Reverse Hall–Petch Effect of Nano-Bainite in a High-Carbon Silicon-Containing Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Subsections on Microstructure
3.2. Mechanical Properties
4. Conclusions
- When the isothermal temperature was shortened from 60 min to 40 min, the beam bainite structures were refined and were all greater than 50 nm. The main mechanism of deformation was dislocation, and the tensile strength was increased from 1672 MPa to 1754 MPa, which was in line with the Hall–Petch effect.
- When the isothermal temperature is further shortened to 20 min, the beam bainite is refined to less than 50 nm scale. Different from the edge dislocation in conventional beam nanoribbons, a new defect structure exists in nanoribbons with a width of less than 50 nm, in which multiple adjacent half-atom surfaces are stacked in opposite directions within a few nanometers. The defect range includes saturated carbon atoms, and the tensile strength of silicon-containing high-carbon steel is reduced from 1754 MPa to 1667 MPa. This new type of defect results in the reverse Hall–Petch effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davenport, E.S.; Bain, E.C. Transformation of austenite at constant subcritical temperatures. Metall. Trans. 1970, 1, 3503–3530. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Design of novel high-strength bainitic steels. Mater. Sci. Forum. 2003, 426-432, 1337–1342. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Very strong low temperature bainite. Mater. Sci. Technol. 2002, 18, 279–284. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Acceleration of low-temperature bainite. ISIJ Int. 2003, 43, 1821–1825. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Development of hard bainite. ISIJ Int. 2003, 43, 1238–1243. [Google Scholar] [CrossRef]
- Lee, C.H.; Bhadeshia, H.K.D.H. Effect of plastic deformation on the formation of acicular ferrite. Mater. Sci. Eng. A 2003, 360, 249–257. [Google Scholar] [CrossRef]
- Matsuda, H.; Bhadeshia, H.K.D.H. Kinetics of the bainite transformation. Proc. R. Soc. Lond. A 2004, 460, 1707–1722. [Google Scholar] [CrossRef]
- Gupta, S.K.; Manna, R.; Chattopadhyay, K. Tribological behaviour of high-carbon carbide-free nanostructured bainitic steel. Bull. Mater. Sci. 2024, 47, 211. [Google Scholar] [CrossRef]
- Niu, W.Y.; Zhang, X.L.; Liang, J.W.; Shen, Y.F.; Xue, W.Y.; Li, J.P. Role of Nano-Bainite Laths and Nanosized Precipitates: Strengthening a Low-Alloy Steel to 1870 MPa. J. Mater. Res. Technol. 2024, 33, 2331–2342. [Google Scholar] [CrossRef]
- Sun, D.; Feng, X.; Zhang, P.; Sun, X.; Yang, Z.; Long, X.; Zhang, F. Effects of Two-Step Austempering Processes on the Wear Resistance and Fatigue Lifetime of High-Carbon Nanostructured Bainitic Steel. J. Mater. Res. Technol. 2024, 30, 4739–4749. [Google Scholar] [CrossRef]
- Dlouhy, J.; Podany, P.; Dzugan, J. Copper-Induced Strengthening in 0.2 C Bainite Steel. Materials 2021, 14, 1962. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, L.; Wang, Z. A model of hall-petch relationship in nanocrystalline materials. Nanostruct. Mater. 1993, 2, 653–661. [Google Scholar] [CrossRef]
- Conrad, H.; Narayan, J. Mechanism for grain size softening in nanocrystalline zn. Appl. Phys. Lett. 2002, 81, 2241–2243. [Google Scholar] [CrossRef]
- Sanders, P.G.; Eastman, J.A.; Weertman, J.R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 1997, 45, 4019–4025. [Google Scholar] [CrossRef]
- Schiøtz, J.; Di Tolla, F.D.; Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391, 561–563. [Google Scholar] [CrossRef]
- Schiøtz, J.; Jacobsen, K.W. A maximum in the strength of nanocrystalline copper. Science 2003, 301, 1357–1359. [Google Scholar] [CrossRef]
- Fan, S.; Hao, H.; Zhang, X. Effect of deep cryogenic treatment on the microstructure and wear resistance of a novel nanobainite steel. Steel Res. Int. 2021, 92, 2000554. [Google Scholar] [CrossRef]
- Oskouei, P.R.; Avishan, B. Thermal stability of microstructure and corresponding hardness variations in two high-carbon nanostructured bainitic steels. Mater. Today Commun. 2023, 37, 107153. [Google Scholar] [CrossRef]
- Bhadeshia, H.; Edmonds, D.V. The bainite transformation in a silicon steel. Metall. Trans. A 1979, 10, 895–907. [Google Scholar] [CrossRef]
- Cao, Z.H.; Meng, X.K. Inverse hall-petch effect of hardness in nanocrystalline ta films. Adv. Mater. Res. 2012, 378–379, 575–579. [Google Scholar] [CrossRef]
- Desai, T.G.; Millett, P.; Wolf, D. Is diffusion creep the cause for the inverse hall–petch effect in nanocrystalline materials? Mater. Sci. Eng. A 2008, 493, 41–47. [Google Scholar] [CrossRef]
- Padmanabhan, K.A.; Dinda, G.P.; Hahn, H.; Gleiter, H. Inverse hall–petch effect and grain boundary sliding controlled flow in nanocrystalline materials. Mater. Sci. Eng. A 2007, 452–453, 462–468. [Google Scholar] [CrossRef]
- Tejedor, R.; Edalati, K.; Benito, J.A.; Horita, Z.; Cabrera, J.M. High-pressure torsion of iron with various purity levels and validation of hall-petch strengthening mechanism. Mater. Sci. Eng. A 2019, 743, 597–605. [Google Scholar] [CrossRef]
- Vegge, T.; Di Tolla, F.D.; Jacobsen, K.W.; Schiøtz, J. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 1999, 60, 11971–11983. [Google Scholar]
- Caballero, F.G.; Miller, M.K.; Clarke, A.J.; Garcia-Mateo, C. Examination of carbon partitioning into austenite during tempering of bainite. Scr. Mater. 2010, 63, 442–445. [Google Scholar] [CrossRef]
- Hulme-Smith, C.N.; Peet, M.J.; Lonardelli, I.; Dippel, A.C.; Bhadeshia, H.K.D.H. Further evidence of tetragonality in bainitic ferrite. Mater. Sci. Technol. 2015, 31, 254–256. [Google Scholar] [CrossRef]
- Jang, J.H.; Bhadeshia, H.K.D.H.; Suh, D. Solubility of carbon in tetragonal ferrite in equilibrium with austenite. Scr. Mater. 2013, 68, 195–198. [Google Scholar] [CrossRef]
- Satoh, Y.; Yoshiie, T.; Matsukawa, Y.; Kiritani, M. Simulation of transmission electron microscopy images during tensile fracture of metal foils. Mater. Sci. Eng. A 2003, 350, 207–215. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Chen, Z.; Long, J.; Yang, T. Phase field crystal simulation of microscopic deformation mechanism of reverse Hall-Petch effect in nanocrystalline materials. Acta Phys. Sin. 2013, 62, 118102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Shao, Z.; Sun, M.; Cui, T.; Liu, Q.; Han, J. Reverse Hall–Petch Effect of Nano-Bainite in a High-Carbon Silicon-Containing Steel. Metals 2024, 14, 1225. https://doi.org/10.3390/met14111225
Zhang X, Shao Z, Sun M, Cui T, Liu Q, Han J. Reverse Hall–Petch Effect of Nano-Bainite in a High-Carbon Silicon-Containing Steel. Metals. 2024; 14(11):1225. https://doi.org/10.3390/met14111225
Chicago/Turabian StyleZhang, Xin, Zixuan Shao, Muqun Sun, Tianyu Cui, Qingsuo Liu, and Jian Han. 2024. "Reverse Hall–Petch Effect of Nano-Bainite in a High-Carbon Silicon-Containing Steel" Metals 14, no. 11: 1225. https://doi.org/10.3390/met14111225
APA StyleZhang, X., Shao, Z., Sun, M., Cui, T., Liu, Q., & Han, J. (2024). Reverse Hall–Petch Effect of Nano-Bainite in a High-Carbon Silicon-Containing Steel. Metals, 14(11), 1225. https://doi.org/10.3390/met14111225