Identification of A Novel Antibacterial Peptide from Atlantic Mackerel belonging to the GAPDH-Related Antimicrobial Family and Its In Vitro Digestibility
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of the Generated Hydrolysate
2.2. Identification of Antibacterial Peptides
2.2.1. Screening for Antibacterial Activity of Whole Mackerel Hydrolysate and Solid Phase Extraction (Spe) Fractions
2.2.2. Purification Process
2.2.3. Characterization of Antibacterial Peptides
2.3. MIC and Gastrointestinal Digestibility of the Synthetic GAPDH-Related Derived Peptide (1: AMGAP)
2.3.1. MIC
2.3.2. Digestibility of the Synthetic GAPDH-Related Derived Peptide (AMGAP) under Dynamic Gastrointestinal Conditions
3. Discussion
4. Materials and Methods
4.1. Mackerel Hydrolysate
4.1.1. Hydrolysate Process
4.1.2. Chemical Composition
4.1.3. Amino Acid Composition
4.1.4. Molecular Weight Distribution of the Hydrolysate
4.2. Identification of Antibacterial Peptide from the Mackerel Hydrolysate
4.2.1. Microbial Strains and Culture Conditions
4.2.2. Antibacterial Activity
4.3. Purification
4.3.1. Solid Phase Extraction
4.3.2. Liquid Chromatography
4.4. Structural Identification of Antibacterial Peptide
4.4.1. LC-MS/MS Analysis
4.4.2. Database Searching
4.4.3. Criteria for Protein Identification
4.5. Digestibility of Antibacterial Peptide
4.5.1. Digestion and Sampling
4.5.2. Analysis of the GAPDH-Related Derived Peptide Degradation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Contributing to Food Security and Nutrition for All. In The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2016; ISBN 978-92-5-109185-2. [Google Scholar]
- Ryan, S.M.; Livingstone, S.T.; Barry, J.P.; Williams, P.J.; Wyeth, R.C. Laboratory comparison of American lobster, Homarus americanus, foraging responses to invasive green crab, Carcinus maenas, and two traditional finfish baits. Mar. Freshw. Behav. Physiol. 2014, 47, 291–297. [Google Scholar] [CrossRef]
- Jacobsen, C.; Nielsen, N.S.; Horn, A.F.; Sørensen, A.-D.M. Food Enrichment with Omega-3 Fatty Acids; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Beaulieu, L.; Thibodeau, J.; Bryl, P.; Carbonneau, M.-É. Proteolytic processing of Atlantic mackerel (Scomber scombrus) and biochemical characterisation of hydrolysates. Int. J. Food Sci. Technol. 2009, 44, 1609–1618. [Google Scholar] [CrossRef]
- Khiari, Z.; Rico, D.; Martin-Diana, A.B.; Barry-Ryan, C. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates. J. Sci. Food Agric. 2014, 94, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 2011, 32, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem. Biophys. Res. Commun. 2015, 462, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 2006, 6, 468–472. [Google Scholar] [CrossRef]
- Syed, M.A.; Bana, N.F. Developing countries need action plans to combat the challenge of antimicrobial resistance. Arch. Clin. Microbiol. 2016, 7, 12. [Google Scholar]
- Seo, J.-K.; Lee, M.J.; Go, H.-J.; Park, T.H.; Park, N.G. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. Fish Shellfish Immunol. 2012, 33, 743–752. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Jung, H.-G.; Go, H.-J.; Kim, Y.J.; Park, N.G. Antimicrobial function of SHβAP, a novel hemoglobin β chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis. Fish Shellfish Immunol. 2014, 37, 173–183. [Google Scholar] [CrossRef]
- Najafian, L.; Babji, A.S. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides 2012, 33, 178–185. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; López-Caballero, M.E.; Alemán, A.; López de Lacey, A.; Giménez, B.; Montero, P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. In Sea By-Products as Real Material: New Ways of Application; Transworld Research Network: Trivandrum, India, 2010; pp. 89–115. [Google Scholar]
- Ennaas, N.; Hammami, R.; Beaulieu, L.; Fliss, I. Production of antibacterial fraction from Atlantic mackerel (Scomber scombrus) and its processing by-products using commercial enzymes. Food Bioprod. Process. 2015, 96, 145–153. [Google Scholar] [CrossRef]
- Ennaas, N.; Hammami, R.; Gomaa, A.; Bédard, F.; Biron, É.; Subirade, M.; Beaulieu, L.; Fliss, I. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane. Biochem. Biophys. Res. Commun. 2016, 473, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Sotelo, C.G.; Pérez-Martín, R.I. Hydrolysis as a valorization strategy for unused marine food biomass: Boarfish and small-spotted catshark discards and by-products. J. Food Biochem. 2015, 39, 368–376. [Google Scholar] [CrossRef]
- Beaulieu, L.; Thibodeau, J.; Desbiens, M.; Saint-Louis, R.; Zatylny-Gaudin, C.; Thibault, S. Evidence of antibacterial activities in peptide fractions originating from snow crab (Chionoecetes opilio) by-products. Probiotics Antimicrob. Proteins 2010, 2, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.; Bondu, S.; Doiron, K.; Rioux, L.-E.; Turgeon, S.L. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J. Funct. Foods 2015, 17, 685–697. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Lv, Y.F.; Gu, Y.; Dong, N.; Li, D.S.; Shan, A.S. Rational design of cationic antimicrobial peptides by the tandem of leucine-rich repeat. Amino Acids 2013, 44, 1215–1224. [Google Scholar] [CrossRef]
- Mellroth, P.; Steiner, H. PGRP-SB1: An N-acetylmuramoyl l-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 2006, 350, 994–999. [Google Scholar] [CrossRef]
- Seo, J.-K.; Lee, M.J.; Go, H.-J.; Kim, Y.J.; Park, N.G. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis. Fish Shellfish Immunol. 2014, 36, 571–581. [Google Scholar] [CrossRef]
- El Menif, E.; Offret, C.; Labrie, S.; Beaulieu, L. Identification of peptides implicated in antibacterial activity of snow crab hepatopancreas hydrolysates by a bioassay-guided fractionation approach combined with mass spectrometry. Probiotics Antimicrob. Proteins 2018, 1–11. [Google Scholar] [CrossRef]
- Guruprasad, K.; Reddy, B.V.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990, 4, 155–161. [Google Scholar] [CrossRef]
- Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. The More the better? Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother. 2016, 60, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Snapir, Y.M.; Vaisbein, E.; Nassar, F. Low virulence but potentially fatal outcome—Listeria ivanovii. Eur. J. Intern. Med. 2006, 17, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Guillet, C.; Join-Lambert, O.; Le Monnier, A.; Leclercq, A.; Mechaï, F.; Mamzer-Bruneel, M.-F.; Bielecka, M.K.; Scortti, M.; Disson, O.; Berche, P.; et al. Human listeriosis caused by Listeria ivanovii. Emerg. Infect. Dis. 2010, 16, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Ordóñez, A.; Leong, D.; Morgan, C.A.; Hill, C.; Gahan, C.G.M.; Jordan, K. Occurrence, persistence, and virulence potential of Listeria ivanovii in foods and food processing environments in the Republic of Ireland. Available online: https://www.hindawi.com/journals/bmri/2015/350526/ (accessed on 16 August 2018).
- Rai, M.; Pandit, R.; Gaikwad, S.; Kövics, G. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J. Food Sci. Technol. 2016, 53, 3381–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogden, K.A.; Lucca, A.J.D.; Bland, J.; Elliott, S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA 1996, 93, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Diehnelt, C.W. Peptide array based discovery of synthetic antimicrobial peptides. Front. Microbiol. 2013, 4, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, L.; Thibodeau, J.; Bonnet, C.; Bryl, P.; Carbonneau, M.-É. Detection of antibacterial activity in an enzymatic hydrolysate fraction obtained from processing of Atlantic rock crab (Cancer irroratus) by-products. PharmaNutrition 2013, 1, 149–157. [Google Scholar] [CrossRef]
- Sanz, Y.; Nadal, I.; Sánchez, E. Probiotics as drugs against human gastrointestinal infections. Recent Patents Anti Infect. Drug Disc. 2007, 2, 148–156. [Google Scholar] [CrossRef]
- Iebba, V.; Totino, V.; Gagliardi, A.; Santangelo, F.; Cacciotti, F.; Trancassini, M.; Mancini, C.; Cicerone, C.; Corazziari, E.; Pantanella, F.; et al. Eubiosis and dysbiosis: The two sides of the microbiota. New Microbiol. 2016, 39, 1–12. [Google Scholar] [PubMed]
- Ben said, L.; Fliss, I.; Offret, C.; Beaulieu, L. Antimicrobial peptides: The new generation of food additives. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-08-100596-5. [Google Scholar]
- Minekus, M. The TNO Gastro-Intestinal Model (TIM). In The Impact of Food Bioactives on Health; Springer: Cham, Switzerland, 2015; pp. 37–46. ISBN 978-3-319-15791-7. [Google Scholar] [Green Version]
- Kheadr, E.; Zihler, A.; Dabour, N.; Lacroix, C.; Le Blay, G.; Fliss, I. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J. Appl. Microbiol. 2010, 109, 54–64. [Google Scholar] [PubMed]
- Horwitz, W.; Chichilo, P.; Reynolds, H. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1970. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Daba, H.; Lacroix, C.; Huang, J.; Simard, R.E.; Lemieux, L. Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. J. Appl. Bacteriol. 1994, 77, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Zouhir, A.; Hamida, J.B.; Neffati, M.; Vergoten, G.; Naghmouchi, K.; Fliss, I. Antimicrobial properties of aqueous extracts from three medicinal plants growing wild in arid regions of Tunisia. Pharm. Biol. 2009, 47, 452–457. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383–5392. [Google Scholar] [CrossRef] [PubMed]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Marteau, P.; Havenaar, R.; Huis in’t Veld, J.H.H. Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. ATLA 1995, 23, 197–209. [Google Scholar]
Amino Acids | Mackerel Hydrolysate |
---|---|
Glutamic acid | 13.23 ± 0.70 |
Aspartic acid | 8.31 ± 0.28 |
Lysine | 7.14 ± 0.46 |
Leucine | 5.37 ± 0.13 |
Glycine | 5.06 ± 0.29 |
Arginine | 4.71 ± 0.15 |
Alanine | 4.97 ± 0.07 |
Proline | 3.43 ± 0.19 |
Valine | 3.39 ± 0.25 |
Threonine | 3.40 ± 0.09 |
Serine | 3.27 ± 0.20 |
Histidine | 3.17 ± 0.26 |
Phenylalanine | 2.30 ± 0.19 |
Isoleucine | 2.51 ± 0.21 |
Tyrosine | 2.04 ± 0.18 |
Methionine | 1.88 ± 0.16 |
Taurine | 0.48 ± 0.03 |
Cysteine | 0.27 ± 0.03 |
Tryptophan | 0.64 ± 0.02 |
Total | 75.57 |
Purification Step | Volume (mL) | Total Protein (mg) | Total Activity (AU) | Specific Activity (AU/mg) | Increase in Specific Activity (fold) | Activity Recovery (%) |
---|---|---|---|---|---|---|
Solubilized hydrolysate | 50 | 1.25 × 103 | 1.00 × 106 | 8.00 × 101 | / | 100 |
SPE-C18 eluate | 1.0 | 1.48 × 100 | 6.40 × 105 | 4.32 × 105 | 5405 | 64 |
First RP-HPLC eluate | 0.5 | 1.70 × 10−2 | 2.00 × 104 | 1.18 × 106 | 14,706 | 2 |
Second RP-HPLC eluate | 0.3 | 4.00 × 10−3 | 6.00 × 103 | 1.67 × 106 | 20,833 | 1 |
Scaffold Analysis | ExPASy Analysis | CAMP Database | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Peptide Sequences | Precursor Proteins | Charge | GRAVY Index | Stability | pI | Antibacterial-Peptide Related | Access Number | Homology | Organisms | |
(1) | KVEIVAINDPFIDL | Glyceraldehyde-3-phosphate dehydrogenase | −2 | 0.771 | Stable | 4.03 | YFGAP | CAMPSQ3690 | 89% | Thunnus albacares |
(2) | LILLILLLLKLLLLLI | N-acetylmuramoyl-L-alanine amidase | +1 | 3.450 | Stable | 8.75 | Beta-defensin | CAMPSQ4887 | 75% | Saguinus oedipus |
(3) | LLILLLLKLLLLLI | +1 | 3.350 | Stable | 8.75 | CAMPSQ4886 | 75% | Callithrix jacchus | ||
(4) | LLILLLLLLILLLILLPF | Syndecan domain | 0 | 3.561 | Unstable | 5.52 | Beta-defensin | CAMPSQ4886 | 75% | Capra hircus |
Genus | Species | Strains | MIC (mM) |
---|---|---|---|
Bacillus | megaterium | B301 | >1.050 |
Blautia | coccoides | ATCC 29236 | >1.050 |
Bifidobacterium | infantis | ATCC 15697 | >1.050 |
Enterococcus | faecalis | ATCC 29212 | >1.050 |
Enterococcus | faecium | L1 | >1.050 |
Lactobacillus | acidophilus | ATCC 4356 | 0.263 |
Lactobacillus | salivarius | 16 | ND |
Listeria | ivanovii | ATCC 19119 | 0.131 |
Listeria | monocytogenes | ATCC 15313 | 0.131 |
Micrococcus | luteus | 272 | 0.263 |
Staphylococcus | aureus | ATCC 25923 | >1.050 |
Bacteroides | thetaiotaomicron | ATCC 29741 | 0.263 |
Escherichia | coli | ATCC 25922 | >1.050 |
Pseudomonas | aeruginosa | ATCC 27853 | >1.050 |
Vibrio | parahaemolyticus | ALN-0312 | >1.050 |
Target strains | Growth Conditions | ||||
---|---|---|---|---|---|
Genus | Species | Collection | Type | Ecological Function | Media |
Bacillus† | megaterium | B301 | Gram † | Non-pathogen | TSB |
Blautia | coccoides | ATCC 29236 | Human Flora | BHI + Cysteine (0.05%) | |
Bifidobacterium | infantis | ATCC 15697 | Human probiotic | BHI + Cysteine (0.05%) | |
Enterococcus | faecalis | ATCC 27212 | Human pathogen | BHI | |
Enterococcus† | faecium | L1 | Human pathogen | BHI | |
Lactobacillus | acidophilus | ATCC 4356 | Human probiotic | TSB+YE (0.6%) | |
Lactobacillus† | salivarius | 16 | Human probiotic | BHI + Cysteine (0.05%) | |
Listeria | ivanovii | ATCC 19119 | Human pathogen | TSB+YE (0.6%) | |
Listeria | monocytogenes | ATCC 15313 | Human pathogen | MRS | |
Micrococcus† | luteus | 272 | Non-pathogen | TSB | |
Staphylococcus | aureus | ATCC 25923 | Human pathogen | BHI | |
Bacteroides | thetaiotaomicron | ATCC 29741 | Human pathogen | BHI + Cysteine (0.05%) | |
Escherichia | coli | ATCC 25922 | Human pathogen | LB | |
Pseudomonas | aeruginosa | ATCC 27853 | Human pathogen | TSB | |
Vibrio | parahaemolyticus | ALN-0312 | Human pathogen | BHI + Sea salt (3%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offret, C.; Fliss, I.; Bazinet, L.; Marette, A.; Beaulieu, L. Identification of A Novel Antibacterial Peptide from Atlantic Mackerel belonging to the GAPDH-Related Antimicrobial Family and Its In Vitro Digestibility. Mar. Drugs 2019, 17, 413. https://doi.org/10.3390/md17070413
Offret C, Fliss I, Bazinet L, Marette A, Beaulieu L. Identification of A Novel Antibacterial Peptide from Atlantic Mackerel belonging to the GAPDH-Related Antimicrobial Family and Its In Vitro Digestibility. Marine Drugs. 2019; 17(7):413. https://doi.org/10.3390/md17070413
Chicago/Turabian StyleOffret, Clément, Ismaïl Fliss, Laurent Bazinet, André Marette, and Lucie Beaulieu. 2019. "Identification of A Novel Antibacterial Peptide from Atlantic Mackerel belonging to the GAPDH-Related Antimicrobial Family and Its In Vitro Digestibility" Marine Drugs 17, no. 7: 413. https://doi.org/10.3390/md17070413