Efficient Photodegradation of Rhodamine B by Fiber-like Nitrogen-Doped TiO2/Ni(OH)2 Nanocomposite under Visible Light Irradiation
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Synthesis of Ni(OH)2 Nanosheets
2.3. Preparation of N-TiO2/Ni(OH)2 Nanocomposite
2.4. Characterization
2.5. Measurement of Photocatalytic Reactions
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Morikawa, T.; Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping. Jpn. J. Appl. Phys. 2001, 40, L561. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. A review on nonmetal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 2013, 140–141, 559–587. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, H.; Tian, C. Photocatalytic mechanisms of modified titania under visible light. Res. Chem. Intermed. 2011, 37, 91–102. [Google Scholar] [CrossRef]
- Reddy, P.A.K.; Reddy, P.V.L.; Kim, K.-H.; Kumar, M.K.; Manvitha, C.; Shimn, J.-J. Novel Approach for the Synthesis of Nitrogen-Doped Titania with Variable Phase Composition and Enhanced Production of Hydrogen under Solar Irradiation. J. Ind. Eng. Chem. 2017, 53, 253–260. [Google Scholar] [CrossRef]
- Preethi, L.K.; Antony, R.P.; Mathews, T.; Loo, S.C.J.; Wong, L.H.; Dash, S.; Tyagi, A.K. Nitrogen Doped Anatase-Rutile Heterostructured Nanotubes for Enhanced Photocatalytic Hydrogen Production: Promising Structure for Sustainable Fuel Production. Int. J. Hydrog. Energ. 2016, 41, 5865–5877. [Google Scholar] [CrossRef]
- Akple, M.S.; Low, J.; Qin, Z.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.; Liu, S. Nitrogen-Doped TiO2 Microsheets with Enhanced Visible Light Photocatalytic Activity for CO2 Reduction. Chin. J. Catal. 2015, 36, 2127–2134. [Google Scholar] [CrossRef]
- Delavari, S.; Amin, N.A.S.; Ghaedi, M. Photocatalytic Conversion and Kinetic Study of CO2 and CH4 over Nitrogen-doped Titania Nanotube Arrays. J. Clean. Prod. 2016, 111, 143–154. [Google Scholar] [CrossRef]
- Kamaludin, R.; Othman, M.H.D.; Kadir, S.H.S.A.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. Visible-Light-Driven Photocatalytic N-doped TiO2 for Degradation of Bisphenol A (BPA) and Reactive Black 5 (RB5) Dye. Water Air Soil Pollut. 2018, 229, 363. [Google Scholar] [CrossRef]
- Le, P.; Hieu, L.; Lam, T.-N.; Hang, N.; Truong, N.; Tuyen, L.; Phong, P.; Leu, J. Enhanced Photocatalytic Performance of Nitrogen-doped TiO2 Nanotube Arrays Using a Simple Annealing Process. Micromachines 2018, 9, 618. [Google Scholar] [CrossRef]
- Ananpattarachai, J.; Boonto, Y.; Kajitvichyanukul, P. Visible Light Photocatalytic Antibacterial Activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli Bacteria. Environ. Sci. Pollut. Res. 2015, 23, 4111–4119. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Hiroshi, T.; Vequizo, J.-M.; Yamakata, A. Improvement of photocatalytic activity under visible-light irradiation by heterojunction of Cu ion loaded WO3 and Cu ion loaded N-TiO2. Appl. Catal. B Environ. 2019, 248, 249–254. [Google Scholar]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, X.; Burda, C. The Effects of Sintering on the Photocatalytic Activity of N-Doped TiO2 Nanoparticles. Chem. Mater. 2008, 20, 2629–2636. [Google Scholar] [CrossRef]
- Kumar, M.P.; Jagannathan, R.; Ravichandran, S. Photoelectrochemical System for Unassisted High-Efficiency Water-Splitting Reactions Using N-Doped TiO2 Nanotubes. Energy Fuels 2020, 34, 9030–9036. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Li, L.; Li, W.; Yang, C. Dual Functional N-Doped TiO2-Carbon Composite Fibers for Efficient Removal of Water Pollutants. ACS Sustain. Chem. Eng. 2018, 6, 12893–12905. [Google Scholar] [CrossRef]
- Ong, W.L.; Ng, S.W.L.; Zhang, C.; Hong, M.; Ho, G.W. 2D hydrated layered Ni(OH)2 structure with hollow TiO2 nanocomposite directed chromogenic and catalysis capabilities. J. Mater. Chem. A 2016, 4, 13307–13315. [Google Scholar] [CrossRef]
- Yu, J.; Hai, Y.; Cheng, B. Enhanced Photocatalytic H2-Production Activity of TiO2 by Ni(OH)2 Cluster Modification. J. Phys. Chem. C 2011, 115, 4953–4958. [Google Scholar] [CrossRef]
- Luo, Y.; Dong, J.; Jiang, Z.; Zhan, X.; Li, Y.; Wang, C. β-Ni(OH)2/NiS/TiO2 3D flower-like p-n-p heterostructural photocatalysts for high-efficiency removal of soluble anionic dyes and hydrogen releasing. Opt. Mater. 2021, 114, 110951. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Xu, J.; Zhuang, H.; Long, J. 3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production. Chin. J. Catal. 2019, 40, 320–325. [Google Scholar] [CrossRef]
- Meng, A.; Wu, S.; Cheng, B.; Yu, J.; Xu, J. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 2018, 6, 4729–4736. [Google Scholar] [CrossRef]
- Chen, P.; Cao, C.; Ding, C.; Yin, Z.; Qi, S.; Guo, J.; Zhang, M.; Sun, Z. One-body style photo-supercapacitors based on Ni(OH)2/TiO2 heterojunction array: High specific capacitance and ultra-fast charge/discharge response. J. Power Sources 2022, 521, 230920. [Google Scholar] [CrossRef]
- Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, L.; Wang, C.; Lin, B.; Lv, S.; Chu, X.F.; Chi, Y.D.; Yang, X.T. Pd/TiO2 Nanospheres with Three-dimensional Hyperstructure for Enhanced Photodegradation of Organic Dye. Chem. Res. Chin. Univ. 2019, 35, 667–673. [Google Scholar] [CrossRef]
- Reddy, N.L.; Cheralathan, K.K.; Kumari, V.D.; Neppolian, B.; Venkatakrishnan, S.M. Photocatalytic Reforming of Biomass Derived Crude Glycerol in Water: A Sustainable Approach for Improved Hydrogen GenerationUsing Ni(OH)2 Decorated TiO2 Nanotubes under Solar Light Irradiation. ACS Sustain. Chem. Eng. 2018, 6, 3754–3764. [Google Scholar] [CrossRef]
- Cipagauta-Díaz, S.; Estrella-Gonz’alez, A.; Navarrete-Maga’na, M.; G’omez, R. N doped-TiO2 coupled to BiVO4 with high performance in photodegradation of Ofloxacin antibiotic and Rhodamine B dye under visible light. Catal. Today 2022, 394, 445–457. [Google Scholar] [CrossRef]
- Liu, F.; Xie, Y.; Yu, C.; Liu, X.; Dai, Y.; Liu, L.; Ling, Y. Novel hybrid Sr-doped TiO2/magneticNi0.6Zn0.4Fe2O4 for enhanced separation and photodegradation of organics under visible light. RSC Adv. 2015, 5, 24056–24063. [Google Scholar] [CrossRef]
- Kovalevskiy, N.; Selishchev, D.; Svintsitskiy, D.; Selishcheva, S.; Berezin, A.; Kozlov, D. Synergistic effect of polychromatic radiation on visible light activity of Ndoped TiO2 photocatalyst. Catal. Commun. 2020, 134, 105841. [Google Scholar] [CrossRef]
- Motlak, M.; Akhtar, M.S.; Barakat, N.A.M.; Hamza, A.M.; Yang, O.B.; Kim, H.Y. High-Efficiency Electrode Based on Nitrogen-Doped TiO2 Nanofibers for Dye-Sensitized Solar Cells. Electrochim. Acta 2014, 115, 493–498. [Google Scholar] [CrossRef]
- Liu, S.J.; Ma, Q.; Gao, F.; Song, S.H.; Gao, S. Relationship between N-doping induced point defects by annealing in ammonia and enhanced thermal stability for anodized titania nanotube arrays. J. Alloys Compd. 2012, 543, 71–78. [Google Scholar] [CrossRef]
- Peng, F.; Cai, L.; Yu, H.; Wang, H.; Yang, J. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid State Chem. 2008, 181, 130–136. [Google Scholar] [CrossRef]
- Chen, L.; Gu, Q.; Hou, L.; Zhang, C.; Lu, Y.; Wang, X.; Long, J. Molecular p-n heterojunction-enhanced visible light hydrogen evolution over a N-doped TiO2 photocatalyst. Catal. Sci. Technol. 2017, 7, 2039–2049. [Google Scholar] [CrossRef]
- Ran, J.; Yu, J.; Jaroniec, M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem. 2011, 13, 2708–2713. [Google Scholar] [CrossRef]
- Mao, L.; Ba, Q.; Jia, X.; Liu, S.; Liu, H.; Zhang, J.; Li, X.; Chen, W. Ultrathin Ni(OH)2 nanosheets: A new strategy for cocatalyst design on CdS surfaces for photocatalytic hydrogen generation. RSC Adv. 2019, 9, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.; Xu, Y.; Zhong, D.; Chang, H.; Xu, C.; Wang, H.; Shen, H. Efcient Visible-Light-Responsive Photocatalytic Fuel Cell with a ZnIn2S4/UiO-66/TiO2/Ti Photoanode for Simultaneous RhB Degradation and Electricity Generation. J. Electron. Mater. 2022, 51, 6121–6133. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Deyarayapalli, K.C.; Tettey, C.O.; Vattikuti, S.V.P.; Shim, J. Eco-friendly green synthesis: Catalytic activity of nickel hydroxide nanoparticles. Mater. Res. Express 2019, 6, 055036. [Google Scholar] [CrossRef]
- Shafi, A.; Ahmad, N.; Sultana, S.; Sabir, S.; Khan, M.Z. Ag2S-Sensitized NiO–ZnO Heterostructures with Enhanced Visible Light Photocatalytic Activity and Acetone Sensing Property. ACS Omega 2019, 4, 12905–12918. [Google Scholar] [CrossRef]
- Yang, M.; Lu, D.; Wang, H.; Wu, P.; Fang, P. A facile one-pot hydrothermal synthesis of two-dimensional TiO2-based nanosheets loaded with surface-enriched NixOy nanoparticles for efficient visible-light-driven photocatalysis. Appl. Surf. Sci. 2019, 467–468, 124–134. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, N.; Zhang, N.; Song, Y.; Stanislaus, M.S.; Zhao, C.; Yang, Y. Efficient photocatalytic removal of RhB, MO and MB dyes by optimized Ni/NiO/TiO2 composite thin films under solar light irradiation. J. Environ. Chem. Eng. 2018, 6, 2724–2732. [Google Scholar] [CrossRef]
- Peng, Y.; Cai, J.; Shi, Y.; Jiang, H.; Li, G. Thin p-type NiO nanosheet modified peanut-shaped monoclinic BiVO4 for enhanced charge separation and photocatalytic activities. Catal. Sci. Technol. 2022, 12, 5162–5170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Dong, M.; Shao, B.; Chi, Y.; Wang, C.; Lv, S.; Duan, R.; Wu, B.; Yang, X. Efficient Photodegradation of Rhodamine B by Fiber-like Nitrogen-Doped TiO2/Ni(OH)2 Nanocomposite under Visible Light Irradiation. Micromachines 2023, 14, 870. https://doi.org/10.3390/mi14040870
Wang H, Dong M, Shao B, Chi Y, Wang C, Lv S, Duan R, Wu B, Yang X. Efficient Photodegradation of Rhodamine B by Fiber-like Nitrogen-Doped TiO2/Ni(OH)2 Nanocomposite under Visible Light Irradiation. Micromachines. 2023; 14(4):870. https://doi.org/10.3390/mi14040870
Chicago/Turabian StyleWang, Huan, Mingxuan Dong, Baorui Shao, Yaodan Chi, Chao Wang, Sa Lv, Ran Duan, Boqi Wu, and Xiaotian Yang. 2023. "Efficient Photodegradation of Rhodamine B by Fiber-like Nitrogen-Doped TiO2/Ni(OH)2 Nanocomposite under Visible Light Irradiation" Micromachines 14, no. 4: 870. https://doi.org/10.3390/mi14040870