Ceramic Conversion Treatment of Commercial Pure Titanium with a Pre-Deposited Vanadium Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Morphology Change
3.2. Oxidation Kinetics and Mass Gain after CCT
3.3. Surface Phase Constituent Change
3.4. Surface and Cross-Sectional Hardness
3.5. Friction and Wear
3.6. Wettability
4. Discussion
4.1. Oxidation Mechanism of Titanium with Vanadium
4.2. The Tribological Properties of Vanadium Enriched Oxide Layer
5. Conclusions
- A thin pre-deposited V layer brought about a significantly accelerated CCT of CPTi regarding the thickness of the oxide layer.
- Generally, rutile titanium dioxide was formed on the surface and vanadium assisted the growth of the rutile phase.
- CCT drastically increased the surface hardness, which was further reinforced after a long duration of 80 h. Longer treatment or higher temperatures created a deep hardened zone or oxygen diffusion zone.
- All CCTed samples had low wear, but the friction depended on the oxide layer quality and thickness. A dense and compact oxide layer with a suitable thickness was needed for better overall tribological properties.
- The oxide layer formed on the surface of titanium generally increased the contact angle, but vanadium in the oxide layer reduced the contact angles significantly and, therefore, improved the wettability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Liu, C.; Sun, H.; Liu, Y.; Liu, Z.; Zhang, D.; Zhao, G.; Wang, Q.; Yang, D. The progress in titanium alloys used as biomedical implants: From the view of reactive oxygen species. Front. Bioeng. Biotechnol. 2022, 10, 1092916. [Google Scholar] [CrossRef]
- Pushp, P.; Dasharath, S.M.; Arati, C. Classification and applications of titanium and its alloys. Mater. Today Proc. 2022, 54, 537–542. [Google Scholar] [CrossRef]
- Philip, J.T.; Mathew, J.; Kuriachen, B. Tribology of Ti6Al4V: A review. Friction 2019, 7, 497–536. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Chen, L.-Y.; Wang, L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Adv. Eng. Mater. 2020, 22, 1901258. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Dong, H.; Bell, T.; Xu, B.S. The effect of deep-case oxygen hardening on the tribological behaviour of a-C:H DLC coatings on Ti6Al4V alloy. J. Alloys Compd. 2008, 464, 519–525. [Google Scholar] [CrossRef]
- Guleryuz, H.; Cimenoglu, H. Surface modification of a Ti–6Al–4V alloy by thermal oxidation. Surf. Coat. Technol. 2005, 192, 164–170. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Tao, X.; Liu, K.; Burns, A.; Li, P.; Mukinay, T.; Li, X.; Dong, H. The exceptional oxidation of Ti6Al4V alloy with a pre-deposited silver layer. J. Alloys Compd. 2022, 901, 163574. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Li, X.; Alexander, J.; Dong, H. An enhanced ceramic conversion treatment of Ti6Al4V alloy surface by a pre-deposited thin gold layer. J. Alloys Compd. 2020, 844, 155867. [Google Scholar] [CrossRef]
- Senopati, G.; Rahman Rashid, R.A.; Kartika, I.; Palanisamy, S. Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals 2023, 13, 194. [Google Scholar] [CrossRef]
- Uwanyuze, R.S.; Alpay, S.P.; Schafföner, S.; Sahoo, S. A first principles analysis of oxidation in titanium alloys with aluminum and vanadium. Surf. Sci. 2022, 719, 122026. [Google Scholar] [CrossRef]
- Takahashi, T.; Minamino, Y.; Hirasawa, H.; Ouchi, T. High-Temperature Oxidation and Its Kinetics Study of Ti–Al and Ti–V Alloys in Air. Mater. Trans. 2014, 55, 290–297. [Google Scholar] [CrossRef]
- Lu, J.; Huang, T.; Liu, Z.; Zhang, X.; Xiao, R. Long-term wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments. Appl. Surf. Sci. 2018, 459, 257–262. [Google Scholar] [CrossRef]
- Kofstad, P. High-temperature oxidation of titanium. J. Less Common Met. 1967, 12, 449–464. [Google Scholar] [CrossRef]
- Du, H.L.; Datta, P.K.; Lewis, D.B.; Burnell-Gray, J.S. Air oxidation behaviour of Ti6Al4V alloy between 650 and 850°. Corros. Sci. 1994, 36, 631–642. [Google Scholar] [CrossRef]
- Salomonsen, G.; Norman, N.; Lønsjø, O.; Finstad, T.G. Kinetics and mechanism of oxide formation on titanium, vanadium and chromium thin films. J. Less Common Met. 1990, 158, 251–265. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Li, X.; Dong, H. Impact of the Amount of the Gold Layer on the Tribological Performance of the Ceramic Conversion Treated CP-Titanium. Tribol. Lett. 2023, 71, 36. [Google Scholar] [CrossRef]
- Bakulin, A.V.; Chumakova, L.S.; Kulkova, S.E. Study of the Diffusion Properties of Oxygen in TiO2. J. Exp. Theor. Phys. 2021, 133, 169–174. [Google Scholar] [CrossRef]
- Vaché, N.; Cadoret, Y.; Dod, B.; Monceau, D. Modeling the oxidation kinetics of titanium alloys: Review, method and application to Ti-64 and Ti-6242s alloys. Corros. Sci. 2021, 178, 109041. [Google Scholar] [CrossRef]
- Estupinán-López, F.; Orquiz-Muela, C.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Bautista-Margulis, R.G.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Almeraya-Calderón, F.; Lopes, A.J. Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing. Materials 2023, 16, 1187. [Google Scholar] [CrossRef]
- Fernandes, F.; Morgiel, J.; Polcar, T.; Cavaleiro, A. Oxidation and diffusion processes during annealing of TiSi(V)N films. Surf. Coat. Technol. 2015, 275, 120–126. [Google Scholar] [CrossRef]
- Gemelli, E.; Camargo, N.H.A. Oxidation kinetics of commercially pure titanium. Matéria 2007, 12, 525–531. [Google Scholar] [CrossRef]
- Depero, L.E.; Bonzi, P.; Zocchi, M.; Casale, C.; De Michele, G. Study of the anatase-rutile transformation in TiO2 powders obtained by laser-induced synthesis. J. Mater. Res. 1993, 8, 2709–2715. [Google Scholar] [CrossRef]
- Mungole, M.N.; Singh, N.; Mathur, G.N. Oxidation behaviour of Ti6Al4V titanium alloy in oxygen. Mater. Sci. Technol. 2002, 18, 111–114. [Google Scholar] [CrossRef]
- Su, J.; Xie, H.; Tan, C.; Xu, Z.; Liu, J.; Jiang, F.; Tang, J.; Fu, D.; Zhang, H.; Teng, J. Microstructural characteristics and tribological behavior of an additively manufactured Ti-6Al-4V alloy under direct aging and solution-aging treatments. Tribol. Int. 2022, 175, 107763. [Google Scholar] [CrossRef]
- Khan, I. Improving the Cytocompatibility and Infection, Wear and Corrosion Resistances of Commercially Pure Titanium by Laser Micropatterning and Ceramic Conversion Treatment. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2020. [Google Scholar]
- Ilie, F.; Ipate, G.; Manaila, F.C. Tribological Properties Study of Solid Lubrication with TiO2 Powder Particles. Materials 2022, 15, 7145. [Google Scholar] [CrossRef]
- Huang, J.; Cai, L.; Zhang, W.; Zhang, L.; Jiang, B.; Kong, L. Influence of surface structure/wettability on tribological properties of titanium. Tribol. Int. 2022, 174, 107747. [Google Scholar] [CrossRef]
- Borruto, A.; Crivellone, G.; Marani, F. Influence of surface wettability on friction and wear tests. Wear 1998, 222, 57–65. [Google Scholar] [CrossRef]
- Acar, M.T.; Kovacı, H.; Çelik, A. Enhancement of the tribological performance and surface wettability of Ti6Al4V biomedical alloy with boric/sulfuric acid anodic film. Surf. Topogr. Metrol. Prop. 2021, 9, 035024. [Google Scholar] [CrossRef]
- Jia, D.; Zhang, Y.; Li, C.; Yang, M.; Gao, T.; Said, Z.; Sharma, S. Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol. Int. 2022, 169, 107461. [Google Scholar] [CrossRef]
Calculated V Layer Thickness (μm) | Before CCT (g) | After CCT (g) | Mass Gain (mg) | |
---|---|---|---|---|
C-620/8 | - | 10.5438 | 10.5469 | 3.1 |
C-V620/8 | 0.065 | 10.2450 | 10.2515 | 6.5 |
C-620/80 | - | 10.3976 | 10.4072 | 9.6 |
C-V620/80 | 0.101 | 10.3504 | 10.3648 | 14.4 |
C-660/8 | - | 10.2636 | 10.2693 | 5.7 |
C-V660/8 | 0.097 | 10.5205 | 10.5294 | 8.9 |
Sample | at % | Ti | O | V | W | C |
---|---|---|---|---|---|---|
C-660/8 | 1 | 61.11 | 36.79 | - | 0.03 | 2.07 |
2 | 33.39 | 66.61 | - | |||
C-V660/8 | 1 | 71.37 | 25.63 | 0.08 | 0.02 | 2.90 |
2 | 66.53 | 30.03 | 0.29 | 0.05 | 3.10 | |
3 | 31.27 | 66.96 | 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Deng, R.; Dong, H. Ceramic Conversion Treatment of Commercial Pure Titanium with a Pre-Deposited Vanadium Layer. Metals 2023, 13, 1859. https://doi.org/10.3390/met13111859
Zhang Z, Deng R, Dong H. Ceramic Conversion Treatment of Commercial Pure Titanium with a Pre-Deposited Vanadium Layer. Metals. 2023; 13(11):1859. https://doi.org/10.3390/met13111859
Chicago/Turabian StyleZhang, Zhenxue, Rui Deng, and Hanshan Dong. 2023. "Ceramic Conversion Treatment of Commercial Pure Titanium with a Pre-Deposited Vanadium Layer" Metals 13, no. 11: 1859. https://doi.org/10.3390/met13111859