Wideband Substrate Integrated Waveguide Chip Filter Using Spoof Surface Plasmon Polariton
Abstract
:1. Introduction
2. Design of the Proposed BPF
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaturvedi, S.; Bozanic, M.; Sinha, S. Millimeter wave passive bandpass filters. Microw. J. 2017, 60, 98–108. [Google Scholar]
- Cai, T.; Chen, C.; Zhang, X.; Lin, F.; Zhang, H. A Hybrid Transmission-Line/SAW-Resonator Analog Signal-Interference Dual-Band Bandpass Filter. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 27–30. [Google Scholar] [CrossRef]
- Warder, P.; Link, A. Golden age for filter design: Innovative and proven approaches for acoustic filter, duplexer, and multiplexer design. IEEE Microw. Mag. 2015, 16, 60–72. [Google Scholar] [CrossRef]
- Shen, G.; Che, W.; Feng, W.; Shi, Y.; Xu, F.; Xue, Q. Ultra-low-loss millimeter-wave LTCC bandpass filters based on flexible design of lumped and distributed circuits. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 1123–1127. [Google Scholar] [CrossRef]
- Zeng, X.; Bi, X.; Cao, Z.; Wan, R.; Xu, Q. High selectivity dual-wideband balun filter utilizing a multimode t-line loaded middle-shorted CSRR. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 2447–2451. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Y.; Lai, Z.; Wang, W.; Yang, Q. A Hybrid Filter With Extremely Wide Bandwidth and High Selectivity Using FBAR Network. IEEE Trans. Circuits Syst. II Exp. Briefs. 2020, 68, 1123–1127. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Jiang, Z.; Hao, Z.; Wu, Y.; Hong, W. Analysis of eighth-mode substrate-integrated waveguide cavity and flexible filter design. IEEE Trans. Microw. Theory Tech. 2019, 67, 2701–2712. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, C.; Wu, W. Dual-mode characteristics of half-mode SIW rectangular cavity and applications to dual-band filters with widely separated passbands. IEEE Trans. Microw. Theory Tech. 2018, 66, 4820–4829. [Google Scholar] [CrossRef]
- Xiao, Y.; Shan, P.; Zhao, Y.; Sun, H.; Yang, F. Design of a W-Band GaAs-Based SIW Chip Filter Using Higher Order Mode Resonances. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 104–106. [Google Scholar] [CrossRef]
- Iqbal, A.; Tiang, J.-J.; Kee, C.-K.; Lee, B.-M. Tunable substrate integrated waveguide diplexer with high isolation and wide stopband. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 456–458. [Google Scholar] [CrossRef]
- Li, P.; Chu, H.; Zhao, D.; Chen, R.-S. Compact dual-band balanced SIW bandpass filter with improved common-mode suppression. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 347–349. [Google Scholar] [CrossRef]
- Ho, M.-H.; Tang, K.-H. Miniaturized SIW cavity tri-band fil- ter design. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 589–592. [Google Scholar] [CrossRef]
- Deng, H.-W.; Han, Y.-K.; Sun, L.; Zhu, J.-M.; Xing, S.-B. Multilayer dual-mode balanced SIW filter utilizing PEC–PMC characteristic for common-mode suppression. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 865–868. [Google Scholar] [CrossRef]
- Jia, D.; Feng, Q.; Xiang, Q.; Wu, K. Multilayer substrate integrated waveguide (SIW) filters with higher-order mode suppression. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 678–680. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.; Liu, Y.; Lu, Q.; Yin, X.; Yang, Y. Wideband Substrate Integrated Waveguide Bandpass Filter Based on 3-D ICs. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 728–735. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, H.-R. Vertically stacked trisection SIW filter with controllable transmission zeros. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 237–240. [Google Scholar] [CrossRef]
- Chu, P.; Hong, W.; Dai, L.; Tang, H.; Chen, J.; Hao, Z.; Zhu, X.; Wu, K. A planar bandpass filter implemented with a hybrid structure of substrate integrated waveguide and coplanar waveguide. IEEE Trans. Microw. Theory Tech. 2014, 62, 266–274. [Google Scholar] [CrossRef]
- Muchhal, N.; Srivastava, S. Design of Miniaturized Diamond Shaped Substrate Integrated Waveguide CSRR Band Pass Filter for X Band Applications. In Proceedings of the International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019. [Google Scholar]
- Jin, B.; Zhang, P.; Mu, J.; Zhang, M.; Li, M. A Miniaturized Bandpass Filter Basing on HMSIW Loaded Dual-mode CSRR. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021. [Google Scholar]
- Pradhan, N.C.; Subramanian, K.S.; Barik, R.K.; Cheng, Q.-S. Design of compact substrate integrated waveguide based triple- and quad-band power dividers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 365–368. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.-J. Planar plasmonic metamaterial on a thin film with nearly zero thicknes. Appl. Phys. Lett. 2013, 102, 211909-1–211909-4. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.-J.; Martin-Cano, D.F.; Garcia-Vidal, J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Nat. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cano, D.; Nesterov, M.L.; Fernandez-Dominguez, A.I.; Garcia-Vidal, F.J.; Martin-Moreno, L.; Moreno, E. Domino plasmons for subwavelength terahertz circuitry. Opt. Exp. 2010, 18, 754–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-C.; Cui, T.-J.; Zhang, Q.; Fan, Y.; Fu, X. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photon. 2015, 2, 1333–1340. [Google Scholar] [CrossRef]
- Unutmaz, M.A.; Unlu, M. Modelling of the effective dielectric constant of planar spoof surface plasmon polariton waveguides. Electron. Lett. 2017, 53, 1418–1420. [Google Scholar] [CrossRef]
- Unutmaz, M.A.; Unlu, M. Fixed physical length spoof surface plasmon polariton delay lines for a 2-bit phase shifter. J. Opt. Soc. Amer. B Opt. Phys. 2020, 37, 1116–1121. [Google Scholar] [CrossRef]
- Guan, D.F.; You, P.; Zhang, Q.; Xiao, K.; Yong, S.-W. Hybrid spoof surface plasmon polariton and substrate integrated waveguide transmission line and its application in filter. IEEE Trans. Microw. Theory Tech. 2017, 65, 4925–4932. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Ye, L.; Li, Y.; Xu, Y.; Xu, R. On-chip Terahertz Bandpass Filter based on Substrate Integrated Plasmonic Waveguide. Results Phys. 2021, 104553, 2211–3797. [Google Scholar] [CrossRef]
- Xu, J.; Sun, Y.; Liu, J.; Wei, Y.-D.; Zhao, W.-S.; Wang, D.-W. Fabrication and high-frequency characterization of low-cost fan-in/out WLP technology with RDL for 2.5D/3D heterogeneous integration. Microelectron. J. 2022, 119, 105332. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, C.-X.; Wu, W. Resonance Characteristics of Substrate-Integrated Rectangular Cavity and Their Applications to Dual-Band and Wide-Stopband Bandpass Filters Design. IEEE Trans. Microw. Theory Tech. 2017, 65, 1511–1524. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, Q.; Ma, H.; Ren, B.; Wen, P. Design wideband differential bandpass filter using slotline surface plasmon polariton. IEEE Access 2019, 7, 44212–44218. [Google Scholar] [CrossRef]
- Alley, G.D. Interdigital Capacitors and Their Application to Lumped-Element Microwave Integrated Circuits. IEEE Trans. Microw. Theory Tech. 1970, 18, 1028–1033. [Google Scholar] [CrossRef]
- Kim, J.; Pak, J.S.; Cho, J.; Song, E.; Cho, J.; Kim, H.; Song, T.; Lee, J.; Lee, H.; Park, K.; et al. High-Frequency Scalable Electrical Model and Analysis of a Through Silicon Via (TSV). IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 181–195. [Google Scholar]
C | L | Ls | W | WSIW |
---|---|---|---|---|
0.4 mm | 0.39 mm | 1 mm | 0.075 mm | 2 mm |
LSIW | WSIW | Lg | Wg1 | Wg2 | Ls1 | Ls2 | Ls3 |
---|---|---|---|---|---|---|---|
4 mm | 2 mm | 0.76 mm | 0.055 mm | 0.2 mm | 0.26 mm | 0.49 mm | 0.78 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.; You, B.; Wen, X.; Li, X. Wideband Substrate Integrated Waveguide Chip Filter Using Spoof Surface Plasmon Polariton. Micromachines 2022, 13, 1195. https://doi.org/10.3390/mi13081195
Pan D, You B, Wen X, Li X. Wideband Substrate Integrated Waveguide Chip Filter Using Spoof Surface Plasmon Polariton. Micromachines. 2022; 13(8):1195. https://doi.org/10.3390/mi13081195
Chicago/Turabian StylePan, Dongzhe, Bin You, Xuan Wen, and Xungen Li. 2022. "Wideband Substrate Integrated Waveguide Chip Filter Using Spoof Surface Plasmon Polariton" Micromachines 13, no. 8: 1195. https://doi.org/10.3390/mi13081195
APA StylePan, D., You, B., Wen, X., & Li, X. (2022). Wideband Substrate Integrated Waveguide Chip Filter Using Spoof Surface Plasmon Polariton. Micromachines, 13(8), 1195. https://doi.org/10.3390/mi13081195