Antiherpetic Activity of a Root Exudate from Solanum lycopersicum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Tomato Extract Preparation
2.2. Phytochemical Analysis
2.3. Cells and Viruses
2.4. Cytotoxicity Assay
2.5. Virus Yield Reduction Assay
2.6. Time of Addition Assay
2.7. Western Blot Analysis
2.8. DNA Extraction and Viral Load
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef]
- Gugliesi, F.; Coscia, A.; Griffante, G.; Galitska, G.; Pasquero, S.; Albano, C.; Biolatti, M. Where Do We Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020, 8, E685. [Google Scholar] [CrossRef]
- Chayavichitsilp, P.; Buckwalter, J.V.; Krakowski, A.C.; Friedlander, S.F. Herpes Simplex. Pediatr. Rev. 2009, 30, 119–129, quiz 130. [Google Scholar] [CrossRef] [PubMed]
- James, S.H.; Kimberlin, D.W. Neonatal Herpes Simplex Virus Infection: Epidemiology and Treatment. Clin. Perinatol. 2015, 42, 47–59, viii. [Google Scholar] [CrossRef]
- Walti, C.S.; Khanna, N.; Avery, R.K.; Helanterä, I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl. Int. 2023, 36, 11785. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-J.; Wang, S.-C.; Chen, Y.-C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2019, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Piperi, E.; Papadopoulou, E.; Georgaki, M.; Dovrat, S.; Bar Illan, M.; Nikitakis, N.G.; Yarom, N. Management of Oral Herpes Simplex Virus Infections: The Problem of Resistance. A Narrative Review. Oral Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Boswell, Z.; Verga, J.U.; Mackle, J.; Guerrero-Vazquez, K.; Thomas, O.P.; Cray, J.; Wolf, B.J.; Choo, Y.-M.; Croot, P.; Hamann, M.T.; et al. In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents against Coronaviruses. IDR 2023, 16, 2321–2338. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021, 13, 828. [Google Scholar] [CrossRef]
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral Natural Products and Herbal Medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef] [PubMed]
- Shamshirgaran, M.; Maleki, A.; Askari, P.; Yousefi, M.; Malaki Moghadam, H.; Aramjoo, H.; Zare_Bidaki, M. Antibacterial Effects of the Aqueous Extract of Lycopersicon Esculentum Mill Native in South Khorasan of Iran against Four Species Associated with Gastrointestinal Infections. J. Basic Res. Med. Sci. 2020, 7, 1–6. [Google Scholar]
- Heber, D.; Lu, Q.-Y. Overview of Mechanisms of Action of Lycopene. Exp. Biol. Med. 2002, 227, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Jeong, C.S. Review on Factors Affecting the Quality and Antioxidant Properties of Tomatoes. AJB 2017, 16, 1678–1687. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sá, A.G.A.; Carciofi, B.A.M.; Arrutia, F.; Changan, S.; Singh, S.; et al. Tomato (Solanum lycopersicum L.) Seed: A Review on Bioactives and Biomedical Activities. Biomed. Pharmacother. 2021, 142, 112018. [Google Scholar] [CrossRef]
- Nakayasu, M.; Takamatsu, K.; Yazaki, K.; Sugiyama, A. Plant Specialized Metabolites in the Rhizosphere of Tomatoes: Secretion and Effects on Microorganisms. Biosci. Biotechnol. Biochem. 2022, 87, 13–20. [Google Scholar] [CrossRef]
- Kamilova, F.; Kravchenko, L.V.; Shaposhnikov, A.I.; Azarova, T.; Makarova, N.; Lugtenberg, B. Organic Acids, Sugars, and l-Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria. MPMI 2006, 19, 250–256. [Google Scholar] [CrossRef]
- Simons, M.; Permentier, H.P.; de Weger, L.A.; Wijffelman, C.A.; Lugtenberg, B.J.J. Amino Acid Synthesis Is Necessary for Tomato Root Colonization by Pseudomonas Fluorescens Strain WCS365. MPMI 1997, 10, 102–106. [Google Scholar] [CrossRef]
- Zboralski, A.; Filion, M. Genetic Factors Involved in Rhizosphere Colonization by Phytobeneficial Pseudomonas Spp. Comput. Struct. Biotechnol. J. 2020, 18, 3539–3554. [Google Scholar] [CrossRef]
- Sahlin, E.; Savage, G.P.; Lister, C.E. Investigation of the Antioxidant Properties of Tomatoes after Processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Miller, E.C.; Giovannucci, E.; Erdman, J.W.; Bahnson, R.; Schwartz, S.J.; Clinton, S.K. Tomato Products, Lycopene, and Prostate Cancer Risk. Urol. Clin. N. Am. 2002, 29, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An Update on the Health Effects of Tomato Lycopene. Annu. Rev. Food Sci. Technol. 2010, 1, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Diosa-Toro, M.; Troost, B.; van de Pol, D.; Heberle, A.M.; Urcuqui-Inchima, S.; Thedieck, K.; Smit, J.M. Tomatidine, a Novel Antiviral Compound towards Dengue Virus. Antivir. Res. 2019, 161, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Troost, B.; Mulder, L.M.; Diosa-Toro, M.; van de Pol, D.; Rodenhuis-Zybert, I.A.; Smit, J.M. Tomatidine, a Natural Steroidal Alkaloid Shows Antiviral Activity towards Chikungunya Virus in Vitro. Sci. Rep. 2020, 10, 6364. [Google Scholar] [CrossRef] [PubMed]
- Thorne, H.V.; Clarke, G.F.; Skuce, R. The Inactivation of Herpes Simplex Virus by Some Solanaceae Glycoalkaloids. Antivir. Res. 1985, 5, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Santoro, V.; Schiavon, M.; Visentin, I.; Constán-Aguilar, C.; Cardinale, F.; Celi, L. Strigolactones Affect Phosphorus Acquisition Strategies in Tomato Plants. Plant Cell Environ. 2021, 44, 3628–3642. [Google Scholar] [CrossRef]
- Pasquero, S.; Gugliesi, F.; Biolatti, M.; Dell’Oste, V.; Albano, C.; Bajetto, G.; Griffante, G.; Trifirò, L.; Brugo, B.; Raviola, S.; et al. Citrullination Profile Analysis Reveals Peptidylarginine Deaminase 3 as an HSV-1 Target to Dampen the Activity of Candidate Antiviral Restriction Factors. PLoS Pathog. 2023, 19, e1011849. [Google Scholar] [CrossRef]
- Biolatti, M.; Blangetti, M.; D’Arrigo, G.; Spyrakis, F.; Cappello, P.; Albano, C.; Ravanini, P.; Landolfo, S.; De Andrea, M.; Prandi, C.; et al. Strigolactone Analogs Are Promising Antiviral Agents for the Treatment of Human Cytomegalovirus Infection. Microorganisms 2020, 8, E703. [Google Scholar] [CrossRef]
- Biolatti, M.; Blangetti, M.; Baggieri, M.; Marchi, A.; Gioacchini, S.; Bajetto, G.; Arnodo, D.; Bucci, P.; Fioravanti, R.; Kojouri, M.; et al. Strigolactones as Broad-Spectrum Antivirals against β-Coronaviruses through Targeting the Main Protease Mpro. ACS Infect. Dis. 2023, 7, 1310–1318. [Google Scholar] [CrossRef]
- Sprague, E.R.; Reinhard, H.; Cheung, E.J.; Farley, A.H.; Trujillo, R.D.; Hengel, H.; Bjorkman, P.J. The Human Cytomegalovirus Fc Receptor gp68 Binds the Fc CH2-CH3 Interface of Immunoglobulin G. J. Virol. 2008, 82, 3490–3499. [Google Scholar] [CrossRef] [PubMed]
- Cole, S. Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nurs. Clin. N. Am. 2020, 55, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R.J.; Roizman, B. Herpes Simplex Virus Infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; De, S.; Moharana, A.K.; Nayak, T.K.; Saswat, T.; Datey, A.; Mamidi, P.; Mishra, P.; Subudhi, B.B.; Chattopadhyay, S. Inhibition of Herpes Simplex Virus-1 Infection by MBZM-N-IBT: In Silico and in Vitro Studies. Virol. J. 2021, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Gentry, B.G.; Drach, J.C. Metabolism of Cyclopropavir and Ganciclovir in Human Cytomegalovirus-Infected Cells. Antimicrob. Agents Chemother. 2014, 58, 2329–2333. [Google Scholar] [CrossRef]
- Ikeda, T.; Ando, J.; Miyazono, A.; Zhu, X.H.; Tsumagari, H.; Nohara, T.; Yokomizo, K.; Uyeda, M. Anti-Herpes Virus Activity of Solanum Steroidal Glycosides. Biol. Pharm. Bull. 2000, 23, 363–364. [Google Scholar] [CrossRef]
- Valadares, Y.M.; Brandão’a, G.C.; Kroon, E.G.; Filho, J.D.S.; Oliveira, A.B.; Braga, F.C. Antiviral Activity of Solanum Paniculatum Extract and Constituents. Z. Naturforsch C J. Biosci. 2009, 64, 813–818. [Google Scholar] [CrossRef]
- Kumar, B.R. Application of HPLC and ESI-MS Techniques in the Analysis of Phenolic Acids and Flavonoids from Green Leafy Vegetables (GLVs). J. Pharm. Anal. 2017, 7, 349–364. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Moco, S.; Bino, R.J.; Vorst, O.; Verhoeven, H.A.; de Groot, J.; van Beek, T.A.; Vervoort, J.; de Vos, C.H.R. A Liquid Chromatography-Mass Spectrometry-Based Metabolome Database for Tomato. Plant Physiol. 2006, 141, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fidalgo, S.; Villegas, I.; Aparicio-Soto, M.; Cárdeno, A.; Rosillo, M.Á.; González-Benjumea, A.; Marset, A.; López, Ó.; Maya, I.; Fernández-Bolaños, J.G.; et al. Effects of Dietary Virgin Olive Oil Polyphenols: Hydroxytyrosyl Acetate and 3, 4-Dihydroxyphenylglycol on DSS-Induced Acute Colitis in Mice. J. Nutr. Biochem. 2015, 26, 513–520. [Google Scholar] [CrossRef]
- Toujani, M.M.; Rittà, M.; Civra, A.; Genovese, S.; Epifano, F.; Ghram, A.; Lembo, D.; Donalisio, M. Inhibition of HSV-2 Infection by Pure Compounds from Thymus Capitatus Extract in Vitro. Phytother. Res. 2018, 32, 1555–1563. [Google Scholar] [CrossRef]
- Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising Natural Compounds against Viral Infections. Arch. Virol. 2017, 162, 2539–2551. [Google Scholar] [CrossRef]
- Lyu, S.-Y.; Rhim, J.-Y.; Park, W.-B. Antiherpetic Activities of Flavonoids against Herpes Simplex Virus Type 1 (HSV-1) and Type 2 (HSV-2) in Vitro. Arch. Pharm. Res. 2005, 28, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, H.H.; Shin, Y.S.; Kang, H.; Cho, H. The Anti-HSV-1 Effect of Quercetin Is Dependent on the Suppression of TLR-3 in Raw 264.7 Cells. Arch. Pharm. Res. 2017, 40, 623–630. [Google Scholar] [CrossRef]
- Hung, P.-Y.; Ho, B.-C.; Lee, S.-Y.; Chang, S.-Y.; Kao, C.-L.; Lee, S.-S.; Lee, C.-N. Houttuynia Cordata Targets the Beginning Stage of Herpes Simplex Virus Infection. PLoS ONE 2015, 10, e0115475. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.; Periferakis, A.-T.; Troumpata, L.; Periferakis, K.; Scheau, A.-E.; Savulescu-Fiedler, I.; Caruntu, A.; Badarau, I.A.; Caruntu, C.; Scheau, C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int. J. Mol. Sci. 2023, 24, 16299. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.H.A.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial Roles of Honey Polyphenols against Some Human Degenerative Diseases: A Review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Rao, A.V. Tomato Lycopene and Its Role in Human Health and Chronic Diseases. CMAJ 2000, 163, 739–744. [Google Scholar] [PubMed]
- Navarro-González, I.; García-Alonso, J.; Periago, M.J. Bioactive Compounds of Tomato: Cancer Chemopreventive Effects and Influence on the Transcriptome in Hepatocytes. J. Funct. Foods 2018, 42, 271–280. [Google Scholar] [CrossRef]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X.-D.; et al. Lycopene in Protection against Obesity and Diabetes: A Mechanistic Review. Pharmacol. Res. 2020, 159, 104966. [Google Scholar] [CrossRef]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.-S. Protective Effects of Lycopene in Cancer, Cardiovascular, and Neurodegenerative Diseases: An Update on Epidemiological and Mechanistic Perspectives. Pharmacol. Res. 2020, 155, 104730. [Google Scholar] [CrossRef] [PubMed]
- Sakemi, Y.; Sato, K.; Hara, K.; Honda, M.; Shindo, K. Biological Activities of Z-Lycopenes Contained in Food. J. Oleo Sci. 2020, 69, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Q.; Liu, F.; Wang, D. Lycoperoside H Protects against Diabetic Nephropathy via Alteration of Gut Microbiota and Inflammation. J. Biochem. Mol. Toxicol. 2022, 36, e23216. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Stewart, L.E.; Darley, B.A.; Pham, A.M.; Esteban, I.; Panda, S.S. Plant-Based Natural Products and Extracts: Potential Source to Develop New Antiviral Drug Candidates. Molecules 2021, 26, 6197. [Google Scholar] [CrossRef]
Compound | Molecular Formula | M.W. (g/mol) | Ionized Adduct | Signal (m/z) |
---|---|---|---|---|
Lycopene | C40H56 | 536.88 | [M + H]+ | 537 |
β-Carotene | C40H56 | 536.88 | [M + H]+ | 537 |
α-Tomatine | C50H83NO21 | 1034.18 | [M + H + Na]2+ | 529 |
Lycoperoside H | C50H83NO22 | 1049.54 | [M + 2H]2+ | 525 |
β-Sitosterol | C29H50O | 414.72 | [M + H]+ | 416 |
Tomatidine | C27H45NO2 | 415.66 | [M + H]+ | 416 |
GlcNAc-(1→N)-Asn | C12H21N3O8 | 335.31 | [M + NH4]+ | 353 |
Myricetin | C15H10O8 | 318.04 | [M + NH4]+ [M + H + NH4]2+ | 336 a 168 |
Isorhamnetin | C16H12O7 | 316.26 | [M + NH4]+ | 334 |
Quercetin | C15H10O7 | 302.24 | [M + NH4]+ | 320 |
Lutein | C40H56O2 | 568.87 | [M + H + Na]2+ | 296 |
Kaempferol | C15H10O6 | 286.23 | [M + H]+ | 287 a |
Phytoene | C40H64 | 544.95 | [M + H + NH4]2+ | 282 |
Phytofluene | C40H62 | 542.94 | [M + H + NH4]2+ | 280 a |
AHYP | C7H11NO4 | 173.17 | [M + H]+ | 174 a |
Homocysteine | C4H9NO2S | 135.18 | [M + H]+ | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajetto, G.; Arnodo, D.; Biolatti, M.; Trifirò, L.; Albano, C.; Pasquero, S.; Gugliesi, F.; Campo, E.; Spyrakis, F.; Prandi, C.; et al. Antiherpetic Activity of a Root Exudate from Solanum lycopersicum. Microorganisms 2024, 12, 373. https://doi.org/10.3390/microorganisms12020373
Bajetto G, Arnodo D, Biolatti M, Trifirò L, Albano C, Pasquero S, Gugliesi F, Campo E, Spyrakis F, Prandi C, et al. Antiherpetic Activity of a Root Exudate from Solanum lycopersicum. Microorganisms. 2024; 12(2):373. https://doi.org/10.3390/microorganisms12020373
Chicago/Turabian StyleBajetto, Greta, Davide Arnodo, Matteo Biolatti, Linda Trifirò, Camilla Albano, Selina Pasquero, Francesca Gugliesi, Eva Campo, Francesca Spyrakis, Cristina Prandi, and et al. 2024. "Antiherpetic Activity of a Root Exudate from Solanum lycopersicum" Microorganisms 12, no. 2: 373. https://doi.org/10.3390/microorganisms12020373
APA StyleBajetto, G., Arnodo, D., Biolatti, M., Trifirò, L., Albano, C., Pasquero, S., Gugliesi, F., Campo, E., Spyrakis, F., Prandi, C., De Andrea, M., Dell’Oste, V., Visentin, I., & Blangetti, M. (2024). Antiherpetic Activity of a Root Exudate from Solanum lycopersicum. Microorganisms, 12(2), 373. https://doi.org/10.3390/microorganisms12020373