Efflorescent Sulphates with M+ and M2+ Cations from Fumarole and Active Geothermal Fields of Mutnovsky Volcano (Kamchatka, Russia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Materials and Sample Preparation
2.3. Methods
3. Results
3.1. Powder X-ray Diffraction
3.2. Energy-Dispersive Spectroscopy
3.3. Chemical Composition of Thermal Water
4. Discussion
4.1. Chemical Composition of Sulphate Efflorescent Minerals
4.2. Mineral-Forming Chemical Elements
4.3. Implication of Efflorescent Sulphates for Volcanology and Planetary Science
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Varekamp, J.C.; Ouimette, A.P.; Herman, S.W.; Flynn, K.S.; Bermudez, A.; Delpino, D. Naturally acid waters from Copahue volcano, Argentina. Appl. Geochem. 2009, 24, 208–220. [Google Scholar] [CrossRef]
- Henley, R.W. Hyperacidic volcanic lakes, metal sinks and magmatic gas expansion in arc volcanoes. In Volcanic Lake; Rouwet, D., Christenson, B.W., Tassi, F., Vandemeulebrouck, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 155–178. [Google Scholar] [CrossRef]
- Inguaggiato, C.; García, M.Á.P.; Maldonado, L.F.M.; Peiffer, L.; Pappaterra, S.; Brusca, L. Precipitation of secondary minerals in acid sulphate-chloride waters traced by major, minor and rare earth elements in waters: The case of Puracé volcano (Colombia). J. Volcanol. Geotherm. Res. 2020, 407, 107106. [Google Scholar] [CrossRef]
- Adams, P.M.; Lynch, D.K.; Buckland, K.N.; Johnson, P.D.; Tratt, D.M. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California. J. Volcanol. Geotherm. Res. 2017, 347, 15–43. [Google Scholar] [CrossRef]
- McHenry, L.J.; Carson, G.L.; Dixon, D.T.; Vickery, C.L. Secondary minerals associated with Lassen fumaroles and hot springs: Implications for martian hydrothermal deposits. Am. Mineral. 2017, 102, 1418–1434. [Google Scholar] [CrossRef]
- McCollom, T.M.; Hynek, B.M.; Rogers, K.; Moskowitz, B.; Berquó, T.S. Chemical and mineralogical trends during acid-sulfate alteration of pyroclastic basalt at Cerro Negro volcano and implications for early Mars. J. Geophys. Res. Planets 2013, 118, 1719–1751. [Google Scholar] [CrossRef]
- Ciesielczuk, J.; Żaba, J.; Bzowska, G.; Gaidzik, K.; Głogowska, M. Sulphate efflorescences at the geyser near Pinchollo, southern Peru. J. S. Am. Earth Sci. 2013, 42, 186–193. [Google Scholar] [CrossRef]
- Rodríguez, A.; Van Bergen, M.J. Volcanic hydrothermal systems as potential analogues of Martian sulphate-rich terrains. Neth. J. Geosci. 2016, 99, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Klingelhöfer, G.; Morris, R.V.; Bernhardt, B.; Schröder, C.; Rodionov, D.S.; De Souza, P.A.; Yen, A.; Gellert, R.; Evlanov, E.N.; Zubkov, B.; et al. Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 2004, 306, 1740–1745. [Google Scholar] [CrossRef]
- Morris, R.V.; Squyres, S.; Arvidson, R.E.; Bell, J.F., III; Christensen, P.C.; Gorevan, S.; Herkenhoff, K.; Klingelhöfer, G.; Rieder, R.; Farrand, W.; et al. A first look at the mineralogy and geochemistry of the MER-B landing site in Meridiani Planum. In Proceedings of the 35th Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004. Abstract No. 2179. [Google Scholar]
- Farrand, W.H.; Glotch, T.D.; Rice, J.W., Jr.; Hurowitz, J.A.; Swayze, G.A. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus 2009, 204, 478–488. [Google Scholar] [CrossRef]
- Madden, M.E.E.; Bodnar, R.J.; Rimstidt, J.D. Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 2004, 431, 821–823. [Google Scholar] [CrossRef]
- Navrotsky, A.; Forray, F.L.; Drouet, C. Jarosite stability on Mars. Icarus 2005, 176, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.J.; Nestola, F.; Kahlenberg, V.; Christy, A.G.; Hejny, C.; Redhammer, G.J. Looking for jarosite on Mars: The low-temperature crystal structure of jarosite. Am. Mineral. 2013, 98, 1966–1971. [Google Scholar] [CrossRef]
- Bishop, J.L.; Murad, E. The visible and infrared spectral properties of jarosite and alunite. Am. Mineral. 2005, 90, 1100–1107. [Google Scholar] [CrossRef]
- Sergeeva, A.V. Infrared Spectra of Alunite-Group Minerals Formed on Thermal Fields. J. Appl. Spectrosc. 2019, 86, 371–378. [Google Scholar] [CrossRef]
- McCollom, T.M.; Ehlmann, B.L.; Wang, A.; Hynek, B.M.; Moskowitz, B.; Berquó, T.S. Detection of iron substitution in natroalunite-natrojarosite solid solutions and potential implications for Mars. Am. Mineral. 2014, 99, 948–964. [Google Scholar] [CrossRef]
- Bortnikova, S.B.; Gavrilenko, G.M.; Bessonova, E.P.; Lapuchov, A.S. The hydrogeochemistry of thermal springs on Mutnovskii Volcano, southern Kamchatka. J. Volcanol. Seismol. 2009, 3, 388–404. [Google Scholar] [CrossRef]
- Košek, F.; Culka, A.; Fornasini, L.; Vandenabeele, P.; Rousaki, A.; Mirao, J.; Bersani, D.; Candeias, A.; Jehlička, J. Application of a handheld Raman spectrometer for the screening of colored secondary sulfates in abandoned mining areas—The case of the São Domingos Mine (Iberian Pyrite Belt). J. Raman Spectrosc. 2020, 51, 1186–1199. [Google Scholar] [CrossRef]
- Rull, F.; Guerrero, J.; Venegas, G.; Gázquel, F.; Medina, J. Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain). Environ. Sci. Pollut. Res. Int. 2014, 21, 6783–6792. [Google Scholar] [CrossRef]
- Žáček, V.; Škoda, R.; Laufek, F.; Ek, F.K.; Jehlička, J. Complementing knowledge about rare sulphates lonecreekite, NH4Fe3+(SO4)2·12H2O and sabieite, NH4Fe3+(SO4)2: Chemical composition, XRD and RAMAN spectroscopy (Libušín near Kladno, the Czech Republic). J. Geosci. 2019, 64, 149–159. [Google Scholar] [CrossRef]
- Košek, F.; Edwards, H.G.M.; Jehlička, J. Raman spectroscopic vibrational analysis of the complex iron sulfates clairite, metavoltine, and voltaite from the burning coal dump Anna I, Alsdorf, Germany. J. Raman Spectrosc. 2019, 51, 1454–1461. [Google Scholar] [CrossRef]
- Vakin, E.A.; Pilipenko, G.F. Mutnovsky geothermal area. In Kamchatka in Exploration and Use of Geothermal Resources in Volcanic Areas, 1st ed.; Aladiyev, I.T., Sugrobov, V.M., Eds.; Nauka: Moscow, Russia, 1979; pp. 36–45. (In Russian) [Google Scholar]
- Vakin, E.A.; Kirsanov, I.T.; Pronin, A.A. Active funnel of Mutnovsky volcano. In Bulletin of the Kamchatka Volcanological Stations, 1st ed.; Gushchenko, I.I., Ed.; Nauka: Moscow, Russia, 1966; Volume 40, pp. 25–35. (In Russian) [Google Scholar]
- Serafimova, E.K. Features of the chemical composition of fumarole gases of Mutnovsky volcano. In Bulletin of the Kamchatka Volcanological Stations, 1st ed.; Gushchenko, I.I., Ed.; Nauka: Moscow, Russia, 1966; Volume 42, pp. 56–65. (In Russian) [Google Scholar]
- Zelensky, M.E. Transport of Elements and Minersl Forming Conditions at High-Temperature Gas Dischargees from Mutnovsky Volcano (Kamchatka). Ph.D. Thesis, Institute of Volcanology, Petropavlovsk-Kamchatsky, Russia, 2003. (In Russian). [Google Scholar]
- Kiryukhin, A.V.; Tranbenkova, A.G.; Bortnikova, S.B.; Fazlullin, S.M. Gas and Chemical Monitoring of the Mutnovsky (Dachny) Geothermal Field Exploration (Kamchatka, Russia). In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Selyangin, O.B. Structure, substance and subsurface magma chambers of the volcanoes Mutnovsky and Gorely (Mutnovsky geothermal area, Kamchatka). I. geological position of the volcanoes). GIAB №11, «Kamchatka-3» 2016, 31, 365–400. (In Russian) [Google Scholar]
- Bortnikova, S.B.; Sharapov, V.N.; Bessonova, E.P. Hydrothermal Composition of Springs at the Donnoe Fumarole Field, Mutnovsky Volcano (Southern Kamchatka) and Problems of Their Relation with Supercritical Magmatic Fluids. Dokl. Earth Sci. 2007, 3, 410–414. [Google Scholar] [CrossRef]
- Leonov, V.L. Structural Conditions of High-Temperature Fluids’ Localization, 1st ed.; Nauka: Moscow, Russia, 1989; p. 104. (In Russian) [Google Scholar]
- Slyadnev, B.I.; Shapovalenko, V.N.; Krikun, N.F. State Geological Map of the Russian Federation, Scale 1:1,000,000 (Third Generation). Series Koryaksko-Kurilskaya. Sheet N-57-Petropavlovsk-Kamchatsky; VSEGEI: St. Petersburg, FL, USA, 2006. [Google Scholar]
- Britvin, S.N.; Dolivo-Dobrovolsky, D.V.; Krzhizhanovskaya, M.G. Software for processing of X-ray powder diraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diractometer. Zap. Ross. Mineral. Obs. 2017, 146, 104–107, (In Russian with English Abs.). [Google Scholar]
- Balić-Žunić, T.; Garavelli, A.; Jakobsson, S.P.; Jonasson, K.; Katerinopoulos, A.; Kyriakopoulos, K.; Acquafredda, P. Fumarolic Minerals: An Overview of Active European Volcanoes. In Updates in Volcanology, from Volcano Modelling to Volcano Geology; Nemeth, K., Ed.; InTech: Rijeka, Croatia, 2016; pp. 267–322. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, P.; Kolitsch, U.; Nickel, E.H.; Pring, A. Alunite supergroup: Recommended nomenclature. Mineral. Mag. 2010, 74, 919–927. [Google Scholar] [CrossRef]
- Stoffregen, R.E.; Alpers, C.N.; Jambor, J.L. Alunite-jarosite crystallography, thermodynamics, and geochronology. Rev. Mineral. Geochem. 2000, 40, 453–479. [Google Scholar] [CrossRef]
- Kolitsch, U.; Pring, A. Crystal chemistry of the crandallite, beudantite and alunite groups: A review and evaluation of the suitability as storage materials for toxic metals. J. Mineral. Petrol. Sci. 2001, 96, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Deyell, C.L.; Dipple, G.M. Equilibrium mineral-fluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio–Pascua belt of Chile and Argentina. Chem. Geol. 2005, 215, 219–234. [Google Scholar] [CrossRef]
- Hladky, G.; Slansky, E. Stability of alunite minerals in aqueous solutions at normal temperature and pressure. Bull. Mineral. 1981, 104, 468–477. [Google Scholar] [CrossRef]
- Sergeeva, A.V.; Zhitova, E.S.; Nuzhdaev, A.A.; Nazarova, M.A. Modeling the Mineral Formation Process on Thermoanomalies with Ammonium-Sulphate Thermal Waters: The Role of Acidity (pH). J. Volcanol. Seismol. 2022, 1, 29–53. [Google Scholar]
- Papike, J.J.; Karner, J.M.; Spilde, M.N.; Shearer, C.K. Terrestrial analogs of martian sulfates: Major and minor element systematics of alunite-jarosite from Goldfield, Nevada. Am. Mineral. 2006, 91, 1197–1200. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Sergeeva, A.V.; Nuzhdaev, A.A.; Krzhizhanovskaya, M.G.; Chubarov, V.M. Tschermigite from thermal fields of Southern Kamchatka: High-temperature transformation and peculiarities of IR-spectrum. Zap. Ross. Mineral. Obs. 2019, 148, 100–116. (In Russian) [Google Scholar]
- Rattray, K.J.; Taylor, M.R.; Bevan, D.J.M.; Pring, A. Compositional segregation and solid solution in the lead-dominant alunite-type minerals from Broken Hill, NSW. Mineral. Mag. 1996, 60, 779–785. [Google Scholar] [CrossRef]
- Piochi, M.; Mormone, A.; Balassone, G.; Strauss, H.; Troise, C.; De Natale, G. Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry. J. Volcanol. Geotherm. Res. 2015, 304, 180–193. [Google Scholar] [CrossRef]
- Pekov, I.V.; Koshlyakova, N.N.; Agakhanov, A.A.; Zubkova, N.V.; Belakovskiy, D.I.; Vigasina, M.F.; Turchkova, A.G.; Sidorov, E.G.; Pushcharovsky, D.Y. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XV. Calciojohillerite, NaCaMgMg2(AsO4)3, a member of the alluaudite group. Mineral. Mag. 2021, 85, 215–223. [Google Scholar] [CrossRef]
- Africano, F.; Bernard, A. Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J. Volcanol. Geotherm. Res. 2000, 97, 475–495. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals. Mineral. Mag. 1992, 56, 617–619. [Google Scholar] [CrossRef]
- Tang, M.; Ehreiser, A.; Li, Y.L. Gypsum in modern Kamchatka volcanic hot springs and the Lower Cambrian black shale: Applied to the microbial-mediated precipitation of sulfates on Mars. Am. Mineral. 2014, 99, 2126–2137. [Google Scholar] [CrossRef] [Green Version]
- Van Hinsberg, V.J.; Berlo, K.; Pinti, D.L.; Ghaleb, B. Gypsum precipitating from volcanic effluent as an archive of volcanic activity. Front. Earth Sci. 2021, 9, 764087. [Google Scholar] [CrossRef]
- Inostroza, M.; Aguilera, F.; Menzies, A.; Layana, S.; González, C.; Ureta, G.; Sepulveda, J.; Sheller, S.; Böehm, S.; Barraza, M.; et al. Deposition of metals and metalloids in the fumarolic fields of Guallatiri and Lastarria volcanoes, northern Chile. J. Volcanol. Geotherm. Res. 2020, 393, 106803. [Google Scholar] [CrossRef]
- Pekov, I.V.; Kovrugin, V.M.; Siidra, O.I.; Chukanov, N.V.; Belakovskiy, D.I.; Koshlyakova, N.N.; Yapaskurt, V.O.; Turchkova, A.G.; Möhn, G. Antofagastaite, Na2Ca(SO4)2·1.5H2O, a new mineral related to syngenite. Mineral. Mag. 2019, 83, 781–790. [Google Scholar] [CrossRef]
- Zelenski, M.; Taran, Y. Geochemistry of volcanic and hydrothermal gases of Mutnovsky volcano, Kamchatka: Evidence for mantle, slab and atmosphere contributions to fluids of a typical arc volcano. Bull. Volcanol. 2011, 73, 373–394. [Google Scholar] [CrossRef]
- Inioue, A.; Utada, M. Hydrothermal Alteration in the Kamikita Kuroko Mineralization Area. Min. Geol. 1991, 41, 203–218. [Google Scholar] [CrossRef]
- Martin, R.; Rodgers, K.A.; Browne, P.R.L. The nature and significance of sulphate-rich, aluminous efflorescences from the Te Kopia geothermal field, Taupo Volcanic Zone, New Zealand. Mineral. Mag. 1999, 63, 413–419. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Siidra, O.I.; Belakovsky, D.I.; Shilovskikh, V.V.; Nuzhdaev, A.A.; Ismagilova, R.M. Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, a new mineral from the Severo-Kambalny geothermal field, Kamchatka, Russia. Mineral. Mag. 2018, 82, 1057–1077. [Google Scholar] [CrossRef]
- Carbone, C.; Dinelli, E.; Marescotti, P.; Gasparotto, G.; Lucchetti, G. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests. J. Geochem. Explor. 2013, 132, 188–200. [Google Scholar] [CrossRef]
- Hein, J.R.; Zierenberg, R.A.; Maynard, J.B.; Hannington, M.D. Barite-forming environments along a rifted continental margin, Southern California Borderland. Deep-Sea Res. Part II 2007, 54, 1327–1349. [Google Scholar] [CrossRef]
- Luo, Z.; Mu, W.; Zhou, X.; Chen, Z. Removal and immobilization of arsenic from wastewater via arsenonatroalunite formation. Environ. Technol. 2021, 42, 1–10. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A. Uptake and release of arsenic and antimony in alunite-jarosite and beudantite group minerals. Am. Mineral. 2019, 104, 633–640. [Google Scholar] [CrossRef]
- Owen, N.D.; Cook, N.J.; Rollog, M.; Ehrig, K.J.; Schmandt, D.S.; Ram, R.; Brugger, J.; Ciobanu, C.L.; Wade, B.; Guagliardo, P. REE-, Sr-, Ca-aluminum-phosphate-sulfate minerals of the alunite supergroup and their role as hosts for radionuclides. Am. Mineral. 2019, 104, 1806–1819. [Google Scholar] [CrossRef]
- Graham, I.J.; Robinson, B.W. Natroalunite on Ruapehu volcano, New Zealand. Geochem. J. 1986, 20, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.H. Jarosite and akaganéite from White Island volcano, New Zealand: An X-ray and Mössbauer study. Geochim. Cosmochim. Acta 1977, 41, 539–544. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mitra, S.; Gupta, S.; Jain, N.; Chauhan, P.; Parthasarathy, G. Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality. J. Geophys. Res. Planets 2016, 121, 402–431. [Google Scholar] [CrossRef] [Green Version]
Mineral, Ideal Chemical Formula | Donnoe Fumarole Field | Dachnoe Thermal Field |
---|---|---|
Halotrichite, Fe2+Al2(SO4)4·22H2O | **** | **** |
Alunogen, Al2(SO4)3·17H2O | *** | *** |
Gypsum, CaSO4·2H2O | ** | *** |
Alum-type minerals, A+M3+(SO4)2·12H2O | - | ** |
Alunite-type minerals, DG3(TX4)2X′6 | * | * |
Melanterite, Fe2+(H2O)6SO4·H2O | * | * |
Copiapite-group mineral, M2+Fe3+4(SO4)6(OH)2·20H2O | - | * |
Letovicite, (NH4)3H(SO4)2 | * | - |
Mascagnite, (NH4)2SO4 | * | - |
Wt.% | Baryte | Gypsum | Jarosite | Alunite | Na-Rich Jarosite | K-Rich Natrojarosite | Natro- Alunite | Natrojarosite | ||
---|---|---|---|---|---|---|---|---|---|---|
Location | Dachnoe | Donnoe | Dachnoe | Donnoe | Donnoe | Dachnoe | ||||
n | 6 | 41 | 16 | 13 | 17 | 9 | 23 | 17 | 12 | 16 |
Na2O | n.d. | n.d. | n.d. | 1.25 | 1.28 | 3.15 | 3.08 | 5.04 | 3.96 | 4.74 |
K2O | n.d. | n.d. | n.d. | 6.55 | 6.77 | 4.91 | 4.55 | 1.87 | 1.81 | 0.77 |
CaO | n.d. | 32.28 | 32.67 | 1.65 | 0.52 | 0.25 | 0.43 | 0.17 | 0.04 | 0.08 |
SrO | 1.19 | n.d. | n.d. | 0.29 | 1.72 | n.d. | n.d. | 0.05 | 0.09 | n.d. |
BaO | 61.55 | n.d. | n.d. | 0.05 | 0.49 | n.d. | n.d. | n.d. | n.d. | n.d. |
MgO | 0.20 | n.d. | 0.07 | 0.16 | 0.02 | 0.07 | 0.12 | 0.07 | 0.20 | 0.42 |
FeO (1) | n.d. | 0.49 | 0.37 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
CoO | n.d. | n.d. | n.d. | 0.22 | 0.07 | 0.23 | 0.26 | 0.11 | 0.31 | n.d. |
NiO | n.d. | n.d. | n.d. | 0.10 | 0.04 | 0.11 | n.d. | 0.04 | n.d. | n.d. |
TiO2 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.12 | 0.25 | 0.04 | 0.22 | 0.44 |
Al2O3 | n.d. | n.d. | n.d. | 6.92 | 28.18 | 6.53 | 5.31 | 25.15 | 4.77 | 5.55 |
Fe2O3 (1) | n.d. | n.d. | n.d. | 36.67 | 10.29 | 38.72 | 39.36 | 15.91 | 41.11 | 39.19 |
SO3 | 36.00 | 47.81 | 47.16 | 32.92 | 34.72 | 33.34 | 32.14 | 37.20 | 33.25 | 33.97 |
P2O5 | n.d. | n.d. | n.d. | 0.68 | 2.77 | 0.26 | 0.37 | 0.21 | 0.57 | 0.93 |
H2O (2) | n.d. | 21.05 | 21.12 | 10.86 | 12.30 | 11.15 | 11.05 | 12.54 | 11.16 | 11.08 |
(NH4)2O (3) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.69 | 0.81 | 0.9 |
Total | 98.95 | 101.63 | 101.39 | 98.32 | 99.16 | 98.82 | 97.53 | 99.04 | 98.76 | 98.07 |
apfu calculated on the basis of | ||||||||||
Σcat + S = 2 | Ca + Fe = 1 | Fe + Al + Mg + Co + Ni = 3 | ||||||||
Na | n.d. | n.d. | n.d. | 0.20 | 0.18 | 0.49 | 0.49 | 0.70 | 0.62 | 0.75 |
K | n.d. | n.d. | n.d. | 0.69 | 0.63 | 0.50 | 0.47 | 0.17 | 0.19 | 0.09 |
Ca | n.d. | 0.99 | 0.99 | 0.15 | 0.04 | 0.01 | 0.04 | 0.01 | 0.04 | 0.01 |
Sr | 0.03 | n.d. | n.d. | 0.01 | 0.07 | n.d. | n.d. | 0.00 | 0.00 | n.d. |
Ba | 0.93 | n.d. | n.d. | 0.00 | 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. |
NH4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.11 | 0.15 | 0.17 |
Mg | 0.01 | n.d. | 0.00 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 | 0.05 |
Co | n.d. | n.d. | n.d. | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 | n.d. |
Ni | n.d. | n.d. | n.d. | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 | n.d. | n.d. |
Ti | n.d. | n.d. | n.d. | n.d. | n.d. | 0.01 | n.d. | n.d. | 0.01 | 0.03 |
Fe2+ | n.d. | 0.01 | 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Al | n.d. | n.d. | n.d. | 0.67 | 2.43 | 0.62 | 0.51 | 2.13 | 0.45 | 0.53 |
Fe3+ | n.d. | n.d. | n.d. | 2.28 | 0.57 | 2.35 | 2.44 | 0.86 | 2.49 | 2.39 |
S | 1.04 | 1.03 | 1.00 | 2.11 | 1.90 | 2.08 | 2.06 | 2.00 | 2.01 | 2.02 |
P | n.d. | n.d. | n.d. | 0.05 | 0.17 | 0.02 | 0.03 | 0.01 | 0.04 | 0.06 |
H2O | n.d. | 2.00 | 2.00 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
OH | n.d. | n.d. | n.d. | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Wt.% | Tschermigite | Lonecreekite | Alum-(Na) | Amarillite |
---|---|---|---|---|
n | 13 | 9 | 11 | 16 |
Na2O | n.d. | n.d. | 4.18 | 8.90 |
MgO | n.d. | n.d. | 0.26 | 0.72 |
Al2O3 | 10.48 | 0.37 | 9.80 | 2.07 |
Fe2O3 (1) | 0.83 | 16.19 | 1.07 | 17.12 |
SO3 | 36.51 | 33.12 | 32.84 | 41.70 |
P2O5 | n.d. | n.d. | 0.17 | 0.23 |
H2O (2) | 46.60 | 45.35 | 50.00 | 29.50 |
(NH4)2O (3) | 5.58 | 4.99 | 1.70 | n.d. |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
apfu calculated on the basis of Fe + Al + Mg = 1 | ||||
NH4 | 0.99 | 0.91 | 0.31 | n.d. |
Na | n.d. | n.d. | 0.64 | 1.05 |
Mg | n.d. | n.d. | 0.03 | 0.07 |
Al | 0.95 | 0.03 | 0.91 | 0.14 |
Fe3+ | 0.05 | 0.97 | 0.06 | 0.79 |
S | 2.11 | 1.97 | 1.94 | 1.91 |
P | n.d. | n.d. | 0.01 | 0.03 |
H2O | 12.00 | 12.00 | 12.00 | 6.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhitova, E.S.; Khanin, D.A.; Nuzhdaev, A.A.; Nazarova, M.A.; Ismagilova, R.M.; Shilovskikh, V.V.; Kupchinenko, A.N.; Kuznetsov, R.A.; Zhegunov, P.S. Efflorescent Sulphates with M+ and M2+ Cations from Fumarole and Active Geothermal Fields of Mutnovsky Volcano (Kamchatka, Russia). Minerals 2022, 12, 600. https://doi.org/10.3390/min12050600
Zhitova ES, Khanin DA, Nuzhdaev AA, Nazarova MA, Ismagilova RM, Shilovskikh VV, Kupchinenko AN, Kuznetsov RA, Zhegunov PS. Efflorescent Sulphates with M+ and M2+ Cations from Fumarole and Active Geothermal Fields of Mutnovsky Volcano (Kamchatka, Russia). Minerals. 2022; 12(5):600. https://doi.org/10.3390/min12050600
Chicago/Turabian StyleZhitova, Elena S., Dmitry A. Khanin, Anton A. Nuzhdaev, Maria A. Nazarova, Rezeda M. Ismagilova, Vladimir V. Shilovskikh, Anastasia N. Kupchinenko, Ruslan A. Kuznetsov, and Pavel S. Zhegunov. 2022. "Efflorescent Sulphates with M+ and M2+ Cations from Fumarole and Active Geothermal Fields of Mutnovsky Volcano (Kamchatka, Russia)" Minerals 12, no. 5: 600. https://doi.org/10.3390/min12050600