Development and Application of SAW Filter
Abstract
:1. Introduction
2. SAW
3. SAW Filter Technology
3.1. Bulk SAW
3.2. TC-SAW
3.2.1. SiO2 Overlay
3.2.2. Wafer Bonding
3.2.3. Other Temperature Compensation Methods
3.3. Hybrid Substrate SAW
3.3.1. IHP
3.3.2. HAL
3.3.3. LLSAW
3.3.4. Other Types
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bauer, T.; Eggs, C.; Wagner, K.; Hagn, P. A Bright Outlook for Acoustic Filtering. IEEE Microw. Mag. 2015, 16, 73–81. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C.L. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, A.; Verdu, J.; Sanchez, P.D. General Synthesis Methodology for the Design of Acoustic Wave Ladder Filters and Duplexers. IEEE Access 2018, 6, 47969–47979. [Google Scholar] [CrossRef]
- Fattinger, G.G.; Volatier, A.; Al-Joumayly, M.; Yusuf, Y.; Aigner, R.; Khlat, N.; Granger-Jones, M. Carrier aggregation and its challenges—Or: The golden age for acoustic filters. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Ruppel, C.C.W. Acoustic Wave Filter Technology–A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Delsing, P.; Cleland, A.N.; Schuetz, M.J.A.; Knorzer, J.; Giedke, G.; Cirac, J.I.; Srinivasan, K.; Wu, M.; Balram, K.C.; Bauerle, C.; et al. The 2019 surface acoustic waves roadmap. J. Phys. D Appl. Phys. 2019, 52, 353001. [Google Scholar] [CrossRef]
- Rayleigh, L. On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 1885, 1, 4–11. [Google Scholar] [CrossRef]
- Xiaojuan, F.; Yi, H.; Bingjun, W.; Shuwen, C. Research on dynamic response of single pile to Rayleigh wave in saturated soil based on Winkler model. Chin. J. Appl. Mech. 2010, 27, 303–309, 440. [Google Scholar]
- White, R.M.; Voltmer, F.W. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 1965, 7, 314–316. [Google Scholar] [CrossRef]
- Arnau, A. Piezoelectric Transducers and Applications; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2004. [Google Scholar]
- Drafts, B. Acoustic wave technology sensors. IEEE Trans. Microw. Theory Tech. 2001, 49, 795–802. [Google Scholar] [CrossRef]
- Malocha, D.C. Evolution of the SAW transducer for communication systems. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 301, pp. 302–310. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S.L.; Song, C.; Wang, G.Y.; Zeng, F.; Pan, F. Improved resistance to electromigration and acoustomigration of Al interdigital transducers by Ni underlayer. Rare Met. 2018, 37, 823–830. [Google Scholar] [CrossRef]
- Huang, Y.; Bao, J.; Tang, G.; Wang, Y.; Omori, T.; Hashimoto, K.-Y. Multimode filter composed of single-mode surface acoustic wave/bulk acoustic wave resonators. Jpn. J. Appl. Phys. 2017, 56, 07JD10. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.H.; Wang, L.T.; Wang, Y.Y.; Li, Y.; Wu, H.X.; Qian, L.R.; Li, H.L.; Wu, J.H.; Wang, J. Research in Nonlinearity of Surface Acoustic Wave Devices. Micromachines 2021, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- Tobolka, G.; Faber, W.; Albrecht, G.; Pilz, D. High Volume TV-IF Filter Design, Fabrication, and Applications. In Proceedings of the IEEE 1984 Ultrasonics Symposium, Dallas, TX, USA, 14–16 November 1984; pp. 1–12. [Google Scholar] [CrossRef]
- Maskay, A.; Hummels, D.M.; da Cunha, M.P. In-Phase and Quadrature Analysis for Amplitude and Frequency Modulations Due to Vibrations on a Surface-Acoustic-Wave Resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Watanabe, Y.; Tanaka, M.; Nakazawa, Y. Wideband low loss double mode SAW filters. In Proceedings of the IEEE 1992 Ultrasonics Symposium Proceedings, Tucson, AZ, USA, 20–23 October 1992; Volume 101, pp. 95–104. [Google Scholar] [CrossRef]
- Beaudin, S.; Damphousse, S.; Cameron, T. Shoulder Suppressing Technique for dual mode SAW resonators. In Proceedings of the 1999 IEEE Ultrasonics Symposium Proceedings, International Symposium (Cat. No. 99CH37027), Tahoe, NV, USA, 17–20 October 1999; Volume 381, pp. 389–393. [Google Scholar] [CrossRef]
- Kinsman, R.G. A history of crystal filters. In Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No. 98CH36165), Pasadena, CA, USA, 29 May 1998; pp. 563–570. [Google Scholar] [CrossRef]
- Cai, T.; Chen, C.; Zhang, X.; Lin, F.J.; Zhang, H.L. A Hybrid Transmission-Line/SAW-Resonator Analog Signal-Interference Dual-Band Bandpass Filter. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 27–30. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Abdelfattah, M.; Yang, L.; Gomez-Garcia, R.; Peroulis, D. A Hybrid Low-Cost Bandpass Filter with SAW Resonators and External Lumped Inductors Using a Dual-Coupling Scheme. IEEE Trans. Microw. Theory Tech. 2020, 68, 2289–2299. [Google Scholar] [CrossRef]
- Miura, M.; Matsuda, T.; Satoh, Y.; Ueda, M.; Ikata, O.; Ebata, Y.; Takagi, H. Temperature compensated LiTaO3 sapphire bonded SAW substrate with low loss and high coupling factor suitable for US-PCS application. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 1322, pp. 1322–1325. [Google Scholar] [CrossRef]
- Rizzato, S.; Scigliuzzo, M.; Chiriacò, M.S.; Scarlino, P.; Monteduro, A.G.; Maruccio, C.; Tasco, V.; Maruccio, G. Excitation and time resolved spectroscopy of SAW harmonics up to GHz regime in photolithographed GaAs devices. J. Micromech. Microeng. 2017, 27, 125002. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Tohyama, K.; Hori, Y.; Iwasaki, Y.; Suzuki, K. A study on temperature-compensated hybrid substrates for surface acoustic wave filters. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 637–640. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liu, J.S.; Wang, Y.L.; Lam, C.S. A Novel Structure to Suppress Transverse Modes in Radio Frequency TC-SAW Resonators and Filters. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 249–251. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kadota, M.; Nakao, T.; Ueda, M.; Miura, M.; Nakamura, H.; Nakanishi, H.; Suzuki, K. Recent development of temperature compensated SAW Devices. In Proceedings of the 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, 18–21 October 2011; pp. 79–86. [Google Scholar] [CrossRef]
- Matsuoka, N.; Li, X.; Omori, T.; Hashimoto, K.-Y. Study of loss mechanisms in temperature compensated surface acoustic wave devices based on finite element method analysis using hierarchical cascading technique. Jpn. J. Appl. Phys. 2020, 59, SKKC06. [Google Scholar] [CrossRef]
- Ruby, R.; Gilbert, S.; Lee, S.K.; Nilchi, J.; Kim, S.W. Novel Temperature-Compensated, Silicon SAW Design for Filter Integration. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 674–677. [Google Scholar] [CrossRef]
- Yamanouchi, K.; Kotani, K.; Odagawa, H.; Cho, Y.S. Theoretical analysis of surface acoustic wave propagation characteristics under strained media and applications for high temperature stable high coupling surface acoustic wave substrates. Jpn. J. Appl. Phys. 2000, 39, 3032–3035. [Google Scholar] [CrossRef]
- Matsuda, S.; Hara, M.; Miura, M.; Matsuda, T.; Ueda, M.; Satoh, Y.; Hashimoto, K. Correlation Between Temperature Coefficient of Elasticity and Fourier Transform Infrared Spectra of Silicon Dioxide Films for Surface Acoustic Wave Devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 1684–1687. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.; Chen, A.; Daniel, T.; Gamble, K.; Kook, T.; Solal, M.; Steiner, K.; Aigner, R.; Malocha, S.; Hella, C.; et al. Temperature compensated saw with high quality factor. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Saleh, A.N.; Attar, A.A.; Ahmed, O.K.; Mustafa, S.S. Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2. Results Eng. 2021, 12, 100303. [Google Scholar] [CrossRef]
- Lee, S.A.; Yang, J.W.; Choi, S.; Jang, H.W. Nanoscale electrodeposition: Dimension control and 3D conformality. In Exploration; Wiley Online Library: Hoboken, NJ, USA, 2021; p. 20210012. [Google Scholar]
- Liu, Y.; Shi, B.; Liang, X.J. Exploration: Explore a better future with advanced science and technology. In Exploration; Wiley Online Library: Hoboken, NJ, USA, 2021; Volume 1, pp. 6–8. [Google Scholar]
- Yujun, Z.; Fanxiu, L.; Jianjun, Z.; Liangxian, C. Technique of preparing diamond films on poly-substrate by DC-arc plasma jet CVD for surface acoustic wave devices. J. Univ. Sci. Technol. Beijing 2008, 30, 544–547. [Google Scholar] [CrossRef]
- Xue, P.J.; Liu, S.L.; Bian, J.J. Effects of polymorphic form and particle size of SiO2 fillers on the properties of SiO2–PEEK composites. J. Adv. Dielectr. 2021, 11, 2150021. [Google Scholar] [CrossRef]
- Balani, S.B.; Ghaffar, S.H.; Chougan, M.; Pei, E.J.; Sahin, E. Processes and materials used for direct writing technologies: A review. Results Eng. 2021, 11, 100257. [Google Scholar] [CrossRef]
- Goto, R.; Nakamura, H.; Hashimoto, K. The modeling of the transverse mode in TC-SAW using SiO2/LiNbO3 structure. Jpn. J. Appl. Phys. 2019, 58, Sggc07. [Google Scholar] [CrossRef]
- Kadota, M.; Nakao, T.; Taniguchi, N.; Takata, E.; Mimura, M.; Nishiyama, K.; Hada, T.; Komura, T. Surface acoustic wave duplexer for US personal communication services with good temperature characteristics. Jpn. J. Appl. Phys. 2005, 44, 4527–4531. [Google Scholar] [CrossRef]
- Kovacs, G.; Ruile, W.; Jakob, M.; Rosler, U.; Maier, E.; Knauer, U.; Zoul, H. A SAW duplexer with superior temperature characteristics for US-PCS. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 972, pp. 974–977. [Google Scholar] [CrossRef]
- Kadota, M.; Nakao, T.; Taniguchi, N.; Takata, E.; Mimura, M.; Nishiyama, K.; Hada, T.; Komura, T. SAW duplexer for PCS in US with excellent temperature stability. In Proceedings of the IEEE Symposium on Ultrasonics, Honululu, HI, USA, 5–8 October 2003; Volume 2102, pp. 2105–2109. [Google Scholar] [CrossRef]
- Kadota, M.; Nakao, T.; Nishiyama, K.; Kido, S.; Kato, M.; Omote, R.; Yonekura, H.; Takada, N.; Kita, R. Small surface acoustic wave duplexer for wide-band code-division multiple access full-band system having good temperature characteristics. Japanese J. Appl. Phys. 2007, 46, 4714–4717. [Google Scholar] [CrossRef]
- Nakamura, H.; Nakanishi, H.; Tsurunari, T.; Matsunami, K.; Iwasaki, Y.; Hashimoto, K.; Yamaguchi, M. Miniature Surface Acoustic Wave Duplexer Using SiO2/Al/LiNbO3 Structure for Wide-Band Code-Division Multiple-Access System. Jpn. J. Appl. Phys. 2008, 47, 4052–4055. [Google Scholar] [CrossRef]
- Matsuda, S.; Hara, M.; Miura, M.; Matsuda, T.; Ueda, M.; Satoh, Y.; Hashimoto, K. Application of fluorine doped SiO2 films for temperature compensated SAW devices. In Proceedings of the 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, 18–21 October 2011; pp. 76–78. [Google Scholar] [CrossRef]
- Wang, Y.; Solal, M.; Kook, T.; Briot, J.; Abbott, B.; Chen, A.; Daniel, T.; Malocha, S.; Qin, K.; Steiner, K. A zero TCF band 13 SAW duplexer. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Koskela, J.; Plessky, V.; Willemsen, B.; Turner, P.; Hammond, B.; Fenzi, N. Hierarchical Cascading Algorithm for 2-D FEM Simulation of Finite SAW Devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 65, 1933–1942. [Google Scholar] [CrossRef]
- Solal, M.; Gallagher, M.; Tajic, A. Full 3D simulation of SAW resonators using hierarchical cascading FEM. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Li, X.; Bao, J.; Qiu, L.; Matsuoka, N.; Omori, T.; Hashimoto, K.-Y. 3D FEM simulation of SAW resonators using hierarchical cascading technique and general purpose graphic processing unit. Jpn. J. Appl. Phys. 2019, 58, SGGC05. [Google Scholar] [CrossRef]
- Tsutsumi, J.; Inoue, S.; Iwamoto, Y.; Miura, M.; Matsuda, T.; Satoh, Y.; Nishizawa, T.; Ueda, M.; Ikata, O. A miniaturized 3 × 3-mm SAW antenna duplexer for the US-PCS band with temperature-compensated LiTaO3 sapphire substrate. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 952, pp. 954–958. [Google Scholar] [CrossRef]
- Kawachi, O.; Taniguchi, N.; Tajima, M.; Nishizawa, T. A study of optimum material for SAW bonded wafer. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1260–1263. [Google Scholar] [CrossRef]
- Geshi, K.; Teraoka, K.; Kinoshita, S.; Nakayama, M.; Imagawa, Y.; Nakayama, S.; Hashimoto, K.; Tanaka, S.; Totsu, K.; Takagi, H. Wafer bonding of polycrystalline spinel with LiNbO3/LiTaO3 for temperature compensation of RF surface acoustic wave devices. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 2726–2729. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, R.; Zhou, H.; Link, S.; Yang, Y.; Li, Z.; Huang, K.; Ou, X.; Gong, S. Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide. IEEE Trans. Microw. Theory Tech. 2020, 68, 3653–3666. [Google Scholar] [CrossRef]
- Su, R.; Fu, S.; Shen, J.; Lu, Z.; Xu, H.; Yang, M.; Zeng, F.; Song, C.; Wang, W.; Pan, F. Power Durability Enhancement and Failure Analysis of TC-SAW Filter with Ti/Cu/Ti/Cu/Ti Electrodes. IEEE Trans. Device Mater. Reliab. 2021, 21, 365–371. [Google Scholar] [CrossRef]
- Ballandras, S.; Courjon, E.; Bernard, F.; Laroche, T.; Clairet, A.; Radu, I.; Huyet, I.; Drouin, A.; Butaud, E. New generation of SAW devices on advanced engineered substrates combining piezoelectric single crystals and Silicon. In Proceedings of the 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Orlando, FL, USA, 14–18 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tang, I.T.; Chen, H.J.; Hwang, W.C.; Wang, Y.C.; Houng, M.P.; Wang, Y.H. Applications of piezoelectric ZnO film deposited on diamond-like carbon coated onto Si substrate under fabricated diamond SAW filter. J. Cryst. Growth 2004, 262, 461–466. [Google Scholar] [CrossRef]
- Assouar, M.; Elmazria, O.; Rioboo, R.J.; Sarry, F.; Alnot, P. Modelling of SAW filter based on ZnO/diamond/Si layered structure including velocity dispersion. Appl. Surf. Sci. 2000, 164, 200–204. [Google Scholar] [CrossRef]
- Georgel, V.; Verjus, F.; van Grunsven, E.C.E.; Poulichet, P.; Lissorgues, G.; Pellet, C.; Chamaly, S.; Bourouina, T. A SAW filter integrated on a silicon passive substrate used for system in package. Sens. Actuators A Phys. 2008, 142, 185–191. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Yamazaki, H.; Fuyutsume, T.; Kyoya, H.; Nakao, T.; Kando, H.; Hiramoto, M.; Toi, T.; et al. Incredible high performance SAW resonator on novel multi-layerd substrate. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Wada, T.; Hiramoto, M.; Koshino, M.; Nakajima, N. Investigations on design technologies for SAW quadplexer with narrow duplex gap. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Fuyutsume, T.; Nakao, T.; Hiramoto, M.; Toi, T.; Koshino, M.I.H.P. SAW technology and its application to microacoustic components (Invited). In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Yamazaki, H.; Fuyutsume, T.; Kyoya, H.; Nakao, T.; Kando, H.; Hiramoto, M.; Toi, T.; et al. High-Performance SAW Resonator on New Multilayered Substrate Using LiTaO3 Crystal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1382–1389. [Google Scholar] [CrossRef]
- Takamine, Y.; Takai, T.; Iwamoto, H.; Nakao, T.; Koshino, M. A Novel 3.5 GHz Low-Loss Bandpass Filter Using I.H.P. SAW Resonators. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1342–1344. [Google Scholar] [CrossRef]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Fuyutsume, T.; Nakao, T.; Hiramoto, M.; Toi, T.; Koshino, M. High-Performance SAW Resonator with Simplified LiTaO3/SiO2 Double Layer Structure on Si Substrate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1006–1013. [Google Scholar] [CrossRef]
- Kadota, M.; Tanaka, S. Improved quality factor of hetero acoustic layer (HAL) SAW resonator combining LiTaO3 thin plate and quartz substrate. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kadota, M.; Yunoki, Y.; Shimatsu, T.; Uomot, M.; Tanaka, S. Near-Zero TCF of HAL SAW Resonator with LiTaO3-on-Quartz Structure. In Proceedings of the 2018 IEEE International Frequency Control Symposium (IFCS), Olympic Valley, CA, USA, 21–24 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kadota, M.; Ishii, Y.; Tanaka, S. A spurious-free, steep band rejection filter using a LiTaO3/quartz heteroacoustic layer surface acoustic wave resonator. Jpn. J. Appl. Phys. 2020, 59, Skkc11. [Google Scholar] [CrossRef]
- Kimura, T.; Daimon, K.; Ogami, T.; Kadota, M. S0Mode Lamb Wave Resonators Using LiNbO3 Thin Plate on Acoustic Multilayer Reflector. Jpn. J. Appl. Phys. 2013, 52, 07HD03. [Google Scholar] [CrossRef]
- Kimura, T.; Kishimoto, Y.; Omura, M.; Hashimoto, K. 3.5 GHz longitudinal leaky surface acoustic wave resonator using a multilayered waveguide structure for high acoustic energy confinement. Jpn. J. Appl. Phys. 2018, 57, 07ld15. [Google Scholar] [CrossRef]
- Kimura, T.; Omura, M.; Kishimoto, Y.; Hashimoto, K.Y. Applicability Investigation of SAW Devices in the 3 to 5 GHz range. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 846–848. [Google Scholar] [CrossRef]
- Suzuki, M.; Sawada, N.; Kakio, S. Analysis of longitudinal leaky surface acoustic wave propagation characteristics on a piezoelectric ScAlN layer/sapphire or quartz substrate. Jpn. J. Appl. Phys. 2019, 58, Sggc08. [Google Scholar] [CrossRef]
- Tsutsumi, J.; Matsuda, T.; Ikata, O.; Satoh, Y. A novel reflector-filter using a SAW waveguide directional coupler. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, J.; Ikata, O.; Satoh, Y. Experimental Studies on Acoustic Energy Loss in Surface Acoustic Wave Filters Using Grating Waveguides. Jpn. J. Appl. Phys. 2001, 40, L62. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S.L.; Wang, R.; Song, C.; Zeng, F.; Pan, F. Enhanced power durability of surface acoustic wave filter with Al/Ti/Cu/Ti electrodes. J. Alloy. Compd. 2018, 740, 222–228. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S.L.; Lu, Z.T.; Qian, L.R.; Wang, R.; Chen, T.J.; Song, C.; Zeng, F.; Wang, W.B.; Pan, F. Behavior of Al/Cu/Ti electrodes in surface acoustic wave filter at high power. Curr. Appl. Phys. 2019, 19, 363–369. [Google Scholar] [CrossRef]
- Hsu, T.H.; Tseng, K.J.; Li, M.H. Large Coupling Acoustic Wave Resonators Based on LiNbO3/SiO2/Si Functional Substrate. IEEE Electron Device Lett. 2020, 41, 1825–1828. [Google Scholar] [CrossRef]
- Shen, J.Y.; Fu, S.L.; Su, R.X.; Xu, H.P.; Lu, Z.T.; Xu, Z.B.; Luo, J.T.; Zeng, F.; Song, C.; Wang, W.B.A.; et al. High-Performance Surface Acoustic Wave Devices Using LiNbO3/SiO2/SiC Multilayered Substrates. IEEE Trans. Microw. Theory Tech. 2021, 69, 3693–3705. [Google Scholar] [CrossRef]
- Gong, S.B.; Piazza, G. Design and Analysis of Lithium-Niobate-Based High Electromechanical Coupling RF-MEMS Resonators for Wideband Filtering. IEEE Trans. Microw. Theory Tech. 2013, 61, 403–414. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Huang, K.; Zhou, H.Y.; Zhao, X.M.; Li, W.Q.; Li, Z.X.; Yi, A.L.; Huang, H.; Lin, J.J.; Zhang, S.B.; et al. Wafer-Scale Fabrication of 42 degrees Rotated Y-Cut LiTaO3-on-Insulator (LTOI) Substrate for a SAW Resonator. ACS Appl. Electron. Mater. 2019, 1, 1660–1666. [Google Scholar] [CrossRef]
- Zeighami, F.; Palermo, A.; Marzani, A. Rayleigh waves in locally resonant metamaterials. Int. J. Mech. Sci. 2021, 195, 106250. [Google Scholar] [CrossRef]
- Pouya, C.; Nash, G.R. Sub-and supersonic elastic waves in an annular hole phononic metamaterial. Commun. Mater. 2021, 2, 55. [Google Scholar] [CrossRef]
- Brick, D.; Emre, E.; Grossmann, M.; Dekorsy, T.; Hettich, M. Picosecond Photoacoustic Metrology of SiO2 and LiNbO3 Layer Systems Used for High Frequency Surface-Acoustic-Wave Filters. Appl. Sci. 2017, 7, 822. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.H.; Huang, H.C.; Hwang, R.C.; Huang, P.F.; Wang, S.M.T. Synthesis of Ladder-type Radio Frequency Surface Acoustic Wave Filter Based on Lumped Circuit Model by Using Neural Network. Sens. Mater. 2019, 31, 2225–2236. [Google Scholar] [CrossRef]
- Yang, S.; Ai, Y.J.; Cheng, Z.; Zhang, L.A.; Jia, L.F.; Dong, B.Y.; Zhang, B.H.; Wang, J.X.; Zhang, Y. Method of the out-of-band rejection improvement of the AlN based surface acoustic wave filters. Ultrasonics 2019, 91, 30–33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Li, G.; Zhu, Z. Development and Application of SAW Filter. Micromachines 2022, 13, 656. https://doi.org/10.3390/mi13050656
Chen P, Li G, Zhu Z. Development and Application of SAW Filter. Micromachines. 2022; 13(5):656. https://doi.org/10.3390/mi13050656
Chicago/Turabian StyleChen, Pu, Guangxi Li, and Zhiyuan Zhu. 2022. "Development and Application of SAW Filter" Micromachines 13, no. 5: 656. https://doi.org/10.3390/mi13050656