrossRef]
- Adetunji, A.I.; Olaniran, A.O. Treatment of industrial oily wastewater by advanced technologies: A review. Appl. Water Sci. 2021, 11, 98. [Google Scholar] [CrossRef]
- Li, W.; Achal, V. Environmental and health impacts due to e-waste disposal in China—A review. Sci. Total Environ. 2020, 737, 139745. [Google Scholar] [CrossRef]
- Rautela, R.; Arya, S.; Vishwakarma, S.; Lee, J.; Kim, K.H.; Kumar, S. E-waste management and its effects on the environment and human health. Sci. Total Environ. 2021, 773, 145623. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, H.; Zhang, A.; Jiang, G. E-waste recycling in China: A challenging field. Environ. Sci. Technol. 2018, 52, 6727–6728. [Google Scholar] [CrossRef]
- Nasiri, T.; Mokhtari, M.; Teimouri, F.; Abouee, E. Remediation of metals and plastic from e-waste by iron mine indigenous acidophilic bacteria. Waste Manag. Res. 2023, 41, 894–902. [Google Scholar] [CrossRef]
- Argumedo-Delira, R.; Díaz-Martínez, M.E.; Gόmez-Martínez, M.J. Microorganisms and plants in the recovery of metals from printed circuit boards of computers and cell phones: A mini review. Metals 2020, 10, 1120. [Google Scholar] [CrossRef]
- Trivedi, A.; Vishwakarma, A.; Saawarn, B.; Mahanty, B.; Hait, S. Fungal biotechnology for urban mining of metals from waste printed circuit boards: A review. J. Environ. Manag. 2022, 323, 116133. [Google Scholar] [CrossRef]
- Sundramurthy, V.P.; Rajoo, B.; Srinivasan, N.R.; Kavitha, R. Bioleaching of Zn from sphalerite using Leptospirillum ferriphilum isolate: Effect of temperature and kinetic aspects. Appl. Biol. Chem. 2020, 63, 44. [Google Scholar] [CrossRef]
- Anaya-Garzon, J.; Hubau, A.; Joulian, C.; Guezennec, A.-G. Bioleaching of e-waste: Influence of printed circuit boards on the activity of acidophilic iron-oxidizing bacteria. Front. Microbiol. 2021, 12, 669738. [Google Scholar] [CrossRef]
- Vardanyan, A.; Khachatryan, A.; Castro, L.; Willscher, S.; Gaydardzhiev, S.; Zhang, R.; Vardanyan, N. Bioleaching of sulfide minerals by Leptospirillum ferriphilum CC from polymetallic mine (Armenia). Minerals 2023, 13, 243. [Google Scholar] [CrossRef]
- Işildar, A.; van de Vossenberg, J.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N.L. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag. 2016, 57, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Valix, M. Bioleaching of electronic waste using acidophilic sulfur oxidizing bacteria. J. Clean. Prod. 2014, 65, 465–472. [Google Scholar] [CrossRef]
- Vera, M.; Schippers, A.; Hedrich, S.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation–part A. Appl. Microbiol. Biotechnol. 2022, 106, 6933–6952. [Google Scholar] [CrossRef]
- Ji, X.; Yang, M.; Wan, A.; Yu, S.; Yao, Z. Bioleaching of typical electronic waste-printed circuit boards (WPCBs): A short review. Int. J. Environ. Res. Public Health 2022, 19, 7508. [Google Scholar] [CrossRef] [PubMed]
- Paiment, A.; Leduc, L.G.; Ferroni, G.D. The effect of the facultative chemolithotrophic bacterium Thiobacillus acidophilus on the leaching of low-grade Cu-Ni sulfide ore by Thiobacillus ferrooxidans. Geomicrobiol. J. 2001, 18, 157–165. [Google Scholar] [CrossRef]
- Lee, J.-C.; Pandey, B.D. Bioprocessing of solid wastes and secondary resources for metal extraction—A review. Waste Manag. 2012, 32, 3–18. [Google Scholar] [CrossRef]
- Harikrushnan, B.; Shreyass, G.; Hemant, G.; Pandimadevi, M. Recovery of metals from printed circuit boards (pcbs) using a combination of hydrometallurgical and biometallurgical processes. Int. J. Environ. Res. 2016, 10, 511–518. [Google Scholar]
- Roy, J.J.; Cao, B.; Madhavi, S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 2021, 282, 130944. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, E.K.; Jiang, L.; Li, K.; Yang, J.; Guo, Z.; Shi, J.; Deng, Y.; Liu, H.; Jiang, H.; Liang, Y.; et al. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front. Microbiol. 2022, 13, 1049277. [Google Scholar] [CrossRef]
- Arshadi, M.; Yaghmaei, S. Advances in bioleaching of copper and nickel from electronic waste using Acidithiobacillus ferrooxidans: Evaluating daily pH adjustment. Chem. Pap. 2020, 74, 2211–2227. [Google Scholar] [CrossRef]
- Bai, J.; Gu, W.; Liao, C.; Yuan, W.; Zhang, C.; Wang, J.; Dong., B.; Shih, K. Bioleaching for Extracting Heavy Metals from Electronic Waste Sludge; Elsevier: Amsterdam, The Netherlands, 2019; pp. 525–551. [Google Scholar]
- Kadivar, S.; Pourhossein, F.; Mousavi, S.M. Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching. J. Environ. Manag. 2021, 280, 111642. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Yaghmaei, S.; Mousavi, S.M. Study of plastics elimination in bioleaching of electronic waste using Acidithiobacillus ferrooxidans. Int. J. Environ. Sci. Technol. 2019, 16, 7113–7126. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Xu, J.; Liang, B. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J. Hazard. Mater. 2009, 172, 1100–1105. [Google Scholar] [CrossRef]
- Chandane, P.; Jori, C.; Chaudhari, H.; Bhapkar, S.; Deshmukh, S.; Jadhav, U. Bioleaching of copper from large printed circuit boards for synthesis of organic-inorganic hybrid. Environ. Sci. Pollut. Res. 2020, 27, 5797–5808. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.S.; Cho, K.S.; Kim, D.S.; Kim, D.J. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2004, 39, 2973–2982. [Google Scholar] [CrossRef]
- Pourhossein, F.; Rezaei, O.; Mousavi, S.M.; Beolchini, F. Bioleaching of critical metals from waste OLED touch screens using adapted acidophilic bacteria. J. Environ. Health Sci. Eng. 2021, 19, 893–906. [Google Scholar] [CrossRef]
- Cerruti, C.; Curutchet, G.; Donati, E. Biodissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnol. 1998, 62, 209–219. [Google Scholar] [CrossRef]
- Velgosová, O.; Kaduková, J.; Marcinčáková, R. Study of Ni and Cd bioleaching from spent Ni-Cd batteries. Nova Biotechnol. Chim. 2012, 11, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Arshadi, M.; Mousavi, S.M. Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: Simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep. Purif. Technol. 2015, 147, 210–219. [Google Scholar] [CrossRef]
- Mishra, D.; Kim, D.J.; Ralph, D.; Ahn, J.G.; Rhee, Y.H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag. 2008, 28, 333–338. [Google Scholar] [CrossRef]
- Zeng, G.; Deng, X.; Luo, S.; Luo, X.; Zou, J. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J. Hazard. Mater. 2012, 199–200, 164–169. [Google Scholar] [CrossRef]
- Fu, K.; Tian, L.; Hou, P.; Long, M.; Chen, S.; Lin, H. Stirred-tank leaching of coarse-grained waste, printed circuit boards with Acidithiobacillus ferrooxidans. Physicochem. Probl. Miner. Process. 2021, 57, 153–163. [Google Scholar] [CrossRef]
- Benzal, E.; Solé, M.; Lao, C.; Gamisans, X.; Dorado, A.D. Elemental copper recovery from e-waste mediated with a two-step bioleaching process. Waste Biomass Valoriz. 2020, 11, 5457–5465. [Google Scholar] [CrossRef]
- Arslan, V. Bacterial leaching of copper, zinc, nickel and aluminum from discarded printed circuit boards using acidophilic bacteria. J. Mater. Cycle Waste Manag. 2021, 23, 2005–2015. [Google Scholar] [CrossRef]
- Ghassa, S.; Farzanegan, A.; Gharabaghi, M.; Abdollahi, H. Novel bioleaching of waste lithium ion batteries by mixed moderate thermophilic microorganisms, using iron scrap as energy source and reducing energy. Hydrometallurgy 2020, 197, 105465. [Google Scholar] [CrossRef]
- Heydarian, A.; Mousavi, S.M.; Vakilchap, F.; Baniasadi, M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources 2018, 378, 19–30. [Google Scholar] [CrossRef]
- Priya, A.; Hait, S. Biometallurgical recovery of metals from waste printed circuit boards using pure and mixed strains of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum. Proc. Saf. Environ. Prot. 2020, 143, 262–272. [Google Scholar] [CrossRef]
- Natarajan, G.; Ting, Y.-P. Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour. Technol. 2014, 152, 80–85. [Google Scholar] [CrossRef]
- Mostafavi, M.; Mirazimi, S.; Rashchi, F.; Faraji, F.; Mostoufi, N. Bioleaching and kinetic investigation of WPCBs by A. ferrooxidans, A. thiooxidans and their mixtures. J. Chem. Pet. Eng. 2018, 52, 81–91. [Google Scholar]
- Tong, L.; Zhao, Q.; Kamali, A.R.; Sand, W.; Yang, H. Effect of graphite on copper bioleaching from waste printed circuit boards. Minerals 2020, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Erust, C.; Akcil, A.; Tuncuk, A.; Panda, S. Intensified acidophilic bioleaching of multi-metals from waste printed circuit boards (WPCBs) of spent mobile phones. J. Chem. Technol. Biotechnol. 2020, 95, 2272–2285. [Google Scholar] [CrossRef]
- Natarajan, G.; Ting, Y.-P. Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification. Chemosphere 2015, 136, 232–238. [Google Scholar] [CrossRef]
- Campbell, S.C.; Olson, G.J.; Clark, T.R.; McFeters, G. Biogenic production of cyanide and its application in gold recovery. J. Ind. Microbiol. Biotechnol. 2001, 26, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Chi, T.D.; Lee, J.C.; Pandey, B.D.; Yoo, K.; Jeong, J. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 2011, 24, 1219–1222. [Google Scholar] [CrossRef]
- Marra, A.; Cesaro, A.; Rene, E.R.; Belgiorno, V.; Lens, P.N.L. Bioleaching of metals from WEEE shredding dust. J. Environ Manag. 2018, 210, 180–190. [Google Scholar] [CrossRef]
- Motaghed, M.; Mousavi, S.M.; Rastegar, S.O.; Shojaosadati, S.A. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: Statistical modeling and process optimization. Bioresour. Technol. 2014, 171, 401–409. [Google Scholar] [CrossRef]
- Ruan, J.; Zhu, X.; Qian, Y.; Hu, J. A new strain for recovering precious metals from waste printed circuit boards. Waste Manag. 2014, 34, 901–907. [Google Scholar]
- Natarajan, G.; Tay, S.B.; Yew, W.S.; Ting, Y.-P. Engineered strains enhance gold biorecovery from electronic scrap. Miner. Eng. 2015, 75, 32–37. [Google Scholar] [CrossRef]
- Golzar-Ahmadi, M.; Mousavi, S.M. Extraction of valuable metals from discarded AMOLED displays in smartphones using Bacillus foraminis as an alkali-tolerant strain. Waste Manag. 2021, 131, 226–236. [Google Scholar] [CrossRef]
- Hu, J.; Tang, Y.; Ai, F.; Lin, M.; Ruan, J. Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology. J. Hazard. Mater. 2021, 403, 123586. [Google Scholar] [CrossRef]
- Tran, C.D.; Lee, J.C.; Pandey, B.D.; Jeong, J.; Yoo, K.; Huynh, T.H. Bacterial cyanide generation in the presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs. J. Chem. Eng. Jpn. 2011, 44, 692–700. [Google Scholar] [CrossRef]
- Sahni, A.; Kumar, A.; Kumar, S. Chemo-biohydrometallurgy – a hybrid technology to recover metals from obsolete mobile SIM cards. Environ. Nanotechnol. Monit. Manag. 2016, 6, 130–133. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Brandl, H. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol. Lett. 2006, 259, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, J.K.; Kumar, S. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag. Res. 2012, 30, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhang, H.; Yang, W.; Wu, Z.; Liu, W.; Yang, C. Bioleaching assisted foam fractionation for recovery of gold from the printed circuit boards of discarded cellphone. Waste Manag. 2020, 101, 200–209. [Google Scholar] [CrossRef]
- Pharm, V.A.; Ting, Y.P. Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. Adv. Mater. Res. 2009, 71–73, 661–664. [Google Scholar]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Borja, D.; Nguyen, K.A.; Silva, R.A.; Park, J.H.; Gupta, V.; Han, Y.; Lee, Y.; Kim, H. Experiences and future challenges of bioleaching research in South Korea. Minerals 2016, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Dusengemungu, L.; Kasali, G.; Gwanama, C.; Mubemba, B. Overview of fungal bioleaching of metals. Environ. Adv. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, N.; Mao, F.; Wu, P.; Dang, Z. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. Sci. Total Environ. 2021, 790, 148151. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Bai, J.F.; Gu, W.H.; Peng, S.J.; Wang, L.C.; Wang, J.W.; Li, H.X. Leaching of copper from waste printed circuit boards using Phanerochaete chrysosporium fungi. Hydrometallurgy 2020, 196, 105427. [Google Scholar] [CrossRef]
- Bahaloo-Horeh, N.; Mousavi, S.M.; Baniasadi, M. Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J Clean. Prod. 2018, 197, 1546–1557. [Google Scholar] [CrossRef]
- Patel, F.; Lakshmi, B. Bioleaching of copper and nickel from mobile phone printed circuit boards using Aspergillus fumigatus A2DS. Braz. J. Microbiol. 2021, 52, 1475–1487. [Google Scholar] [CrossRef]
- Netpae, T.; Suckley, S. Bioleaching of copper and lead from printed circuit boards by Rhizosporus oligosporus and Aspergillus niger. Environ. Exp. Biol. 2019, 17, 85–89. [Google Scholar]
- Saitoh, N.; Fujimori, R.; Nakatani, M.; Yoshihara, D.; Nomura, T.; Konishi, Y. Microbial recovery of gold from neutral and acidic solutions by the baker’s yeast Saccharomyces cerevisiae. Hydrometallurgy 2018, 181, 29–34. [Google Scholar] [CrossRef]
- Faraji, F.; Golmohammadzadeh, R.; Rashchi, F.; Alimardani, N. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J. Environ. Manag. 2018, 217, 775–787. [Google Scholar] [CrossRef]
- Díaz-Martínez, M.E.; Argumedo-Delira, R.; Sánchez-Viveros, G.; Alarcón, A.; Mendoza-López, M.R. Microbial bioleaching of Ag, Au and Cu from printed circuit boards of mobile phone. Curr. Microbiol. 2019, 76, 536–544. [Google Scholar] [CrossRef]
- Trivedi, A.; Hait, S. Efficacy of metal extraction from discarded printed circuit board using Aspergillus tubingensis. In Bioresource Utilization and Bioprocess; Ghosh, S., Sen, R., Chanakya, H., Pariatamby, A., Eds.; Springer: Singapore, 2020; pp. 167–175. [Google Scholar]
- Madrigal-Arias, J.E.; Argumedo-Delira, R.; Alarcόn, A.; Mendoza-Lόpez, M.R.; García-Barradas, O.G.; Cruz-Sánchez, J.S.; Ferrera-Cerrato, R.; Jiménez-Fernández, M.J. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Braz. J. Microbiol. 2015, 46, 707–713. [Google Scholar] [CrossRef]
- Kim, M.J.; Seo, J.Y.; Choi, Y.S.; Kim, G.H. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manag. 2016, 51, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Brandl, H.; Bosshard, R.; Wegmann, M. Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 2001, 59, 319–326. [Google Scholar] [CrossRef]
- Alavi, N.; Partovi, K.; Majlessi, M.; Rashidi, M.; Alimohammadi, M. Bioleaching of metals from cellphones batteries by a co-fungus medium in presence of carbon materials. Bioresour. Technol. Rep. 2021, 15, 100768. [Google Scholar] [CrossRef]
- Islam, M.M. Bioleaching of Refinery Hydroprocessing Ni-Mo Catalyst by Heterotrophic Fungi; National University of Singapore: Singapore, 2008. [Google Scholar]
- Desmarais, M.; Pirade, F.; Zhang, J.; Rene, E.R. Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. Bioresour. Technol. Rep. 2020, 11, 100526. [Google Scholar] [CrossRef]
- Amiri, F.; Yaghmaei, S.; Mousavi, S.M.; Sheibani, S.; Barati, M. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochem. Eng. J. 2012, 67, 208–217. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Ramakrishnan, G.; Dhandapani, B. Recovery of valuable metals from waste printed circuit boards using organic acids synthesized by Aspergillus niveus. IET Nanobiotechnol. 2021, 15, 212–220. [Google Scholar] [CrossRef]
- Liao, X.; Ye, M.; Liang, J.; Li, S.; Liu, Z.; Deng, Y.; Guan, Z.; Gan, Q.; Fang, X.; Sun, S. Synergistic enhancement of metal extraction from spent Li-ion batteries by mixed culture bioleaching process mediated by ascorbic acid: Performance and mechanism. J. Clean. Prod. 2022, 380, 134991. [Google Scholar] [CrossRef]
- Ilyas, S.; Chi, R.; Lee, J.-C. Fungal bioleaching of metals from mine tailing. Miner. Process. Extra Metall. Rev. 2013, 34, 185–194. [Google Scholar] [CrossRef]
- Sethurajan, M.; Gaydardzhiev, S. Bioprocessing of spent lithium ion batteries for critical metals recovery—A review. Resour. Conserv. Recycl. 2021, 165, 105225. [Google Scholar] [CrossRef]
- Kalia, A.; Singh, S. Myco-decontamination of azo-dyes: Nano-augmentation technologies. 3 Biotech 2020, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Sharma, S.; Albarakaty, F.M.; Kalia, A.; Hassan, M.M.; Abd-Elsalam, K.A. Biosorption and bioleaching of heavy metals from electronic waste varied with microbial Genera. Sustainability 2022, 14, 935. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Li, S.; Zhu, H.Y.; Jiang, R.; Yin, L.F. Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr. J. Biotechnol. 2012, 11, 1403–1411. [Google Scholar]
- Xia, L.; Xu, X.; Zhu, W.; Huang, Q.; Chen, W. A comparative study on the biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC. Int. J. Mol. Sci. 2015, 16, 15670–15687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Piazza, S.; Cecchi, G.; Cardinale, A.M.; Carbone, C.; Mariotti, M.G.; Giovine, M.; Zotti, M. Penicillium expansum link strain for a biometallurgical method to recover REEs from WEEE. Waste Manag. 2017, 60, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.; Hait, S. Influence of initial pH on bioleaching of selected metals from e-waste using Aspergillus niger. In Integrated Approached towards Solid Waste Management; Kalamdhad, A.S., Ed.; Springer: Cham, Switzerland, 2021; pp. 225–231. [Google Scholar]
- Arshadi, M.; Mousavi, S.M.; Rasoulnia, P. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Manag. 2016, 57, 158–167. [Google Scholar] [CrossRef]
- Garg, H.; Nagar, N.; Ellamparuthy, G.; Angadi, S.I.; Gahan, C.S. Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Heliyon 2019, 5, e02883. [Google Scholar] [CrossRef]
- Khatri, B.R.; Sodha, A.B.; Sha, M.B.; Tipre, D.R.; Dave, S.R. Chemical and microbial leaching of base metals from obsolete cell-phone printed circuit boards. Sustain. Environ. Res. 2018, 28, 333–339. [Google Scholar] [CrossRef]
- Dave, S.R.; Sodha, A.B.; Tipre, D.R. Microbial technology for metal recovery from e-waste printed circuit boards. J. Bacteriol. Mycol. 2018, 6, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Li, J.; Ge, Z. Review on Chromobacterium violaceum for gold bioleaching from e-waste. Proc. Environ. Sci. 2016, 31, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Tay, S.B.; Natarajan, G.; Rahim, M.N.B.A.; Tan, H.T.; Chung, M.C.M.; Ting, Y.P.; Yew, W.S. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Sci. Rep. 2013, 3, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Mary, J.S.; Meenambal, T. Solubilisation of metals from e-waste using Penicillium chrosogenum under optimum conditions. In Proceedings of the International Conference on Infrastructure Development for Environmental Conservation and Sustenance (INDECS-15) ACE, Hosur, India, 28–30 October 2015; pp. 285–293. [Google Scholar]
- Shah, M.B.; Tipre, D.R.; Purohit, M.S.; Dave, S.R. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards. J. Biosci. Bioeng. 2015, 120, 167–173. [Google Scholar] [CrossRef]
- Becci, A.; Amato, A.; Fonti, V.; Karaj, D.; Beolchini, F. An innovative biotechnology for printed recovery from printed circuit boards. Resour. Conserv. Recycl. 2020, 153, 104549. [Google Scholar] [CrossRef]
- Reed, D.W.; Fujita, Y.; Daubaras, D.L.; Jiao, Y.; Thompson, V.S. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 2016, 166, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Natarajan, G.; Ting, Y.-P. Bio-extraction of precious metals from urban solid waste. AIP Conf. Proc. 2017, 1805, 020004. [Google Scholar]
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.-M. Recent progress in biohydrometallurgy and microbial characterization. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Yang, T.; Xu, Z.; Wen, J.; Yang, L. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 2009, 97, 29–32. [Google Scholar] [CrossRef]
- Vardanyan, A.; Vardanyan, N.; Aâtach, M.; Malavasi, P.; Gaydardzhiev, S. Bio-assisted leaching of non-ferrous metals from waste printed circuit boards- importance of process parameters. Metals 2022, 12, 2092. [Google Scholar] [CrossRef]
- Amiri, F.; Yaghmaei, S.; Mousavi, S.M. Bioleaching of tungsten-rich spent hydrocarbon catalyst using Penicillium simplicissimum. Bioresour. Technol. 2011, 102, 1567–1573. [Google Scholar] [CrossRef]
- Fonti, V.; Dell’Anno, A.; Beolchini, F. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci. Total Environ. 2016, 563, 302–319. [Google Scholar] [CrossRef]
- Walker, G.M.; White, N.A. Introduction to fungal physiology. In Fungi: Biology and Applications; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 1–35. [Google Scholar]
- Narayanasamy, M.; Dhanasekaran, D.; Vinothini, G.; Thajuddin, N. Extraction and recovery of precious metals from electronic waste printed circuit boards by bioleaching acidophilic fungi. Int. J. Environ. Sci. Technol. 2018, 15, 119–132. [Google Scholar] [CrossRef]
- Gu, T.; Rastegar, S.O.; Mousavi, S.M.; Li, M.; Zhou, M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol. 2018, 261, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, D.E.; Dew, D.; Du Plessis, C. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 2003, 21, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.A.; Moghrabi-Manzari, M.; Brandl, H. Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 2020, 191, 105228. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Priyanka, B.; Kumar, S.; Karishma, S.; Jeevanantham, S.; Indraganti, S. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 2022, 287, 132230. [Google Scholar] [CrossRef]
- Guezennec, A.-G.; Joulian, C.; Jacob, J.; Archane, A.; Ibarra, D.; de Buyer, R.; Bodénan, F.; d’Hugues, P. Influence of dissolved oxygen on the bioleaching efficiency under enriched atmosphere. Miner. Eng. 2017, 106, 64–70. [Google Scholar] [CrossRef]
- Bas, D.; Boyaci, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- de Menezes, L.H.S.; Carneiro, L.L.; Tavares, I.M.C.; Santos, P.H.; das Chagas, T.P.; Mendes, A.A.; da Silva, E.G.P.; Franco, M.; de Oliveira, J.R. Artificial neural network hybridized with genetic algorithm for optimization of lipase production from Penicillium roqueforti ATCC 10110 in solid-state fermentation. Biocatal. Agric. Biotechnol. 2020, 31, 101885. [Google Scholar] [CrossRef]
- Abdol Jani, W.N.F.; Suja, F.; Jamaludin, S.I.S.; Mohamad, N.F.; Abdul Rani, N.H. Optimization of precious metals recovery from electronic waste by Chromobacterium violaceum using response surface methodology (RSM). Bioinorg. Chem. Appl. 2023, 2023, 4011670. [Google Scholar] [CrossRef] [PubMed]
- Merli, G.; Becci, A.; Amato, A. Recovery of precious metals from printed circuit boards by cyanogenic bacteria: Optimization of cyanide production by statistical analysis. J. Environ. Chem. Eng. 2022, 10, 107495. [Google Scholar] [CrossRef]
- Esmaeili, A.; Arshadi, M.; Yaghmaei, S. Simultaneous leaching of Cu, Al, and Ni from computer printed circuit boards using Penicillium simplicissimum. Res. Conserv. Recycl. 2022, 177, 105976. [Google Scholar]
- Hubau, A.; Minier, M.; Chagnes, A.; Joulian, C.; Silvente, C.; Guezennec, A.-G. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Sep. Purif. Technol. 2020, 238, 116481. [Google Scholar] [CrossRef]
- Minimol, M.; Shetty, K.V.; Saidutta, M.B. Bioleaching of zinc from e-waste by A. aquatilis in fluidized bed bioreactor. Indian Chem. Eng. 2023, 1–13. [Google Scholar] [CrossRef]
- Xia, M.C.; Wang, Y.P.; Peng, T.J.; Shen, L.; Yu, R.L.; Liu, Y.D.; Chen, M.; Li, J.K.; Wu, X.L.; Zeng, W.M. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J. Biosci. Bioeng. 2017, 123, 714–721. [Google Scholar] [CrossRef]
- Ilyas, S.; Ruan, C.; Bhatti, H.N.; Ghauri, M.A.; Anwar, M.A. Column bioleaching of metals from electronic scrap. Hydrometallurgy 2010, 101, 135–140. [Google Scholar] [CrossRef]
- Rodrigues, M.L.M.; Leão, V.A.; Gomes, O.; Lambert, F.; Bastin, D.; Gaydardzhiev, S. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manag. 2015, 41, 148–158. [Google Scholar] [CrossRef]
- Nili, S.; Mahdokht, A.; Soheila, Y. Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor. J. Environ. Manag. 2022, 307, 114524. [Google Scholar] [CrossRef]
- Abashina, T.; Vainshtein, M. Current trends in metal biomining with a focus on genomics aspects and attention to arsenopyrite leaching—A review. Microorganisms 2023, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, J.; Pan, H.; Zhang, X.; Zhang, Y. Genetically engineered bacterium: Principles, practices, and prospects. Front. Microbiol. 2022, 13, 997587. [Google Scholar] [CrossRef]
- Yachkula, A.; Rozova, O.; Abashina, T.; Vainshtein, M.; Grouzdev, D.; Bulaev, A. Attempts to stimulate leaching activity of Acidithiobacillus ferrooxidans strain TFBk. Minerals 2022, 12, 1051. [Google Scholar] [CrossRef]
Bacteria | Metal Source | Recovery Efficiency (%) | Bioleaching Conditions | Reference |
---|---|---|---|---|
Acidithiobacillus ferrooxidans | PCB | Cu (80%) | pH 2.0; temperature 30 °C; incubation time 2d | [51] |
Acidithiobacillus thiooxidans | Spent mobile phone PCB | Cu (98%); Ni (82%) | 160 rpm; 30 °C; 72 h | [47] |
Acidithiobacillus ferrooxidans | OLED touch screens of mobile phone | In (100%); Sr (5%) | Initial pH 1.1; 29 °C; 140 rpm; 15 d | [52] |
Thiobacillus ferrooxidans | Nickel–cadmium batteries | Cd (100%); Ni (96.5%); Fe (95%) | pH 2.0; temperature 30 °C; incubation time 93 d; pulp density 0.2 g/L | [53] |
Acidithiobacillus ferrooxidans | Nickel–cadmium batteries | Cd (100%) | pH 1.5; temperature 30 °C; incubation time 28 d | [54] |
Acidithiobacillus ferrooxidans | Mobile phone PCB | Cu (99%); Ni (99%) | 170 rpm; temperature 30 °C; initial pH 1.0; pulp density 9.25 g/L; Fe3+ concentration 4.17 g/L; incubation time 55 d | [55] |
Acidithiobacillus ferrooxidans | Nickel ion batteries | Co (65%) | pH 2.5; temperature 30 °C; incubation time 20 d; pulp density 5 g/L | [56] |
Acidithiobacillus thiooxidans | Computer PCBs | Cu (75%) | Pulp density 0.7%; 9 d | [49] |
Acidithiobacillus ferrooxidans | Nickel ion batteries | Co (99.9%) | pH 3.0; temperature 35 °C; incubation time 6 d | [57] |
Acidithiobacillus ferrooxidans | Mobile phone PCB | Cu (95.92%); 93.53% (Al); 92.58% (Zn); 65.27% (Ni); 95.33% (Sn) | Temperature 20–35 °C; waste PCB concentration 5%; inoculation volume 5% (v/v) | [58] |
Acidiphilium acidophilum | Computer PCBs | 100% (Cu) | Incubation time 10 d; H2O2 concentration 30% | [50] |
Acidithiobacillus ferrooxidans | Mobile phone PCB | 95%–100% (Cu) | Incubation temperature 30 °C; 130 rpm; pulp density 7.5 g/L; 48 h | [59] |
Acidithiobacillus ferrooxidans | Computer PCBs | 92% (Cu) | pH 1.8; pulp density 35 g/L; 30 °C; 170 rpm | [19] |
Bacteria | Metal Source | Recovery Efficiency (%) | Bioleaching Conditions | Reference |
---|---|---|---|---|
Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum, Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Sulfobacillus sp., and Ferroplasma sp. | Cell phone PCB | 98%–99% (Cu) | Pulp density (7%, 10%, and 15% w/v); incubation time 12 d | [64] |
Acidithiobacillus ferrooxidans and Acidithiobacillus acidophilum | Waste PCB | 96% (Cu); 94.5% (Zn); 75% (Ni); 74.5% (Pb) | Pulp density 7.5 g/L; pH 2.5; 170 rpm; 30 °C; 18 d | [63] |
Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans | Waste PCB | Cu (86%); Zn (100%); Ni (100%) | Pulp density 15 g/L; 180 rpm; 30 °C; 25 d | [65] |
Acidithiobacillus ferrooxidans, Ferroplasma acidiphilum, and Leptospirillum ferriphilum | Desktop computer motherboards | 80.5% (Cu) | Pulp density 5%; 170 rpm; 45 °C; pH 1.6; Fe3+ concentration 9 g/L; graphite 2.5 g/L; 5 d | [66] |
Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, and Acidithiobacillus thiooxidans | Mobile phone PCB | 97.3% (Cu); 55.8% (Al); 79.3% (Ni); 66.8% (Zn) | Fe3+ concentration 9 g/L; pulp density 10%; inoculum volume 10% (v/v); pH 1.8 | [67] |
Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus sp., and Ferroplasma sp. | Lithium-ion batteries | Co (99.9%); Ni (99.7%); Li (84%) | 45 °C; 130 rpm | [61] |
Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans | Spent lithium-ion laptop batteries | 89.4% (Ni); Co (50.4%); Li (99.2%) | FeSO4 36.7 g/L; Sulfur 5 g/L; pH 1.5; particle size < 75 μm; 40 g/L pulp density | [62] |
Bacteria | Metal Source | Recovery Efficiency (%) | Bioleaching Conditions | Reference |
---|---|---|---|---|
Pseudomonas chlororaphilis | Waste PCBs | 8.2% (Au); 12.1% (Ag); 52.3% (Cu) | pH 7.0; 25 °C; glycine 4.4 g/L; +methionine 2 g/L; 72 h; 60 rpm | [73] |
Chromobacterium violaceum | Electronic scrap materials | 30% (Au) | Pulp density 0.5%; 30 °C; 170 rpm; 8 d | [74] |
Pseudomonas putida | Waste PCBs | 44% (Au) | 10 g/L glycine; pulp density 1%; pH 7.3–8.6; 30 °C; 2 d | [36] |
Chromobacterium violaceum | Waste mobile phone PCBs | 24.6% (Cu); 11.31% (Au) | H2O2 0.004% (v/v); pH 8.0–11.0; 150 rpm; 30 °C; pulp density 15 g/L; 8 d | [70] |
Bacillus foraminis | AMOLED display of smartphones | 100% (Ag); 56.8% (Mo); 41.4% (Cu) | Incubation time 12 d; 160 rpm; 40 °C | [75] |
Pseudomonas biofilm | Waste computer PCBs | 14.7% (Ag) | Pulp density 2%; pH 7.0; 25 °C; 7 d | [76] |
Bacillus megaterium | Computer PCBs | 63.8% (Au) | Pulp density 2 g/L; pH 10.0 | [55] |
Pseudomonas fluorescens | Waste PCBs | 54% (Au) | pH 9.0; bacterial density 3.33% (v/v); pulp density 0.33%; glycine 0.133; glycine: methionine ratio 1:10 | [21] |
Chromobacterium violaceum | Waste PCBs | 70.6% and 52.4% (Au) | MgSO4·7H2O 4 × 10−3 mol/L; NaCl 1.7 × 10−1 mol/L; particle size 200 mesh; 7 d | [25] |
Bacillus megaterium PTCC 1656 | Spent catalyst | 15.7% (Pt); 98% (Re) | Glycine 12.8 g/L; pulp density 4%; 30 °C; 170 rpm; 7 d | [72] |
Pseudomonas balearica SAE1 | Waste PCBs | 68.5% (Au); 33.8% (Ag) | pH 9.0; pulp density 10 g/L; 30 °C; glycine 5 g/L | [20] |
Chromobacterium violaceum | Mobile PCBs | 11% (Au) | pH 11.0; pulp density 15 g/L; glycine 5 g/L; MgSO4 0.5 g/L; 8 d; 150 rpm | [77] |
Chromobacterium violaceum MTCC 2656 | SIM card waste | 13.79% (Cu); 0.44% (Au); 2.55% (Ag) | pH 9.0; glycine 5 g/L; pulp density 10 g/L; 150 rpm; 30 °C; 7 d | [78] |
Pseudomonas plecoglossicida | PCB | 68.5% (Au) | pH 7.3; glycine 5 g/L; 150 rpm; 3 d | [79] |
Pseudomonas putida | PCB | 44% (Au) | pH 7.3–8.6; pulp density 5 g/L; glycine 10 g/L; 150 rpm; 2 d | [36] |
Pseudomonas chlororaphilis | PCBs | 8.2% (Au) |
Fungi | Metal Source | Recovery Efficiency (%) | Bioleaching Conditions | Reference |
---|---|---|---|---|
Aspergillus niger | Waste PCBs | 100% (Zn); 80.39% (Ni); 85.88% (Cu) | Pulp density (0.5–20 g/L); 120 rpm; ambient temperature; 30 d | [92] |
Trichoderma viride | Computer PCBs | 1% (Pd); 10% (Au) | pH 5.0; 30 d; 1 g PCB | [93] |
Penicillium simplicissimum | Cell phone PCBs | 90% (Cu); 89% (Ni) | Cu: pH 7.0; 3.3 × 107 spores; sugarNi: pH 2.0; 106 spores; molasses | [48] |
Phanerochaete chrysosporium | Waste PCBs | 60.96% (Cu) | pH 5.0; pulp density 2%; 30 °C; 150 rpm; 14 d | [87] |
Aspergillus niger | Spent lithium-ion mobile phone batteries | 100% (Li); 72% (Mn); 45% (Ni); 38% (Co); 94% (Cu); 62% (Al) | 30 °C; 30 d | [88] |
Candida orthopsilosis | Cell phone PCBs | 1% (Cu) | pH 4.4; 0.5 g PCB; 35 d | [93] |
Aspergillus tubingensis | Computer PCBs | 34% (Cu); 54% (Zn); 8% (Ni) | pH 5.0; pulp density 0.25%–1%; 33 d | [94] |
Aspergillus fumigatus A2DS | Mobile phone PCB | 42.37%, 32.29%, 27.07% (Ni); 62%, 58%, 61.8% (Cu) | Pulp density 0.5%; inoculum volume 1% (v/v); pH 6.0; 40 °C | [89] |
Saccharomyces cerevisiae | PCB scrap | 98% (Au) | 5.0 × 1014 cells; 10 min | [91] |
Trichoderma atroviride | Computer PCB | 1% (Pd); 13% (Au) | pH 5.0; 1 g PCB; 30 d | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetunji, A.I.; Oberholster, P.J.; Erasmus, M. Bioleaching of Metals from E-Waste Using Microorganisms: A Review. Minerals 2023, 13, 828. https://doi.org/10.3390/min13060828
Adetunji AI, Oberholster PJ, Erasmus M. Bioleaching of Metals from E-Waste Using Microorganisms: A Review. Minerals. 2023; 13(6):828. https://doi.org/10.3390/min13060828
Chicago/Turabian StyleAdetunji, Adegoke Isiaka, Paul Johan Oberholster, and Mariana Erasmus. 2023. "Bioleaching of Metals from E-Waste Using Microorganisms: A Review" Minerals 13, no. 6: 828. https://doi.org/10.3390/min13060828