Okadaic Acid: More than a Diarrheic Toxin
Abstract
:1. Introduction
2. Acute Toxicity and DSP Symptomatology
3. OA beyond its Role as DSP Inductor
3.1. Cytotoxicity
3.2. Neurotoxicity
3.3. Immunotoxicity
3.4. Embryotoxicity
3.5. Carcinogenicity and Genotoxicity
3.5.1. Genotoxicity and Effects on DNA Repair
3.5.2. Tumor Promotion
3.5.3. Carcinogenicity
4. Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
- Hallegraeff, G.M. Harmful algal blooms: A global overview. In Manualon Harmful Marine Microalgae; Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; UNESCO: Paris, France, 1995; pp. 1–22. [Google Scholar]
- Silva, M.; Barreiro, A.; Rodriguez, P.; Otero, P.; Azevedo, J.; Alfonso, A.; Botana, L.M.; Vasconcelos, V. New Invertebrate Vectors for PST, Spirolides and Okadaic Acid in the North Atlantic. Mar. Drugs 2013, 11, 1936–1960. [Google Scholar] [CrossRef]
- Sassolas, A.; Hayat, A.; Catanante, G.; Marty, J.L. Detection of the marine toxin okadaic acid: Assessing seafood safety. Talanta 2013, 105, 306–316. [Google Scholar] [CrossRef]
- Schmitz, F.J.; Prasad, R.S.; Gopichand, Y.; Hossain, H.B.; Van Der Helm, D.; Schmidt, P. Acanthifolicin, a new episufide-containing polyether carboxylic acid from extracts of the marine sponge Pandaros acanthifolium. J. Am. Chem. Soc. 1981, 103, 2467–2469. [Google Scholar] [CrossRef]
- Tachibana, K.; Scheurrer, P.J.; Tsukitani, Y.; Kikuchi, H.; Engen, D.V.; Clardy, J.; Gopichand, Y.; Schimitz, F.J. Okadaic acid, a cytotoxicity polyether from two marine sponges of the genus Halichondria. J. Am. Chem. Soc. 1981, 103, 2469–2471. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Marine Biotoxins. In FAO Food and Nutritrion; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; p. 80. [Google Scholar]
- McCarron, P.; Kilcoyne, J.; Hess, P. Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis). Toxicon 2008, 51, 1081–1089. [Google Scholar] [CrossRef]
- Reboreda, A.; Lago, J.; Chapela, M.J.; Vieites, J.M.; Botana, L.M.; Alfonso, A.; Cabado, A.G. Decrease of marine toxin content in bivalves by industrial processes. Toxicon 2010, 55, 235–243. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission on marine biotoxins in shellfish—okadaic acid and analogues. EFSA J. 2008, 589, 1–62. [Google Scholar]
- Lawley, R.; Curtis, L.; Davis, J. Biological toxins: Fish Toxins. In The Food Safety Hazard Guidebook; RSC Publishing: London, UK, 2008; pp. 253–270. [Google Scholar]
- Trainer, V.L.; Moore, L.; Bill, B.D.; Adams, N.G.; Harrington, N.; Borchert, J.; da Silva, D.A.; Eberhart, B.T. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington state. Mar. Drugs 2013, 11, 1815–1835. [Google Scholar] [CrossRef]
- Kat, M. The Occurence of Prorocentrum Species and Coincidental Gastrointestinal Illness of Mussel Consumers. In Toxic Dinoflagellate Blooms; Taylor, D.L., Seliger, H.H., Eds.; Elsevier: New York, NY, USA, 1979; pp. 215–220. [Google Scholar]
- Yasumoto, T.; Inoue, A.; Ochi, T.; Fujimoto, K.; Oshima, Y.; Fukuyo, Y.; Adachi, R.; Bagnis, R. Environmental studies on a toxic dinoflagellate responsible for ciguatera. Bull. Jpn. Soc. Sci. Fish. 1980, 46, 1397–1404. [Google Scholar] [CrossRef]
- Bialojan, C.; Takai, A. Inhibitory effect of marine sponge toxin, okadaic acid, on protein phosphatase, specificity and kinetics. Biochem. J. 1988, 256, 283–290. [Google Scholar]
- Louzao, M.C.; Vieytes, M.R.; Botana, L.M. Effect of okadaic acid on glucose regulation. Mini Rev. Med. Chem. 2005, 5, 207–215. [Google Scholar] [CrossRef]
- Takai, A.; Murata, M.; Torigoe, K.; Isobe, M.; Mieskes, G.; Yasumoto, T. Inhibitory effect of okadaic acid derivatives on protein phosphatases. A study on structure-affinity relationship. Biochem. J. 1992, 284, 539–544. [Google Scholar]
- Huhn, J.; Jeffrey, P.D.; Larsen, K.; Rundberget, T.; Rise, F.; Cox, N.R.; Arcus, V.; Shi, Y.; Miles, C.O. A structural basis for the reduced toxicity of dinophysistoxin-2. Chem. Res. Toxicol. 2009, 22, 1782–1786. [Google Scholar] [CrossRef]
- Cruz, P.G.; Fernández, J.J.; Norte, M.; Daranas, A.H. Belizeanic acid: A potent protein phosphatase 1 inhibitor belonging to the okadaic acid class, with an unusual skeleton. Chemistry 2008, 14, 6948–6956. [Google Scholar] [CrossRef]
- Fernández-Sánchez, M.T.; Cabrera-García, D.; Ferrero-Gutierrez, A.; Pérez-Gómez, A.; Cruz, P.G.; Daranas, A.H.; Fernández, J.J.; Norte, M.; Novelli, A. Comparative toxicological study of the novel protein phosphatase inhibitor 19-Epi-okadaic acid in primary cultures of rat cerebellar cells. Toxicol. Sci. 2013, 132, 409–418. [Google Scholar] [CrossRef]
- Fernández, M.T.; Zitko, V.; Gascón, S.; Novelli, A. The marine toxin okadaic acid is a potent neurotoxin for cultured cerebellar neurons. Life Sci. 1991, 49, 157–162. [Google Scholar]
- Tubaro, A.; Sosa, S.; Bornancin, A.; Hungerford, J. Pharmacology and toxicology of diarrheic shellfish toxins. In Seafood and Freshwater Toxins; Botana, L.M., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 229–253. [Google Scholar]
- Cruz, P.G.; Norte, M.; Creus, A.H.; Fernández, J.J.; Daranas, A.H. Self-association of okadaic Acid: Structural and pharmacological significance. Mar. Drugs 2013, 11, 1866–1877. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety. Aquatic (Marine and Freshwater) Biotoxins. In Environmental Health Criteria 37; World Health Organization: Geneva, Switzerland, 1984. [Google Scholar]
- Hamano, Y.; Kinoshita, Y.; Yasumoto, T. Enteropathogenicity of diarrheic shellfish toxins in intestinal models. J. Food Hyg. Soc. Jpn. 1985, 27, 375–379. [Google Scholar]
- Aune, T.; Larsen, S.; Aasen, J.A.; Rehmann, N.; Satake, M.; Hess, P. Relative toxicity of dinophysistoxin-2 (DTX-2) compared with okadaic acid, based on acute intraperitoneal toxicity in mice. Toxicon 2007, 49, 1–7. [Google Scholar] [CrossRef]
- EU/SANCO 2001; Report of the meeting of the working group on toxicology of DSP and AZP 21 to 23rd May 2001; EU/SANCO: Brussels, Belgium, 2001.
- Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Occurrence of a new type of shellfish poisoning in the Tohoku District. Nippon Suisan Gakkaishi 1978, 44, 1249–1255. [Google Scholar] [CrossRef]
- Underdal, B.; Yndestad, M.; Aune, T. DSP intoxication in Norway and Sweden, Autumn 1984–Spring 1984. In Proceedings of The Third International Conference on Toxic Dinoflagellates, St Andrews, New Brunswick, Canada, 8–12 June 1985; Anderson, D.M., White, A.W., Baden, D.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; pp. 489–494. [Google Scholar]
- Shibata, S.; Ishida, Y.; Kitano, H.; Ohizumi, Y.; Habon, J.; Tsukitani, Y.; Kikuchi, H. Contractile effects of okadaic acid, a novel ionophore-like substance from black sponge, on isolated smooth muscles under the condition of Ca deficiency. J. Pharmacol. Exp. Ther. 1982, 223, 135–143. [Google Scholar]
- Aune, T.; Yndestad, M. Diarrhetic shellfish poisoning. In Algal Toxins in Seafood and Drinking Water; Falconer, I.R., Ed.; Academic Press Inc.: New York, NY, USA, 1993; pp. 87–104. [Google Scholar]
- Cohen, P.; Holmes, C.F.B.; Tsu Kitan, Y. Okadaic acid, a new probe for studying cellular regulation. Trends Biochem. Sci. 1990, 15, 98–102. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.Y.; Lin, L.; Gao, Y.; Hong, H.S.; Wang, D.Z. Quantitative proteomic analysis of okadaic acid treated mouse small intestines reveals differentially expressed proteins involved in diarrhetic shellfish poisoning. J. Proteomics 2012, 75, 2038–2052. [Google Scholar] [CrossRef]
- Ito, E.; Satake, M.; Ofuji, K.; Higashi, M.; Harigaya, K.; McMahon, T.; Yasumoto, T. Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a newmarine toxin isolated frommussels. Toxicon 2002, 40, 193–203. [Google Scholar] [CrossRef]
- Matias, W.G.; Traore, A.; Creppy, E.E. Variations in the distribution of okadaic acid in organs and biological fluids of mice related to diarrhoeic syndrome. Hum. Exp. Toxicol. 1999, 18, 345–350. [Google Scholar] [CrossRef]
- Lange, S.; Andersson, G.L.; Jennishe, E.; Lonnroth, I.; Li, X.P.; Edebo, L. Okadaic acid produces drastic histopathologic changes of the rat intestinal mucosa and with concomitant hypersecretion. In Toxic Marine Phytoplankton; Graneli, E., Sundstrom, B., Edler, L., Anderson, D.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 356–361. [Google Scholar]
- Berven, G.; Seatre, F.; Halvorson, K.; Seglen, P.O. Effect of diarrhetic shellfish toxin, okadaic acid, on cytoskeletal element, viability and functionality of rat liver and intestinal cells. Toxicon 2001, 39, 349–362. [Google Scholar] [CrossRef]
- Ito, J.; Kaneko, R.; Hirabayashi, M. The regulation of calcium/calmodulin-dependent protein kinase II during oocyte activation in the rat. J. Reprod. Dev. 2006, 52, 439–447. [Google Scholar] [CrossRef]
- Ehlers, A.; Scholz, J.; These, A.; Hessel, S.; Preiss-Weigert, A.; Lampen, A. Analysis of the passage of the marine biotoxin okadaic acid through an in vitro human gut barrier. Toxicology 2011, 279, 196–202. [Google Scholar] [CrossRef]
- Ito, E.; Terao, K. Injury and recovery process of intestine caused by okadaic acid and related compounds. Nat. Toxins 1994, 2, 371–377. [Google Scholar]
- Matias, W.G.; Creppy, E.E. Evidence for an enterohepatic circulation with okadaic acid in mice. Toxic. Subst. Mech. 1996, 15, 405–414. [Google Scholar]
- Matias, W.G.; Creppy, E.E. Transplacental passage of [3H]-okadaic acid in pregnant mice measured by radioactivity and high-performance liquid chromatography. Hum. Exp. Toxicol. 1996, 15, 226–230. [Google Scholar] [CrossRef]
- Souid-Mensi, G.; Moukha, S.; Mobio, T.A.; Maaroufi, K.M.; Creppy, E.E. The cytotoxicity and genotoxicity of okadaic acid are cell-line dependent. Toxicon 2008, 51, 1338–1344. [Google Scholar] [CrossRef]
- Traoré, A.; Baudrimont, I.; Ambaliou, S.; Dano, S.D.; Creppy, E.E. DNA breaks and cell cycle arrest induced by okadaic acid in Caco-2 cells, a human colonic epithelial cell line. Arch. Toxicol. 2001, 75, 110–117. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Laffon, B.; Pásaro, E.; Méndez, J. Okadaic acid induces morphological changes, apoptosis and cell cycle alterations in different human cell types. J. Environ. Monit. 2011, 13, 1831–1840. [Google Scholar] [CrossRef]
- Xing, M.L.; Wang, X.F.; Zhu, X.; Zhou, X.D.; Xu, L.H. Morphological and biochemical changes associated with apoptosis induced by okadaic acid in human amniotic FL cells. Environ. Toxicol. 2008, 24, 437–445. [Google Scholar]
- Schröder, H.C.; Breter, H.J.; Fattorusso, E.; Ushijima, H.; Wiens, M.; Steffen, R.; Batel, R.; Müller, W.E. Okadaic acid, an apoptogenic toxin for symbiotic/parasitic annelids in the demosponge Suberites domuncula. Appl. Environ. Microbiol. 2006, 72, 4907–4916. [Google Scholar] [CrossRef]
- Sugiyama, N.; Konoki, K.; Tachibana, K. Isolation and characterization of okadaic acid binding proteins from the marine sponge Halichondria okadai. Biochemistry 2007, 46, 11410–11420. [Google Scholar] [CrossRef]
- Munday, R. Is protein phosphatase inhibition responsible for the toxic effects of okadaic acid in animals? Toxins 2013, 5, 267–285. [Google Scholar] [CrossRef]
- Lago, J.; Santaclara, F.; Vieites, J.M.; Cabado, A.G. Collapse of mitochondrial membrane potential and caspases activation are early events in okadaic acid-treated Caco-2 cells. Toxicon 2005, 46, 579–586. [Google Scholar] [CrossRef]
- Leira, F.; Alvarez, C.; Vieites, J.M.; Vieytes, M.R.; Botana, L.M. Study of cytoskeletal changes induced by okadaic acid in BE(2)-M17 cells by means of a quantitative fluorimetric microplate assay. Toxicol. Vitro 2001, 15, 277–282. [Google Scholar] [CrossRef]
- Ao, L.; Liu, J.Y.; Gao, L.H.; Liu, S.X.; Yang, M.S.; Huang, M.H.; Cao, J. Differential expression of genes associated with cell proliferation and apoptosis induced by okadaic acid during the transformation process of BALB/c 3T3 cells. Toxicol. Vitro 2008, 22, 116–127. [Google Scholar] [CrossRef]
- Cabado, A.G.M.; Leira, F.; Vieytes, M.R.; Vieites, J.M.; Botana, L.M. Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neuroblastoma cells. Arch. Toxicol. 2004, 78, 74–85. [Google Scholar] [CrossRef]
- Leira, F.; Louzao, M. C.; Vieites, J.M.; Botana, L.M.; Vieytes, M.R. Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts. Toxicol. Vitro 2002, 16, 267–273. [Google Scholar] [CrossRef]
- Riordan, F.A.; Foroni, L.; Hoffbrand, A.V.; Mehta, A.B.; Wickremasinghe, R.G. Okadaic acid-induced apoptosis of HL60 leukemia cells is preceded by destabilization of bcl-2 mRNA and downregulation of bcl-2 protein. FEBS Lett. 1998, 435, 195–198. [Google Scholar] [CrossRef]
- Rossini, G.P.; Sgarbi, N.; Malaguti, C. The toxic responses induced by okadaic acid involve processing of multiple caspase isoforms. Toxicon 2001, 39, 763–770. [Google Scholar] [CrossRef]
- Kiguchi, K.; Glesne, D.; Chubb, C.H.; Fujiki, H.; Huberman, E. Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A. Cell Growth Differ. 1994, 5, 995–1004. [Google Scholar]
- Tergau, F.; Weichert, J.; Quentin, I.; Opitz, R.; von Zezschwitz, C.; Marwitz, J.; Ritz, V.; Steinfelder, H.J. Inhibitors of Ser/Thr phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Naunyn Schmiedebergs Arch Pharmacol. 1997, 356, 8–16. [Google Scholar] [CrossRef]
- Ahn, K.H.; Kim, Y.S.; Kim, S.Y.; Huh, Y.; Park, C.; Jeong, J.W. Okadaic acid protects human neuroblastoma SH-SY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis. Neurosci. Lett. 2009, 449, 93–97. [Google Scholar] [CrossRef]
- Ohoka, Y.; Nakai, Y.; Mukai, M.; Iwata, M. Okadaic acid inhibits glucocorticoid-induced apoptosis in T cell hybridomas at its late stage. Biochem. Biophys. Res. Commun. 1993, 197, 916–921. [Google Scholar] [CrossRef]
- Merrick, S.E.; Trojanowski, J.Q.; Lee, V.M. Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. J. Neurosci. 1997, 17, 5726–5737. [Google Scholar]
- Okada, T.; Narai, A.; Matsunaga, S.; Fusetani, N.; Shimizu, M. Assessment of the marine toxins by monitoring the integrity of human intestinal Caco-2 cell monolayers. Toxicol. Vitro 2000, 14, 219–226. [Google Scholar] [CrossRef]
- Romashko, A.A.; Young, M.R. Protein phosphatase-2A maintains focal adhesion complexes in keratinocytes and the loss of this regulation in squamous cell carcinomas. Clin. Exp. Metastasis 2004, 21, 371–379. [Google Scholar] [CrossRef]
- Fiorentini, C.; Matarrese, P.; Fattorossi, A.; Donelli, G. Okadaic acid induces changes in the organization of F-actin in intestinal cells. Toxicon 1996, 34, 937–945. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Fernández-Tajes, J.; Pásaro, E.; Méndez, J.; Laffon, B. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization. BMC Genomics 2012, 13, 46. [Google Scholar]
- Opsahl, JA.; Ljostveit, S.; Solstad, T.; Risa, K.; Roepstorff, P.; Fladmark, K.E. Identification of dynamic changes in proteins associated with the cellular cytoskeleton after exposure to okadaic Acid. Mar. Drugs 2013, 11, 1763–1782. [Google Scholar] [CrossRef] [Green Version]
- Ishida, Y.; Furukawa, Y.; DeCaprio, J.A.; Saito, M.; Griffin, J.D. Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. J. Cell. Physiol. 1992, 150, 484–492. [Google Scholar] [CrossRef]
- Lerga, A.; Richard, C.; Delgado, M.D.; Canelles, M.; Frade, P.; Cuadrado, M.A.; Leon, J. Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem. Biophys. Res. Commun. 1999, 260, 256–264. [Google Scholar] [CrossRef]
- Gotoh, E.; Asakawa, Y.; Kosaka, H. Inhibition of protein serine/threonine phosphatases directly induces premature chromosome condensation in mammalian somatic cells. Biomed. Res. 1995, 16, 63–68. [Google Scholar]
- Yamashita, K.; Yasuda, H.; Pines, J.; Yasumoto, K.; Nishitani, H.; Ohtsubo, M.; Hunter, T.; Sugimura, T.; Nishimoto, T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatase, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 1990, 9, 4331–4338. [Google Scholar]
- Costa, A.P.; Tramontina, A.C.; Biasibetti, R.; Batassini, C.; Lopes, M.W.; Wartchow, K.M.; Bernardi, C.; Tortorelli, L.S.; Leal, R.B.; Gonçalves, C.A. Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav. Brain Res. 2012, 226, 420–427. [Google Scholar] [CrossRef]
- Kamat, P.K.; Tota, S.; Saxena, G.; Shukla, R.; Nath, C. Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity. Brain Res. 2010, 1309, 66–74. [Google Scholar]
- Valdiglesias, V.; Méndez, J.; Pásaro, E.; Cemeli, E.; Anderson, D.; Laffon, B. Induction of oxidative DNA damage by the marine toxin okadaic acid depends on human cell type. Toxicon 2011, 57, 882–888. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Fernández-Tajes, J.; Costa, C.; Pásaro, E.; Méndez, J.; Laffon, B. Alterations in metabolism-related genes induced in SHSY5Y cells by okadaic acid exposure. J. Toxicol. Environ. Health 2012, 75, 844–856. [Google Scholar] [CrossRef]
- Rubiolo, J.A.; López-Alonso, H.; Vega, F.V.; Vieytes, M.R.; Botana, L.M. Okadaic acid and dinophysis toxin 2 have differential toxicological effects in hepatic cell lines inducing cell cycle arrest, at G0/G1 or G2/M with aberrant mitosis depending on the cell line. Arch. Toxicol. 2011, 85, 1541–1550. [Google Scholar] [CrossRef]
- Fieber, L.A.; Greer, J.B.; Guo, F.; Crawford, D.C.; Rein, K.S. Gene expression profiling of human liver carcinoma (HEPG2) cells exposed to the marine toxin okadaic acid. Toxicol. Environ. Chem. 2012, 24, 1805–1821. [Google Scholar]
- Arias, C.; Sharma, N.; Davies, P.; Shafit-Zargado, B. Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J. Neurochem. 1993, 61, 673–682. [Google Scholar]
- Nuydens, R.; de Jong, M.; Van Den Kieboom, G.; Heers, C.; Dispersyn, G.; Cornelissen, F.; Nuyens, R.; Borgers, M.; Geerts, H. Okadaic acid-induced apoptosis in neuronal cells, evidence for an abortive mitotic attempt. J. Neurochem. 1998, 70, 1124–1133. [Google Scholar]
- Tapia, R.; Peña, F.; Arias, C. Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochem. Res. 1999, 24, 1423–1430. [Google Scholar] [CrossRef]
- Wu, Y.; Tada, M.; Takahata, K.; Tomizawa, K.; Matsui, H. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells. Acta Medica Okayama 2007, 61, 147–152. [Google Scholar]
- Candeo, P.; Favaron, M.; Lengyel, I.; Manev, R.M.; Rimland, J.M.; Manev, H. Pathological phosphorylation causes neuronal death, effect of okadaic acid in primary culture of cerebellar granule cells. J. Neurochem. 1992, 59, 1558–1561. [Google Scholar] [CrossRef]
- Fernández-Sánchez, M.-T.; García-Rodríguez, A.; Díaz-Trelles, R.; Novelli, A. Okadaic acid induces neuronal apoptosis. Role of calcium and trophic factors. In Harmful Algae; Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T., Eds.; Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO: Antiago de Compostela, Spain, 1998; pp. 577–580. [Google Scholar]
- Chen, Z.; Chen, B.; Xu, W.F.; Liu, R.F.; Yang, J.; Yu, C.X. Effects of PTEN inhibition on regulation of tau phosphorylation in an okadaic acid-induced neurodegeneration model. Int. J. Dev. Neurosci. 2012, 30, 411–419. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Hu, M.; Pan, J.; Chen, J.; Duan, P.; Zhai, T.; Ding, J.; Xu, C. Effects of ginkgolide A on okadaic acid-induced tau hyperphosphorylation and the PI3K-Akt signaling pathway in N2a cells. Planta Med. 2012, 78, 1337–1341. [Google Scholar] [CrossRef]
- Cho, M.H.; Kim, D.H.; Choi, J.E.; Chang, E.J.; Yoon, S.Y. Increased phosphorylation of dynamin-related protein 1 and mitochondrial fission in okadaic acid-treated neurons. Brain Res. 2012, 1454, 100–110. [Google Scholar] [CrossRef]
- Das, V.; Miller, J.H. Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acid-induced tau phosphorylation. Eur. J. Neurosci. 2012, 35, 1705–1717. [Google Scholar] [CrossRef]
- Zhang, Z.; Simpkins, J.W. Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Res. 2010, 1345, 176–181. [Google Scholar] [CrossRef]
- Arendt, T.; Holzer, M.; Fruth, R.; Burckner, M.K.; Gartner, U. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience 1995, 69, 691–698. [Google Scholar] [CrossRef]
- Ferrer, I.; Gomez-Isla, T.; Puig, B.; Freixes, M.; Ribé, E.; Dalfó, E.; Avila, J. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr. Alzheimer Res. 2005, 2, 3–18. [Google Scholar] [CrossRef]
- Zimmer, E.R.; Kalinine, E.; Haas, C.B.; Torrez, V.R.; Souza, D.O.; Muller, A.P.; Portela, L.V. Pretreatment with memantine prevents Alzheimer-like alterations induced by intrahippocampal okadaic acid administration in rats. Curr. Alzheimer Res. 2012, 9, 1182–1190. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Choi, J.E.; Ham, J.H.; Choe, H.; Lee, H.S.; Kim, D.H. zVLL-CHO at low concentrations acts as a calpain inhibitor to protect neurons against okadaic acid-induced neurodegeneration. Neurosci. Lett. 2012, 509, 33–38. [Google Scholar] [CrossRef]
- Mattson, M.P. Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res. 1988, 472, 179–212. [Google Scholar]
- Vega, I.E.; Hsu, S.C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 2001, 21, 3839–3848. [Google Scholar]
- Cid-Arregui, A.; De Hoop, M.; Dotti, C.G. Mechanism of neuronal polarity. Neurobiol. Aging 1995, 16, 239–243. [Google Scholar] [CrossRef]
- Reinsch, S.S.; Mitchison, T.J.; Kirschner, M. Microtubule polymer assembly and transport during axonal elongation. J. Cell Biol. 1991, 115, 365–379. [Google Scholar] [CrossRef]
- Trifaro, J.M.; Vitale, M.L. Cytoskeleton dynamics during neurotransmitter release. Trends Neurosci. 1993, 16, 466–472. [Google Scholar] [CrossRef]
- Nakamura, S.; Akiguchi, I.; Kameyama, M.; Mizuno, N. Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex, a quantitative Golgi study. Acta Neuropathol. 1985, 65, 281–284. [Google Scholar] [CrossRef]
- Kowall, N.W.; Kosik, K.S. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann. Neurol. 1987, 22, 639–643. [Google Scholar] [CrossRef]
- Arias, C.; Becerra-Garcia, F.; Arrieta, L.; Tapia, R. The protein phosphatase inhibitor okadaic acid induces heat shock protein expression and neurodegeneration in rat hippocampus in vivo. Exp. Neurol. 1998, 153, 242–254. [Google Scholar] [CrossRef]
- He, J.; Yamada, K.; Zou, L.-B.; Nabeshima, T. Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats. J. Neural. Transm. 2001, 108, 1435–1443. [Google Scholar] [CrossRef]
- Zhao, W.; Bennett, P.; Sedman, G.L.; Ng, K.T. The impairment of long-term memory formation by the phosphatase inhibitor okadaic acid. Brain Res. Bull. 1995, 36, 557–561. [Google Scholar] [CrossRef]
- Kamat, P.K.; Tota, S.; Rai, S.; Swarnkar, S.; Shukla, R.; Nath, C. A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci. 2012, 90, 713–720. [Google Scholar] [CrossRef]
- Franchinia, A.; Marchesini, E.; Poletti, R.; Ottaviani, E. Swiss mice CD1 fed on mussels contaminated by okadaic acid and yessotoxins: Effects on thymus and spleen. Eur. J. Histochem. 2005, 49, 179–188. [Google Scholar]
- Ito, E.; Ohkusu, M.; Terao, K.; Yasumoto, T. Effects of repeated injections of palytoxin on lymphoid tissues in mice. Toxicon 1997, 35, 679–688. [Google Scholar] [CrossRef]
- Hokama, Y.; Scheuer, P.J.; Yasumoto, T. Effect of a marine toxin on human peripheral blood monocytes. J. Clin. Lab. Anal. 1989, 3, 215–221. [Google Scholar] [CrossRef]
- Pshenichkin, S.P.; Wise, B.C. Okadaic acid stimulates nerve growth factor production via an induction of interleukin-1 in primary cultures of cortical astroglial cells. Neurochem. Int. 1997, 30, 507–514. [Google Scholar] [CrossRef]
- Hurme, M.; Matikainen, S. Okadaic acid, a phosphatase inhibitor, enhances the phorbol ester-induced interleukin-1 beta expression via an AP-1-mediated mechanism. Scand. J. Immunol. 1993, 38, 570–574. [Google Scholar] [CrossRef]
- Sonoda, Y.; Kasahara, T.; Yamaguchi, Y.; Kuno, K.; Matsushima, K.; Mukaida, N. Stimulation of interleukin-8 production by okadaic acid and vanadate in a human promyelocyte cell line, an HL-60 subline. Possible role of mitogen-activated protein kinase on the okadaic acid-induced NF-kappaB activation. J. Biol. Chem. 1997, 272, 15366–15372. [Google Scholar] [CrossRef]
- Martín-López, A.; Gallardo-Rodríguez, J.J.; Sánchez-Mirón, A.; García-Camacho, F.; Molina-Grima, E. Cytotoxicity of yessotoxin and okadaic acid in mouse T lymphocyte cell line EL-4. Toxicon 2012, 60, 1049–1056. [Google Scholar] [CrossRef]
- Qin, L.; He, J.; Hanes, R.N.; Pluzarev, O.; Hong, J.S.; Crews, F.T. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J. Neuroinflammation 2008, 5, 10. [Google Scholar] [CrossRef]
- Goris, J.; Hermann, J.; Hendrix, P.; Ozon, R.; Merlevede, W. Okadaic acid, a specific protein phosphatase inhibitor, induces maturation and MPF formation in Xenopus laevis oocytes. FEBS Lett. 1989, 245, 91–94. [Google Scholar] [CrossRef]
- Picard, A.; Capony, J.P.; Brautigan, D.L.; Doree, M. Involvement of protein phosphatases 1 and 2A in the control of M phase-promoting factor activity in starfish. J. Cell Biol. 1989, 109, 3347–3354. [Google Scholar] [CrossRef]
- Escoffier, N.; Gaudin, J.; Mezhoud, K.; Huet, H.; Chateau-Joubert, S.; Turquet, J.; Crespeau, F.; Edery, M. Toxicity to medaka fish embryo development of okadaic acid and crude extracts of Prorocentrum dinoflagellates. Toxicon 2007, 49, 1182–1192. [Google Scholar] [CrossRef]
- Casarini, L.; Franchini, A.; Malagoli, D.; Ottaviani, E. Evaluation of the effects of the marine toxin okadaic acid by using FETAX assay. Toxicol. Lett. 2007, 169, 145–151. [Google Scholar] [CrossRef]
- Franchini, A.; Malagoli, D.; Ottaviani, E. Targets and effects of yessotoxin, okadaic acid and palytoxin: A differential review. Mar. Drugs 2010, 8, 658–677. [Google Scholar] [CrossRef]
- Ehlers, A.; Stempin, S.; Al-Hamwi, R.; Lampen, A. Embryotoxic effects of the marine biotoxin okadaic acid on murine embryonic stem cells. Toxicon 2010, 55, 855–863. [Google Scholar] [CrossRef]
- Ariu, F.; Fois, S.; Bebbere, D.; Ledda, S.; Rosati, I.; Zedda, M.T.; Pau, S.; Bogliolo, L. The effect of okadaic acid on meiotic maturation of canine oocytes of different size. Theriogenology 2012, 77, 46–52. [Google Scholar] [CrossRef]
- Srsen, V.; Kalous, J.; Nagyova, E.; Sutovsky, P.; King, W.A.; Motlik, J. Effects of follicle-stimulating hormone, bovine somototrophin and okadaic acid on cumulus expansion and nuclear maturation of Blue fox (Alopex lagopus) oocytes in vitro. Zygote 1998, 6, 299–309. [Google Scholar] [CrossRef]
- de Vantèry Arrighi, C.; Campana, A.; Schorderet-Slatkine, S. A role for the MEK-MAPK pathway in Okadaic Acid-induced meiotic resumption of incompetent growing mouse oocytes is controlled at both translational and posttranslational levels. Biol. Reprod. 2000, 63, 658–665. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Wu, G.M.; Lai, L. Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vito. Biol. Reprod. 2002, 66, 580–588. [Google Scholar] [CrossRef]
- Carvalho, P.S.; Moukha, S.; Matias, W.G.; Creppy, E.E. Comparative study of domoic acid and okadaic acid induced-chromosomal abnormalities in the Caco-2 cell line. Int. J. Environ. Res. Public Health 2006, 3, 4–10. [Google Scholar] [CrossRef]
- Fessard, V.; Grosse, Y.; Pfohl-Leszkowicz, A.; Puiseux-Dao, S. Okadaic acid treatment induces DNA adduct formation in BHK21 C13 fibroblasts and HESV keratinocytes. Mutat. Res. 1996, 361, 133–141. [Google Scholar]
- Le Hegarat, L.; Jacquin, A.G.; Bazin, E.; Fessard, V. Genotoxicity of the marine toxin okadaic acid, in human Caco-2 cells and in mice gut cells. Environ. Toxicol. 2006, 21, 55–64. [Google Scholar] [CrossRef]
- Tohda, H.; Nagao, M.; Sugimura, T.; Oikawa, A. Okadaic acid, a protein phosphatase inhibitor, induces sister-chromatid exchanges depending on the presence of bromodeoxyuridine. Mutat. Res. 1993, 289, 275–280. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Laffon, B.; Pásaro, E.; Méndez, J. Okadaic acid-induced genotoxicity in human cells evaluated by micronucleus test and γH2AX analysis. J. Toxicol. Environ. Health 2011, 74, 980–992. [Google Scholar] [CrossRef]
- Le Hégarat, L.; Fessard, V.; Poul, J.M.; Dragacci, S.; Sanders, P. Marine toxin okadaic acid induces aneuploidy in CHO-K1 cells in presence of rat liver postmitochondrial fraction, revealed by cytokinesis-block micronucleus assay coupled to FISH. Environ. Toxicol. 2004, 19, 123–128. [Google Scholar] [CrossRef]
- Nakagama, H.; Kaneko, S.; Shima, H.; Inamori, H.; Fukuda, H.; Kominami, R.; Sugimura, T.; Nagao, M. Induction of minisatellite mutation in NIH 3T3 cells by treatment with the tumor promoter okadaic acid. Proc. Natl. Acad. Sci. USA 1997, 94, 10813–10816. [Google Scholar]
- Rogers, C.G.; Heroux-Metcalf, C.; Langlois, I. Evaluation of cytotoxicity and genotoxicity of okadaic acid, a nonphorbol ester type tumor promoter, in V79 Chinese hamster lung cells. Toxicol. Vitro 1994, 8, 269–276. [Google Scholar] [CrossRef]
- Aonuma, S.; Ushijima, T.; Nakayasu, M.; Shima, H.; Sugimura, T.; Nagao, M. Mutation induction by okadaic acid, a protein phosphatase inhibitor, in CHL cells, but not in S. typhimurium. Mutat. Res. 1991, 250, 375–381. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Méndez, J.; Pásaro, E.; Cemeli, E.; Anderson, D.; Laffon, B. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutat. Res. 2010, 689, 74–79. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Pásaro, E.; Méndez, J.; Laffon, B. Assays to determine the DNA repair ability. J. Toxicol. Environ. Health 2011, 74, 1094–1109. [Google Scholar] [CrossRef]
- Herman, M.; Ori, Y.; Chagnac, A.; Weinstein, T.; Korzets, A.; Zevin, D.; Malachi, T.; Gafter, U. DNA repair in mononuclear cells, role of serine/threonine phosphatases. J. Lab. Clin. Med. 2002, 140, 255–262. [Google Scholar] [CrossRef]
- Douglas, P.; Moorhead, G.B.; Ye, R.; Lees-Miller, S.P. Protein phosphatases regulate DNA-dependent protein kinase activity. J. Biol. Chem. 2001, 276, 18992–18998. [Google Scholar]
- LeHegarat, L.; Nesslany, F.; Mourot, A.; Marzin, D.; Fessard, V. Lack of DNA damage induction by okadaic acid, a marine toxin, in the CHO-Hprt and the in vitro UDS assay. Mutat. Res. 2004, 564, 139–147. [Google Scholar] [CrossRef]
- Au, W.W. Abnormal chromosome repair and risk of developing cancer. Environ. Health Perspect. 1993, 101, 303–308. [Google Scholar]
- Berwick, M.; Vineis, P. Markers of DNA repair and susceptibility to cancer in humans, an epidemiologic review. J. Natl. Cancer Inst. 2000, 92, 874–897. [Google Scholar] [CrossRef]
- Fujiki, H.; Suganuma, M.; Suguri, H.; Yoshizawa, S.; Takagi, K.; Uda, N.; Wakamatsu, K.; Yamada, K.; Murata, M.; Yasumoto, T.; et al. Diarrhetic shellfish toxin, dinophysistoxin-1, is a potent tumor promoter on mouse skin. Jpn. J. Cancer Res. 1988, 79, 1089–1093. [Google Scholar] [CrossRef]
- Suganuma, M.; Fujiki, H.; Suguiri, H.; Yoshizwa, S.; Hirota, M.; Nakayasu, M.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Sugimura, T. Okadaic acid, an additional non-phorbol-12-tetrade-canoate-13-acetate type tumour promoter. Proc. Natl. Acad. Sci. USA 1988, 85, 1768–1771. [Google Scholar] [CrossRef]
- Messner, D.J.; Ao, P.; Jagdale, A.B.; Boynton, A.L. Abbreviated cell cycle progression induced by the serine/threonine protein phosphatase inhibitor okadaic acid at concentrations that promote neoplastic transformation. Carcinogenesis 2001, 22, 1163–1172. [Google Scholar] [CrossRef]
- Peng, J.; Bowden, G.T.; Domann, F.E. Activation of AP-1 by okadaic acid in mouse keratinocytes associated with hyperphosphorylation of c-jun. Mol. Carcinog. 1997, 18, 37–43. [Google Scholar] [CrossRef]
- Thompson, E.J.; MacGowan, J.; Young, M.R.; Colburn, N.; Bowden, G.T. Dominant negative c-jun specifically blocks okadaic acid-induced skin tumor promotion. Cancer Res. 2002, 62, 3044–3047. [Google Scholar]
- Fujiki, H.; Suganuma, M. Carcinogenic aspects of protein phosphatase 1 and 2A inhibitors. Prog. Mol. Subcell. Biol. 2009, 46, 221–254. [Google Scholar] [CrossRef]
- Cordier, S.; Monfort, C.; Miossec, L.; Richarson, S.; Belin, C. Ecological analysis of digestive cancer mortality related to contamination by diarrhetic shellfish poisoning toxins along the coasts of France. Environ. Res. 2000, 84, 145–150. [Google Scholar] [CrossRef]
- López-Rodas, V.; Maneiro, E.; Martinez, J.; Navarro, M.; Costas, E. Harmful algal blooms, red tides and human health: Diarrhetic shellfish poisoning and colorectal cancer. An. R. Acad. Nac. Farm. 2006, 72, 391–408. [Google Scholar]
- Manerio, E.; Rodas, V.L.; Costas, E.; Hernandez, J.M. Shellfish consumption, a major risk factor for colorectal cancer. Med. Hypotheses 2008, 70, 409–412. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Fernández-Tajes, J.; Pásaro, E.; Méndez, J.; Laffon, B. Okadaic Acid Induces Alterations in the Expression Level of Cancer-Related Genes. Ecotox. Environ. Safe. 2013, 92, 303–311. [Google Scholar] [CrossRef]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, L226, 22.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Valdiglesias, V.; Prego-Faraldo, M.V.; Pásaro, E.; Méndez, J.; Laffon, B. Okadaic Acid: More than a Diarrheic Toxin. Mar. Drugs 2013, 11, 4328-4349. https://doi.org/10.3390/md11114328
Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic Acid: More than a Diarrheic Toxin. Marine Drugs. 2013; 11(11):4328-4349. https://doi.org/10.3390/md11114328
Chicago/Turabian StyleValdiglesias, Vanessa, María Verónica Prego-Faraldo, Eduardo Pásaro, Josefina Méndez, and Blanca Laffon. 2013. "Okadaic Acid: More than a Diarrheic Toxin" Marine Drugs 11, no. 11: 4328-4349. https://doi.org/10.3390/md11114328