Evaluating the Stress State and the Load-Bearing Fraction as Predicted by an In Vivo Parameter Identification Method for the Abdominal Aorta
Abstract
:1. Introduction
2. Material and Methods
2.1. Mechanical Models for Arteries
2.1.1. General Continuum Model
Kinematics
Constitutive Model
Equilibrium and Boundary Conditions
2.1.2. Constitutive Membrane Model
2.1.3. Load-Bearing Fractions
2.2. Testing Procedure and Material
2.3. Statistics
2.4. Software
3. Results
4. Discussion
- (1)
- For an in silico aorta exhibiting a physiological transmural stress gradient, the constitutive membrane model’s total stress, as well as its isotropic and anisotropic components in the circumferential direction, are well predicted. In the axial direction, the prediction capability is good, although the lack of information regarding the axial loading condition in the in vivo measurements sets a limit for the accuracy.
- (2)
- The accuracy of the predicted stress state in both the circumferential and axial directions deteriorate with increasing transmural stress gradient. This is explained by the assumption of a thin vascular wall in the in vivo parameter identification method.
- (3)
- The load-bearing fraction attributed to collagen is well predicted for all blood pressure levels, particularly in the circumferential direction, and is independent of the transmural stress gradient.
- (4)
- The results for the load-bearing fraction attributed to collagen in the circumferential direction, compared with previously published data from in vivo human abdominal aorta, demonstrate similar behavior with respect to pressure and are of equal magnitude. However, in vivo measurements are somewhat higher. This discrepancy may, in part, be explained by the variation in age of the reference (in vivo) population, which, ranges from young to elderly males as well as females.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Implication on Constant Strain Hypothesis on Opening Angle
References
- Burton, A.C. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 1954, 34, 619–642. [Google Scholar] [CrossRef] [PubMed]
- Dobrin, P.B. Mechanical properties of arteries. Physiol. Rev. 1978, 58, 397–460. [Google Scholar] [CrossRef] [PubMed]
- Fillinger, M.F.; Marra, S.P.; Raghavan, M.; Kennedy, F.E. Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter. J. Vasc. Surg. 2003, 37, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.C. What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 1991, 19, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.C.; Liu, S.Q. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 1989, 65, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Hayashi, K. Stress and strain distribution in hypertensive and normotensive rat aorta considering residual strain. J. Biomech. Eng. 1996, 118, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.H.; Jensen, R.E.; Parnell, J. Mechanical properties of arteries in vivo. Circ. Res. 1960, 8, 622–639. [Google Scholar] [CrossRef]
- Kawasaki, T.; Sasayama, S.; Yagi, S.-I.; Asakawa, T.; Hirai, T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc. Res. 1987, 21, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, J.C.; Hill, A.V. The velocity of the pulse wave in man. Proc. R. Soc. Lond. Ser. B Contain. Pap. A Biol. Character 1922, 93, 298–306. Available online: http://www.jstor.org/stable/81045 (accessed on 30 June 2023).
- Masson, I.; Boutouyrie, P.; Laurent, S.; Humphrey, J.D.; Zidi, M. Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 2008, 41, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Bauer, C.; Holzapfel, G. Determination of constitutive equations for human arteries from clinical data. J. Biomech. 2003, 36, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Smoljkić, M.; Sloten, J.V.; Segers, P.; Famaey, N. Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue. Biomech. Model. Mechanobiol. 2015, 14, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Stålhand, J. Determination of human arterial wall parameters from clinical data. Biomech. Model. Mechanobiol. 2008, 8, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Stålhand, J.; Klarbring, A. Aorta in vivo parameter identification using an axial force constraint. Biomech. Model. Mechanobiol. 2005, 3, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Stålhand, J.; Klarbring, A.; Karlsson, M. Towards in vivo aorta material identification and stress estimation. Biomech. Model. Mechanobiol. 2004, 2, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Wittek, A.; Derwich, W.; Karatolios, K.; Fritzen, C.P.; Vogt, S.; Schmitz-Rixen, T.; Blase, C. A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4d ultrasound strain imaging. J. Mech. Behav. Biomed. Mater. 2016, 58, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Reesink, K.D.; Spronck, B. Constitutive interpretation of arterial stiffness in clinical studies: A methodological review. Am. J. Physiol. Circ. Physiol. 2019, 316, H693–H709. [Google Scholar] [CrossRef] [PubMed]
- Gade, J.-L.; Stålhand, J.; Thore, C.-J. An in vivo parameter identification method for arteries: Numerical validation for the human abdominal aorta. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 426–441. [Google Scholar] [CrossRef] [PubMed]
- Fridez, P.; Makino, A.; Kakoi, D.; Miyazaki, H.; Meister, J.-J.; Hayashi, K.; Stergiopulos, N. Adaptation of conduit artery vascular smooth muscle tone to induced hypertension. Ann. Biomed. Eng. 2002, 30, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.J.; Baek, S.; Humphrey, J.D. Stress-strain behavior of the passive basilar artery in normotension and hypertension. J. Biomech. 2007, 40, 2559–2563. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.M.; Owens, G.K.; Kassell, N.F.; Hongo, K. Mechanism of enlargement of major cerebral collateral arteries in rabbits. Stroke 1991, 22, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Wiener, J.; Loud, A.; Giacomelli, F.; Anversa, P. Morphometric analysis of hypertension-induced hypertrophy of rat thoracic aorta. Am. J. Pathol. 1977, 88, 619–633. [Google Scholar] [PubMed]
- Chuong, C.J.; Fung, Y.C. On residual stresses in arteries. J. Biomech. Eng. 1986, 108, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, J.D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs; Springer: New York, NY, USA, 2002. [Google Scholar]
- Chuong, C.J.; Fung, Y.C. Three-dimensional stress distribution in arteries. J. Biomech. Eng. 1983, 105, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, G.A.; Gasser, T.C.; Ogden, R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 2000, 61, 1–48. [Google Scholar] [CrossRef]
- Treloar, L.R.G. The elasticity of a network of long-chain molecules. I. Trans. Faraday Soc. 1943, 39, 36–41. [Google Scholar] [CrossRef]
- Horný, L.; Netušil, M.; Daniel, M. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta. J. Mech. Behav. Biomed. Mater. 2014, 38, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, M.R.; Gerson, E.R.; Veinot, J.P.; Beller, C.J. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress. J. Mech. Behav. Biomed. Mater. 2013, 17, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Åstrand, H.; Stålhand, J.; Karlsson, J.; Karlsson, M.; Sonesson, B.; Länne, T.; Skoog, J.; Lindenberger, M.; Ekman, M.; Holmberg, B.; et al. In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: Effect of age and sex. J. Appl. Physiol. 2011, 110, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Takamizawa, K.; Hayashi, K. Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech. 1987, 20, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Kvalseth, T.O. Cautionary note about r2. Am. Stat. 1985, 39, 279–285. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. Available online: http://www.jstor.org/stable/2236101 (accessed on 1 July 2023). [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press LLC: Boca Raton, FL, USA, 1990. [Google Scholar]
- Higgins, J.P.T.; Li, T.; Deeks, J.J. Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: London, UK, 2022; Chapter 6. [Google Scholar]
- Langille, B.L.; O’Donnell, F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 1986, 231, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Fung, Y.C. Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. J. Biomech. Eng. 1989, 111, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, J.A.G. Architecture of the vessel wall. Compr. Physiol. 2014, 1–31. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Sommer, G.; Auer, M.; Regitnig, P.; Ogden, R.W. Layer-specific 3d residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 2007, 35, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Taber, L.A.; Humphrey, J.D. Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 2001, 123, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Allemang, R.J. The modal assurance criterion—Twenty years of use and abuse. Sound Vib. 2003, 37, 14–23. [Google Scholar]
- Hu, J.-J.; Fossum, T.W.; Miller, M.W.; Xu, H.; Liu, J.-C.; Humphrey, J.D. Biomechanics of the porcine basilar artery in hypertension. Ann. Biomed. Eng. 2006, 35, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Choke, E.; Cockerill, G.; Wilson, W.; Sayed, S.; Dawson, J.; Loftus, I.; Thompson, M. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 2005, 30, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.C. Biomechanics: Motion, Flow, Stress, and Growth; Springer: New York, NY, USA, 1990. [Google Scholar]
- Humphrey, J.D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 2008, 50, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Rachev, A.; Stergiopulos, N.; Meister, J.-J. A model for geometric and mechanical adaptation of arteries to sustained hypertension. J. Biomech. Eng. 1998, 120, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Taber, L.A. A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 1998, 120, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Gundiah, N.; Ratcliffe, M.B.; Pruitt, L.A. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. J. Biomech. 2006, 40, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Gundiah, N.; Ratcliffe, M.B.; Pruitt, L.A. The biomechanics of arterial elastin. J. Mech. Behav. Biomed. Mater. 2009, 2, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Schriefl, A.J.; Schmidt, T.; Balzani, D.; Sommer, G.; Holzapfel, G.A. Selective enzymatic removal of elastin and collagen from human abdominal aortas: Uniaxial mechanical response and constitutive modeling. Acta Biomater. 2015, 17, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Laksari, K.; Shahmirzadi, D.; Acosta, C.J.; Konofagou, E. Energy-based constitutive modelling of local material properties of canine aortas. R. Soc. Open Sci. 2016, 3, 160365. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.W.; O’Rourke, M.F. Mcdonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles; Hodder Arnold: London, UK, 2005. [Google Scholar]
- Glagov, S.; Zarins, C.K.; Masawa, N.; Xu, C.P.; Bassiouny, H.; Giddens, D.P. Mechanical functional role of non-atherosclerotic intimal thickening. Front. Med. Biol. Eng. 1993, 5, 37–43. [Google Scholar] [PubMed]
- Tsamis, A.; Krawiec, J.T.; Vorp, D.A. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. J. R. Soc. Interface 2013, 10, 20121004. [Google Scholar] [CrossRef] [PubMed]
- Gade, J.-L.; Thore, C.-J.; Stålhand, J. Identification of mechanical properties of arteries with certification of global optimality. J. Glob. Optim. 2022, 82, 195–217. [Google Scholar] [CrossRef]
- Gade, J.-L.; Thore, C.-J.; Sonesson, B.; Stålhand, J. In vivo parameter identification in arteries considering multiple levels of smooth muscle activity. Biomech. Model. Mechanobiol. 2021, 20, 1547–1559. [Google Scholar] [CrossRef] [PubMed]
- Ogden, R.W.; Saccomandi, G.; Sgura, I. Fitting hyperelastic models to experimental data. Comput. Mech. 2004, 34, 484–502. [Google Scholar] [CrossRef]
- Fischer, J.; Turčanová, M.; Man, V.; Hermanová, M.; Bednařík, Z.; Burša, J. Importance of experimental evaluation of structural parameters for constitutive modelling of aorta. J. Mech. Behav. Biomed. Mater. 2022, 138, 105615. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, F.; Polzer, S.; Slažanský, M.; Man, V.; Skácel, P. Predictive capabilities of various constitutive models for arterial tissue. J. Mech. Behav. Biomed. Mater. 2018, 78, 369–380. [Google Scholar] [CrossRef]
Labrosse | Horný | Gade | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Set | [mm] | [mm] | [deg] | [kPa] | [kPa] | [-] | [deg] | [-] | [N] | |
hg-sets | 1 (F49) | 5.9 | 1.51 | 252.00 | 2.31 | 20.06 | 4.11 | 39.95 | 1.1699 | 0.57 |
2 (M60) | 6.3 | 1.69 | 156.00 | 5.91 | 17.57 | 3.18 | 43.16 | 1.1217 | 0.83 | |
3 (M61b) | 7.3 | 1.62 | 335.00 | 6.98 | 11.37 | 8.05 | 41.95 | 1.1039 | 0.67 | |
4 (M66) | 7.2 | 1.78 | 253.00 | 17.78 | 25.72 | 7.65 | 38.85 | 1.1385 | 1.49 | |
5 (M70a) | 7.1 | 1.23 | 208.00 | 2.78 | 67.45 | 7.02 | 35.49 | 1.1908 | 0.60 | |
6 (M70b) | 7.4 | 1.64 | 201.00 | 12.18 | 17.31 | 22.86 | 39.69 | 1.0582 | 0.52 | |
lc-sets | 7 (F50) | 6.7 | 1.14 | 323.00 | 0.68 | 49.54 | 7.44 | 36.67 | 1.1791 | 0.41 |
8 (F65) | 6.2 | 1.21 | 248.00 | 0.05 | 9.06 | 5.87 | 39.36 | 1.1932 | 0.36 | |
9 (M57) | 7.5 | 1.28 | 322.00 | 0.05 | 4.37 | 4.87 | 41.11 | 1.2080 | 0.55 | |
10 (M61a) | 7.7 | 1.22 | 270.00 | 0.05 | 49.45 | 26.74 | 37.55 | 1.0836 | 0.25 | |
11 (M67a) | 8.0 | 1.58 | 118.00 | 0.05 | 41.95 | 22.00 | 38.18 | 1.0666 | 0.34 | |
12 (M67b) | 7.9 | 1.26 | 174.00 | 0.05 | 61.02 | 7.02 | 35.49 | 1.1984 | 0.56 | |
13 (M71) | 10.0 | 1.72 | 118.00 | 0.05 | 94.49 | 9.26 | 37.65 | 1.0964 | 0.84 | |
14 (M77) | 7.0 | 1.50 | 135.00 | 0.05 | 26.65 | 39.30 | 38.23 | 1.0500 | 0.19 | |
cs-sets | 15 (F63) | 5.4 | 0.96 | 96.00 | 13.59 | 41.78 | 3.29 | 39.86 | 1.1594 | 0.74 |
16 (M38) | 5.3 | 1.22 | 117.00 | 12.20 | 19.28 | 3.22 | 41.60 | 1.1576 | 0.74 | |
17 | 10.1 | 2.81 | 46.19 | 32.68 | 7.44 | 47.90 | 40.02 | 1.0210 | 0.65 | |
18 | 14.9 | 2.81 | 52.23 | 67.39 | 22.53 | 11.79 | 47.47 | 1.0489 | 5.95 | |
19 | 5.3 | 1.41 | 20.98 | 75.91 | 71.16 | 67.08 | 37.06 | 1.0422 | 1.03 | |
20 | 3.9 | 0.68 | 28.81 | 90.87 | 64.35 | 38.12 | 39.33 | 1.0281 | 0.29 | |
21 | 12.3 | 3.54 | 81.75 | 28.89 | 21.33 | 3.29 | 53.24 | 1.0372 | 3.18 |
Set | [mm] | [kPa] | [kPa] | [-] | [deg] | [-] | [N] | |
---|---|---|---|---|---|---|---|---|
hg-sets | 1 (F49) | 6.3 | 3.53 | 21.38 | 4.24 | 31.25 | 1.3675 | 0.85 |
2 (M60) | 6.6 | 6.84 | 16.70 | 2.92 | 38.63 | 1.1948 | 1.13 | |
3 (M61b) | 7.7 | 7.88 | 16.69 | 10.23 | 32.94 | 1.2400 | 1.20 | |
4 (M66) | 7.0 | 16.85 | 33.98 | 8.47 | 37.11 | 1.0918 | 1.13 | |
5 (M70a) | 7.3 | 4.04 | 67.00 | 6.82 | 29.74 | 1.3412 | 1.86 | |
6 (M70b) | 7.7 | 11.69 | 25.54 | 24.08 | 32.67 | 1.1644 | 1.17 | |
lc-sets | 7 (F50) | 7.2 | 2.15 | 53.94 | 8.27 | 23.21 | 1.6869 | 0.77 |
8 (F65) | 6.7 | 0.32 | 10.84 | 6.25 | 9.56 | 4.3363 | 0.84 | |
9 (M57) | 8.8 | 0.39 | 7.93 | 6.59 | 9.67 | 4.3654 | 1.26 | |
10 (M61a) | 7.2 | 0.19 | 75.80 | 32.36 | 6.01 | 5.8890 | 0.98 | |
11 (M67a) | 7.5 | 0.18 | 46.77 | 20.74 | 6.46 | 5.5922 | 1.27 | |
12 (M67b) | 7.9 | 0.18 | 57.97 | 6.51 | 7.85 | 4.9535 | 1.05 | |
13 (M71) | 9.9 | 0.16 | 87.93 | 8.39 | 7.08 | 5.2656 | 1.80 | |
14 (M77) | 6.0 | 0.29 | 5.93 | 22.21 | 8.08 | 4.6043 | 1.00 | |
cs-sets | 15 (F63) | 5.2 | 13.64 | 41.97 | 3.25 | 41.43 | 1.0918 | 0.58 |
16 (M38) | 5.2 | 12.26 | 19.55 | 3.09 | 41.44 | 1.1272 | 0.69 | |
17 | 10.3 | 35.33 | 6.42 | 43.22 | 35.87 | 1.0519 | 2.58 | |
18 | 14.8 | 66.37 | 21.16 | 10.46 | 45.55 | 1.0290 | 4.46 | |
19 | 5.3 | 74.78 | 61.92 | 57.51 | 33.51 | 1.0211 | 0.62 | |
20 | 3.9 | 91.05 | 57.02 | 33.92 | 36.71 | 1.0215 | 0.27 | |
21 | 12.4 | 29.58 | 17.53 | 2.90 | 51.18 | 1.0457 | 4.57 | |
Clinic * | 7.12 | 102.70 | 8.35 | 150.65 | 42.35 | 1.042 | - |
CIRCUMFERENTIAL DIRECTION | |||||||||
---|---|---|---|---|---|---|---|---|---|
Set | [kPa] | [-] | [kPa] | [-] | [kPa] | [-] | [-] | [-] | |
hg-sets | 1 (F49) | 2.42 | 0.88 | 30.44 | 0.81 | 44.65 | 0.58 | −0.033 | 0.87 |
2 (M60) | 1.42 | 1.0 | 2.46 | 1.0 | 12.80 | 0.99 | −0.015 | 1.0 | |
3 (M61b) | 0.14 | 1.0 | 75.82 | 0 | 90.23 | 0 | −0.015 | 1.0 | |
4 (M66) | −0.44 | 1.0 | 29.99 | 0.46 | 42.44 | 0.18 | −0.016 | 1.0 | |
5 (M70a) | 2.56 | 0.86 | 15.13 | 0.98 | 28.05 | 0.94 | −0.03 | 0.85 | |
6 (M70b) | −3.93 | 0.99 | 50.54 | 0 | 62.39 | 0 | 0.025 | 1.0 | |
median first quartile third quartile | 0.78 −0.30 2.17 | 1.0 0.91 1.0 | 30.22 18.85 45.52 | 0.64 0.12 0.94 | 43.54 31.65 57.95 | 0.38 0.05 0.85 | −0.016 −0.026 −0.015 | 1.0 0.90 1.0 | |
lc-sets | 7 (F50) | 2.79 | 0 | 52.98 | 0.44 | 68.43 | 0 | −0.042 | 0 |
8 (F65) | 0.52 | 0 | 51.51 | 0.73 | 64.81 | 0.52 | −0.005 | 0 | |
9 (M57) | 0.67 | 0 | 103.36 | 0 | 117.84 | 0 | −0.005 | 0 | |
10 (M61a) | 0.19 | 0 | 80.44 | 0 | 95.29 | 0 | −0.007 | 0 | |
11 (M67a) | 0.18 | 0 | 10.92 | 0.99 | 22.09 | 0.95 | −0.006 | 0 | |
12 (M67b) | 0.20 | 0 | 9.65 | 1.0 | 20.21 | 0.98 | −0.001 | 0.23 | |
13 (M71) | 0.15 | 0 | 2.26 | 1.0 | 11.95 | 0.99 | −0.002 | 0 | |
14 (M77) | 0.42 | 0 | 35.68 | 0.67 | 49.37 | 0.11 | −0.01 | 0 | |
median first quartile third quartile | 0.31 0.18 0.56 | 0 * 0 0 | 43.59 10.60 59.84 | 0.70 0.33 0.99 | 57.09 21.62 75.14 | 0.32 0 0.96 | −0.006 −0.008 −0.004 | 0 * 0 0 | |
cs-sets | 15 (F63) | 3.28 | 0.99 | −2.77 | 1.0 | 7.91 | 1.0 | −0.025 | 1.0 |
16 (M38) | 1.40 | 1.0 | −1.15 | 1.0 | 8.27 | 1.0 | −0.013 | 1.0 | |
17 | 3.74 | 1.0 | −0.85 | 1.0 | 8.04 | 0.99 | −0.013 | 1.0 | |
18 | 0.99 | 1.0 | −0.54 | 1.0 | 8.03 | 1.0 | −0.003 | 1.0 | |
19 | 1.25 | 1.0 | −0.73 | 1.0 | 8.02 | 0.99 | −0.004 | 1.0 | |
20 | 1.99 | 1.0 | −0.66 | 1.0 | 8.01 | 1.0 | −0.003 | 1.0 | |
21 | 1.49 | 1.0 | −0.78 | 1.0 | 8.11 | 1.0 | −0.006 | 1.0 | |
median first quartile third quartile | 1.48 1.32 2.64 | 1.0 1.0 1.0 | −0.78 * −1 −0.70 | 1.0 * 1.0 1.0 | 8.03 * 8.01 8.07 | 0.32 * 0 0.96 | −0.006 −0.01 −0.004 | 1.0 1.0 1.0 |
AXIAL DIRECTION | |||||||||
---|---|---|---|---|---|---|---|---|---|
Set | [kPa] | [-] | [kPa] | [-] | [kPa] | [-] | [-] | [-] | |
hg-sets | 1 (F49) | 6.89 | - | 5.41 | 0.96 | 24.09 | 0.66 | 0.144 | 0.2 |
2 (M60) | 4.66 | - | −6.12 | 0.99 | 7.47 | 1.0 | 0.083 | 0.95 | |
3 (M61b) | 7.22 | - | 29.51 | 0 | 51.00 | 0 | 0.129 | 0.94 | |
4 (M66) | −5.91 | - | 7.42 | 0.86 | 14.37 | 0.11 | 0.017 | 1.0 | |
5 (M70a) | 6.86 | - | −1.93 | 1.0 | 15.79 | 0.96 | 0.121 | 0.51 | |
6 (M70b) | 4.44 | - | 17.67 | 0.28 | 37.89 | 0 | 0.08 | 1.0 | |
median first quartile third quartile | 5.76 4.49 6.88 | - - - | 6.42 −0.09 15.11 | 0.91 0.42 0.98 | 19.94 14.73 34.44 | 0.38 0.03 0.88 | 0.10 0.08 0.13 | 0.94 0.62 0.99 | |
lc-sets | 7 (F50) | 10.34 | - | 15.75 | 0.80 | 38.75 | 0.06 | 0.198 | 0 |
8 (F65) | 11.88 | - | 15.49 | 0.90 | 40.15 | 0.59 | 0.189 | 0 | |
9 (M57) | 14.66 | - | 40.35 | 0.39 | 68.82 | 0 | 0.181 | 0 | |
10 (M61a) | 12.75 | - | 31.10 | 0 | 58.51 | 0 | 0.256 | 0 | |
11 (M67a) | 11.41 | - | −2.81 | 1.0 | 19.59 | 0.97 | 0.255 | 0 | |
12 (M67b) | 8.77 | - | −3.83 | 1.0 | 15.30 | 0.99 | 0.149 | 0 | |
13 (M71) | 8.89 | - | −6.90 | 0.99 | 11.53 | 1.0 | 0.177 | 0 | |
14 (M77) | 12.01 | - | 9.34 | 0.90 | 34.63 | 0 | 0.299 | 0 | |
median first quartile third quartile | 11.64 * 9.98 12.20 | - - - | 12.42 −3.06 19.59 | 0.90 0.70 0.99 | 36.69 8.52 44.74 | 0.32 0 0.98 | 0.19 0.18 0.26 | 0 * 0 0 | |
cs-sets | 15 (F63) | −4.02 | - | −8.41 | 0.99 | −5.06 | 1.0 | −0.004 | 1.0 |
16 (M38) | −1.52 | - | −7.16 | 0.99 | −0.81 | 1.0 | 0.015 | 1.0 | |
17 | 10.04 | - | −5.16 | 0.97 | 9.80 | 1.0 | 0.066 | 0.96 | |
18 | −7.72 | - | −5.38 | 0.97 | −5.64 | 1.0 | 0.020 | 0.99 | |
19 | −8.96 | - | −5.94 | 0.93 | −7.91 | 1.0 | 0.025 | 0.96 | |
20 | −2.08 | - | −5.85 | 0.97 | −1.44 | 1.0 | 0.023 | 0.98 | |
21 | 2.54 | - | −5.16 | 0.99 | 4.67 | 1.0 | 0.041 | 1.0 | |
median first quartile third quartile | −2.08 −5.87 0.51 | - - - | −5.85 −6.55 −5.27 | 0.97 0.97 0.99 | −1.44 * −5.35 1.93 | 1.0 * 1.0 1.0 | 0.023 0.018 0.033 | 0.99 0.97 1.0 |
Reaction Stress p | |||
---|---|---|---|
Set | [kPa] | [-] | |
hg-sets | 1 (F49) | −11.78 | 0 |
2 (M60) | −8.93 | 0 | |
3 (M61b) | −14.27 | 0 | |
4 (M66) | −12.87 | 0 | |
5 (M70a) | −10.36 | 0 | |
6 (M70b) | −15.78 | 0 | |
median first quartile third quartile | −12.33 −13.92 −10.72 | 0 0 0 | |
lc-sets | 7 (F50) | −12.66 | 0 |
8 (F65) | −12.79 | 0 | |
9 (M57) | −13.81 | 0 | |
10 (M61a) | −14.67 | 0 | |
11 (M67a) | −10.99 | 0 | |
12 (M67b) | −10.36 | 0 | |
13 (M71) | −9.54 | 0 | |
14 (M77) | −13.28 | 0 | |
median first quartile third quartile | −12.72 −13.41 −10.83 | 0 0 0 | |
cs-sets | 15 (F63) | −7.39 | 0 |
16 (M38) | −8.03 | 0 | |
17 | −4.88 | 0 | |
18 | −7.46 | 0.95 | |
19 | −7.02 | 0.51 | |
20 | −6.53 | 0.83 | |
21 | −7.13 | 0.84 | |
median first quartile third quartile | −7.02 −7.13 −6.52 | 0.21 0 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlsson, J.; Gade, J.-L.; Thore, C.-J.; Carlhäll, C.-J.; Engvall, J.; Stålhand, J. Evaluating the Stress State and the Load-Bearing Fraction as Predicted by an In Vivo Parameter Identification Method for the Abdominal Aorta. Med. Sci. 2025, 13, 9. https://doi.org/10.3390/medsci13010009
Karlsson J, Gade J-L, Thore C-J, Carlhäll C-J, Engvall J, Stålhand J. Evaluating the Stress State and the Load-Bearing Fraction as Predicted by an In Vivo Parameter Identification Method for the Abdominal Aorta. Medical Sciences. 2025; 13(1):9. https://doi.org/10.3390/medsci13010009
Chicago/Turabian StyleKarlsson, Jerker, Jan-Lucas Gade, Carl-Johan Thore, Carl-Johan Carlhäll, Jan Engvall, and Jonas Stålhand. 2025. "Evaluating the Stress State and the Load-Bearing Fraction as Predicted by an In Vivo Parameter Identification Method for the Abdominal Aorta" Medical Sciences 13, no. 1: 9. https://doi.org/10.3390/medsci13010009
APA StyleKarlsson, J., Gade, J.-L., Thore, C.-J., Carlhäll, C.-J., Engvall, J., & Stålhand, J. (2025). Evaluating the Stress State and the Load-Bearing Fraction as Predicted by an In Vivo Parameter Identification Method for the Abdominal Aorta. Medical Sciences, 13(1), 9. https://doi.org/10.3390/medsci13010009