Theoretical Justification of Structural, Magnetoelectronic and Optical Properties in QFeO3 (Q = Bi, P, Sb): A First-Principles Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electronic Properties
3.1.1. Electronic Band Structures
3.1.2. Density of States
3.2. Magnetic Properties
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picozzi, S.; Yamauchi, K.; Sergienko, I.A.; Sen, C.; Sanyal, B.; Dagotto, E. Microscopic mechanisms for improper ferroelectricity in multiferroic perovskites: A theoretical review. J. Phys. Condens. Matter 2008, 20, 434208. [Google Scholar] [CrossRef]
- Picozzi, S.; Ederer, C. First principles studies of multiferroic materials. J. Phys. Condens. Matter 2009, 21, 303201. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Majumder, S. Recent advances in multiferroic thin films and composites. J. Alloys Compd. 2012, 538, 153–159. [Google Scholar] [CrossRef]
- Velev, J.; Jaswal, S.; Tsymbal, E. Multiferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3069–3097. [Google Scholar] [CrossRef] [PubMed]
- Ortega, N.; Kumar, A.; Scott, J.; Katiyar, R.S. Multifunctional magnetoelectric materials for device applications. J. Phys. Condens. Matter 2015, 27, 504002. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.K.; Seikh, M.M.; Nautiyal, P. Bismuth centred magnetic perovskite: A projected multiferroic. J. Magn. Magn. Mater. 2015, 378, 506–528. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Ridzwan, M.; Yaakob, M.; Taib, M.; Ali, A.; Hassan, O.; Yahya, M. Investigation of structural, electronic and optical properties of hexagonal LuFeO3 using first principles LDA+ U. Mater. Res. Express 2017, 4, 044001. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Ji, W.; Yao, K.; Liang, Y.C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 2010, 22, 1763–1766. [Google Scholar] [CrossRef]
- Bibes, M.; Barthélémy, A. Towards a magnetoelectric memory. Nat. Mater. 2008, 7, 425–426. [Google Scholar] [CrossRef] [PubMed]
- Bibes, M.; Villegas, J.E.; Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 2011, 60, 5–84. [Google Scholar] [CrossRef]
- Guo, R.; You, L.; Zhou, Y.; Shiuh Lim, Z.; Zou, X.; Chen, L.; Ramesh, R.; Wang, J. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 2013, 4, 1990. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.Q.; Wang, C.; Jin, K.J.; Liu, X.B.; Scott, J.F.; Hwang, C.S.; Tang, T.A.; Lu, H.B.; Yang, G.Z. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R. A new spin on spintronics. Nat. Mater. 2010, 9, 380–381. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Gupta, R.; Garg, A. Multiferroic memories. Adv. Condens. Matter Phys. 2012, 2012, 926290. [Google Scholar] [CrossRef]
- Martin, L.; Crane, S.; Chu, Y.; Holcomb, M.; Gajek, M.; Huijben, M.; Yang, C.-H.; Balke, N.; Ramesh, R. Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Condens. Matter 2008, 20, 434220. [Google Scholar] [CrossRef]
- Rojac, T.; Bencan, A.; Malic, B.; Tutuncu, G.; Jones, J.L.; Daniels, J.E.; Damjanovic, D. BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 2014, 97, 1993–2011. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.; Zheng, H.; Nagarajan, V.; Ogale, S.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.; Waghmare, U. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. 2016NatRM. 116046F. Nat. Rev. Mater 2016, 1, 16046. [Google Scholar] [CrossRef]
- Arnold, D.C. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Magnetic phase control by an electric field. Nature 2004, 430, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Eerenstein, W.; Mathur, N.; Scott, J.F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Tian, H.; Kuang, X.-Y.; Mao, A.-J.; Zhao, H.-J.; Li, H.; Kuang, F.-G. Comparing hydrostatic-pressure-and epitaxial-strain-induced phase transitions in multiferroic PbNiO3 from first principles. Solid State Commun. 2015, 203, 75–80. [Google Scholar] [CrossRef]
- Sando, D.; Barthélémy, A.; Bibes, M. BiFeO3 epitaxial thin films and devices: Past, present and future. J. Phys. Condens. Matter 2014, 26, 473201. [Google Scholar] [CrossRef]
- Fusil, S.; Garcia, V.; Barthélémy, A.; Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 2014, 44, 91–116. [Google Scholar] [CrossRef]
- Liang, L.; Wu, H.; Li, L.; Zhu, X. Characterization of multiferroic domain structures in multiferroic oxides. J. Nanomater. 2015, 2015, 169874. [Google Scholar] [CrossRef]
- Shuvaev, A.; Mukhin, A.; Pimenov, A. Magnetic and magnetoelectric excitations in multiferroic manganites. J. Phys. Condens. Matter 2011, 23, 113201. [Google Scholar] [CrossRef]
- Bousquet, E.; Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 2016, 28, 123001. [Google Scholar] [CrossRef]
- Wu, H.; Li, L.; Liang, L.-Z.; Liang, S.; Zhu, Y.-Y.; Zhu, X.-H. Recent progress on the structural characterizations of domain structures in ferroic and multiferroic perovskite oxides: A review. J. Eur. Ceram. Soc. 2015, 35, 411–441. [Google Scholar] [CrossRef]
- da Silveira Lacerda, L.H.; de Lazaro, S.R. Multiferroism and magnetic ordering in new NiBO3 (B = Ti, Ge, Zr, Sn, Hf and Pb) materials: A DFT study. J. Magn. Magn. Mater. 2018, 465, 412–420. [Google Scholar] [CrossRef]
- Martin, L.; Chu, Y.-H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133. [Google Scholar] [CrossRef]
- Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Kingon, A.; Kohlstedt, H.; Park, N.; Stephenson, G. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606. [Google Scholar] [CrossRef]
- Lawes, G.; Srinivasan, G. Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D Appl. Phys. 2011, 44, 243001. [Google Scholar] [CrossRef]
- da Silveira Lacerda, L.H.; Ribeiro, R.A.P.; de Lazaro, S.R. Magnetic, electronic, ferroelectric, structural and topological analysis of AlFeO3, FeAlO3, FeVO3, BiFeO3 and PbFeO3 materials: Theoretical evidences of magnetoelectric coupling. J. Magn. Magn. Mater. 2019, 480, 199–208. [Google Scholar] [CrossRef]
- Inaguma, Y.; Aimi, A.; Shirako, Y.; Sakurai, D.; Mori, D.; Kojitani, H.; Akaogi, M.; Nakayama, M. High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn–Teller effect. J. Am. Chem. Soc. 2014, 136, 2748–2756. [Google Scholar] [CrossRef]
- Benedek, N.A.; Fennie, C.J. Why are there so few perovskite ferroelectrics? J. Phys. Chem. C 2013, 117, 13339–13349. [Google Scholar] [CrossRef]
- Yip, S. Noncentrosymmetric superconductors. Annu. Rev. Condens. Matter Phys. 2014, 5, 15–33. [Google Scholar] [CrossRef]
- Silva, J.; Reyes, A.; Esparza, H.; Camacho, H.; Fuentes, L. BiFeO3: A review on synthesis, doping and crystal structure. Integr. Ferroelectr. 2011, 126, 47–59. [Google Scholar] [CrossRef]
- Rao, G.G.; Rekha, B.L.; Kumar, K.C.; Kumar, C.A.; Samatha, K.; Prasad, D.M. Investigations on multiferroic properties of BaTi0.9Zr0.1O3 substituted with Li0.5Fe2.5O4. J. Magn. Magn. Mater. 2017, 444, 444–450. [Google Scholar]
- Das, A.; De, S.; Bandyopadhyay, S.; Chatterjee, S.; Das, D. Magnetic, dielectric and magnetoelectric properties of BiFeO3-CoFe2O4 nanocomposites. J. Alloys Compd. 2017, 697, 353–360. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, L.; Fu, Q.; Tian, Y.; Wang, S.; Gou, H.; Ai, J.; Zhang, L.; Xue, F. Exchange bias in spin-glass-like NiFe2O4/BiFeO3 heterojunction at room temperature. J. Magn. Magn. Mater. 2018, 449, 372–377. [Google Scholar] [CrossRef]
- Xiang, J.; Hou, Z.; Zhang, X.; Gong, L.; Wu, Z.; Mi, J. Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers. J. Alloys Compd. 2018, 737, 412–420. [Google Scholar] [CrossRef]
- Marzouki, A.; Harzali, H.; Loyau, V.; Gemeiner, P.; Zehani, K.; Dkhil, B.; Bessais, L.; Megriche, A. Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater. 2018, 145, 316–321. [Google Scholar] [CrossRef]
- Barman, R.; Kaur, D. Improved multiferroic properties of graded Mn doped BiFeO3 thin film. Vacuum 2017, 146, 221–224. [Google Scholar] [CrossRef]
- Shu, H.; Ma, Y.; Wang, Z.; Mao, W.; Chu, L.; Yang, J.; Wu, Q.; Min, Y.; Song, R.; Li, X.a. Structural, Optical and Multiferroic Properties of (Nd, Zn)-Co-doped BiFeO3 Nanoparticles. J. Supercond. Nov. Magn. 2017, 30, 3027–3034. [Google Scholar] [CrossRef]
- Rahimkhani, M.; Khoshnoud, D.S.; Ehsani, M. Origin of enhanced multiferroic properties in Bi0.85−xLa0.15HoxFeO3 nanopowders. J. Magn. Magn. Mater. 2018, 449, 538–544. [Google Scholar] [CrossRef]
- Liu, N.; Liang, R.; Zhao, X.; Zhang, Y.; Zhou, Z.; Tang, X.; Dong, X. Tailoring domain structure through manganese to modify the ferroelectricity, strain and magnetic properties of lead-free BiFeO3-based multiferroic ceramics. J. Alloys Compd. 2018, 740, 470–476. [Google Scholar] [CrossRef]
- Ji, H.; Wang, Y.; Li, Y. Electric modulation of magnetization at the Fe3O4/BaTiO3 interface. J. Magn. Magn. Mater. 2017, 442, 242–246. [Google Scholar] [CrossRef]
- Schwarz, K.; Blaha, P.; Madsen, G.K. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 2002, 147, 71–76. [Google Scholar] [CrossRef]
- Abbas, Z.; Fatima, K.; Gorczyca, I.; Irfan, M.; Alotaibi, N.; Alshahrani, T.; Raza, H.H.; Muhammad, S. Proposition of new stable rare-earth ternary semiconductor sulfides of type LaTlS2 (La = Er, Eu, Tb): Ab-initio study and prospects for optoelectronic, spintronic and thermoelectric applications. Mater. Sci. Semicond. Process. 2022, 146, 106662. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.K.; Kvasnicka, D.; Luitz, J. wien2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Mater. Sci. Eng. 2001, 60. Available online: https://docplayer.net/55985-Wien2k-an-augmented-plane-wave-plus-local-orbitals-program-for-calculating-crystal-properties.html (accessed on 11 December 2023).
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.; Marks, L.D. WIEN2k: An APW+ lo program for calculating the properties of solids. J. Chem. Phys. 2020, 152, 074101. [Google Scholar] [CrossRef] [PubMed]
- Azam, S.; Abbas, Z.; Bilal, Q.; Irfan, M.; Khan, M.A.; Naqib, S.; Khenata, R.; Muhammad, S.; Algarni, H.; Al-Sehemi, A.G. Effect of Fe doping on optoelectronic properties of CdS nanostructure: Insights from DFT calculations. Phys. B Condens. Matter 2020, 583, 412056. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Aryasetiawan, F.; Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method. J. Phys. Condens. Matter 1997, 9, 767. [Google Scholar] [CrossRef]
- Mugnai, D.; Ranfagni, A.; Ruggeri, R. Observation of superluminal behaviors in wave propagation. Phys. Rev. Lett. 2000, 84, 4830. [Google Scholar] [CrossRef]
- Fatima, K.; Abbas, Z.; Naz, A.; Alshahrani, T.; Chaib, Y.; Jaffery, S.H.A.; Muhammad, S.; Hussain, S.; Jung, J.; Algarni, H. Shedding light on the structural, optoelectronic, and thermoelectric properties of pyrochlore oxides (La2Q2O7 (Q = Ge, Sn)) for energy applications: A first-principles investigation. J. Solid State Chem. 2022, 313, 123305. [Google Scholar] [CrossRef]
- Xu, B.; Li, X.; Sun, J.; Yi, L. Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9. Eur. Phys. J. B 2008, 66, 483–487. [Google Scholar] [CrossRef]
Compounds | 3.0 eV | 5.0 eV | 7.0 eV | 9.0 eV | ||||
---|---|---|---|---|---|---|---|---|
↑ | ↓ | ↑ | ↓ | ↑ | ↓ | ↑ | ↓ | |
BiFeO3 | 1.4 | 2.2 | 1.87 | 2.62 | 2.2 | 3.3 | 2.2 | 3.48 |
PFeO3 | 0.82 | 0.30 | 0.87 | 0.39 | 0.46 | 0.24 | 0.47 | 0.82 |
SbFeO3 | 1.36 | 1.79 | 1.67 | 2.26 | 2.0 | 2.5 | 1.7 | 0 |
Compound | |||||
---|---|---|---|---|---|
BiFeO3 | |||||
1.01300 | 0.03264 | 12.29616 | 1.65827 | 15.00008 | |
PFeO3 | |||||
0.40999 | −0.10734 | 12.86157 | 1.83657 | 15.00081 | |
SbFeO3 | |||||
0.82277 | 0.03006 | 12.55617 | 1.59099 | 14.99998 |
Compound | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
BiFeO3 | 3.11 | 2.32 | 2.89 | 2.29 | 3.83 | 3.27 | 3.46 | 2.79 | 3.18 | 2.54 |
PFeO3 | 0 | 0 | 0.01 | 0.07 | 1.12 | 0.98 | 1.05 | 0.78 | 0.77 | 0.48 |
SbFeO3 | 2.42 | 1.94 | 2.21 | 1.92 | 2.97 | 2.85 | 2.77 | 2.44 | 2.27 | 2.01 |
Compound | ||||||
---|---|---|---|---|---|---|
BiFeO3 | 2.64 | 3.81 | 1.62 | 1.95 | 0.057 | 0.104 |
PFeO3 | 5.31 | 8.46 | 2.30 | 2.91 | 0.156 | 0.238 |
SbFeO3 | 3.05 | 4.32 | 1.75 | 2.08 | 0.074 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parveen, A.; Abbas, Z.; Hussain, S.; Shaikh, S.F.; Aslam, M.; Jung, J. Theoretical Justification of Structural, Magnetoelectronic and Optical Properties in QFeO3 (Q = Bi, P, Sb): A First-Principles Study. Micromachines 2023, 14, 2251. https://doi.org/10.3390/mi14122251
Parveen A, Abbas Z, Hussain S, Shaikh SF, Aslam M, Jung J. Theoretical Justification of Structural, Magnetoelectronic and Optical Properties in QFeO3 (Q = Bi, P, Sb): A First-Principles Study. Micromachines. 2023; 14(12):2251. https://doi.org/10.3390/mi14122251
Chicago/Turabian StyleParveen, Amna, Zeesham Abbas, Sajjad Hussain, Shoyebmohamad F. Shaikh, Muhammad Aslam, and Jongwan Jung. 2023. "Theoretical Justification of Structural, Magnetoelectronic and Optical Properties in QFeO3 (Q = Bi, P, Sb): A First-Principles Study" Micromachines 14, no. 12: 2251. https://doi.org/10.3390/mi14122251