Coherent Chaotic Communication Using Generalized Runge–Kutta Method
Abstract
:1. Introduction
- 1.
- We investigate the nonlinear properties of a finite-difference model of the Gokyildirim et al. system obtained using a generalized explicit second-order Runge–Kutta solver. The discovered phenomenon of artificial multistability is explored using the Lyapunov spectrum, bifurcation analysis, and basin of attraction analysis.
- 2.
- We present a novel modulation technique called alpha modulation (M), which is suitable for constructing coherent chaos-based communication systems. The proposed technique assumes the controllable value of in the generalized explicit second-order Runge–Kutta solver and corresponding discrete chaotic map obtained from a continuous system. The prototype system is based on the Gokyildirim et al. chaotic system. The experiments were performed using the Arduino-based CCS test bench developed by the authors.
- 3.
- The experimental results indicate that data transfer using M is feasible. The system’s performance was evaluated by comparing several important properties and included noise resistivity and secrecy superior to those of parameter modulation (PM) implemented on the same hardware.
- 4.
- The study employed the quantified return map analysis (QRMA) technique to evaluate the secrecy of the communication system. We discovered that while the noise resistivity among all the investigated modulation techniques is similar, the symmetry modulation technique exhibits greater secrecy than parametric modulation and variable midpoint modulation.
2. Materials and Methods
2.1. Second-Order Runge–Kutta Methods
0 | ||
(1 − ) |
2.2. Analysis of the Gokyildirim Discrete Model
2.2.1. The Bifurcation Diagram Analysis
2.2.2. Bifurcation and Lyapunov Spectrum Analysis
3. Investigation of Chaotic Communication System with -Based Signal Modulation
3.1. Experimental Setup
Listing 1. Transmitter code. |
Listing 2. Receiver code. |
3.2. Bit Error Rate Analysis
3.3. Quantified Return Map Analysis (QRMA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaddoum, G. Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 2016, 4, 2621–2648. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Phatak, S.; Rao, S.S. Logistic map: A possible random-number generator. Phys. Rev. E 1995, 51, 3670. [Google Scholar] [CrossRef] [PubMed]
- Donati, S.; Hwang, S.K. Chaos and high-level dynamics in coupled lasers and their applications. Prog. Quantum Electron. 2012, 36, 293–341. [Google Scholar] [CrossRef]
- Terry, J.R.; Thornburg, K.S., Jr.; DeShazer, D.J.; VanWiggeren, G.D.; Zhu, S.; Ashwin, P.; Roy, R. Synchronization of chaos in an array of three lasers. Phys. Rev. E 1999, 59, 4036. [Google Scholar] [CrossRef]
- Arecchi, F.; Lippi, G.; Puccioni, G.; Tredicce, J. Deterministic chaos in laser with injected signal. Opt. Commun. 1984, 51, 308–314. [Google Scholar] [CrossRef]
- Chua, L.O. Chua’s circuit 10 years later. Int. J. Circuit Theory Appl. 1994, 22, 279–305. [Google Scholar] [CrossRef]
- Adiyaman, Y.; Emiroglu, S.; Uçar, M.K.; Yildiz, M. Dynamical analysis, electronic circuit design and control application of a different chaotic system. Chaos Theory Appl. 2020, 2, 10–16. [Google Scholar]
- Lin, H.; Wang, C.; Deng, Q.; Xu, C.; Deng, Z.; Zhou, C. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 2021, 106, 959–973. [Google Scholar] [CrossRef]
- Jovic, B. Synchronization Techniques for Chaotic Communication Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Baptista, M.S. Chaos for communication. Nonlinear Dyn. 2021, 105, 1821–1841. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Wang, A.; Wang, Y.; Gao, Z.; Li, S.; Yan, L. Scheme of coherent optical chaos communication. Opt. Lett. 2020, 45, 4762–4765. [Google Scholar] [CrossRef] [PubMed]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [Google Scholar] [CrossRef]
- Yassen, M. Controlling chaos and synchronization for new chaotic system using linear feedback control. Chaos Solitons Fractals 2005, 26, 913–920. [Google Scholar] [CrossRef]
- Vargas, J.A.; Grzeidak, E.; Gularte, K.H.; Alfaro, S.C. An adaptive scheme for chaotic synchronization in the presence of uncertain parameter and disturbances. Neurocomputing 2016, 174, 1038–1048. [Google Scholar] [CrossRef]
- Voznesensky, A.; Butusov, D.; Rybin, V.; Kaplun, D.; Karimov, T.; Nepomuceno, E. Denoising Chaotic Signals Using Ensemble Intrinsic Time-Scale Decomposition. IEEE Access 2022, 10, 115767–115775. [Google Scholar] [CrossRef]
- Ostrovskii, V.Y.; Rybin, V.G.; Karimov, A.I.; Butusov, D.N. Inducing multistability in discrete chaotic systems using numerical integration with variable symmetry. Chaos Solitons Fractals 2022, 165, 112794. [Google Scholar] [CrossRef]
- Babajans, R.; Cirjulina, D.; Kolosovs, D.; Litvinenko, A. Quadrature Chaos Phase Shift Keying Communication System Based on Vilnius Chaos Oscillator. In Proceedings of the 2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 5–7 October 2022; pp. 5–8. [Google Scholar]
- Ouannas, A.; Karouma, A.; Grassi, G.; Pham, V.T. A novel secure communications scheme based on chaotic modulation, recursive encryption and chaotic masking. Alex. Eng. J. 2021, 60, 1873–1884. [Google Scholar] [CrossRef]
- Leung, H.; Lam, J. Design of demodulator for the chaotic modulation communication system. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1997, 44, 262–267. [Google Scholar] [CrossRef]
- Karimov, T.; Rybin, V.; Kolev, G.; Rodionova, E.; Butusov, D. Chaotic Communication System with Symmetry-Based Modulation. Appl. Sci. 2021, 11, 3698. [Google Scholar] [CrossRef]
- Fang, Y.; Han, G.; Chen, P.; Lau, F.C.; Chen, G.; Wang, L. A survey on DCSK-based communication systems and their application to UWB scenarios. IEEE Commun. Surv. Tutorials 2016, 18, 1804–1837. [Google Scholar] [CrossRef]
- Galias, Z.; Maggio, G.M. Quadrature chaos-shift keying: Theory and performance analysis. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2001, 48, 1510–1519. [Google Scholar] [CrossRef]
- Estudillo-Valdez, M.A.; Adeyemi, V.A.; Nuñez-Perez, J.C. FPGA realization of an image encryption system using the DCSK-CDMA technique. Integration 2024, 96, 102157. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Jaimes-Reátegui, R.; Rodríguez-Flores, C.; García-López, J.; Huerta-Cuéllar, G.; Martín-Pasquín, F.J. Secure chaotic communication based on extreme multistability. J. Frankl. Inst. 2021, 358, 2561–2575. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Lee, T.H.; Tan, C.P. Secure communication through a chaotic system and a sliding-mode observer. IEEE Trans. Syst. Man Cybern. Syst. 2020, 52, 1869–1881. [Google Scholar] [CrossRef]
- Bian, Y.; Yu, W. A secure communication method based on 6-D hyperchaos and circuit implementation. Telecommun. Syst. 2021, 77, 731–751. [Google Scholar] [CrossRef]
- Martínez-Fuentes, O.; Díaz-Muñoz, J.D.; Muñoz-Vázquez, A.J.; Tlelo-Cuautle, E.; Fernández-Anaya, G.; Cruz-Vega, I. Family of controllers for predefined-time synchronization of Lorenz-type systems and the Raspberry Pi-based implementation. Chaos Solitons Fractals 2024, 179, 114462. [Google Scholar] [CrossRef]
- Cirjulina, D.; Babajans, R.; Capligins, F.; Kolosovs, D.; Litvinenko, A. Experimental Study on Colpitts Chaotic Oscillator-Based Communication System Application for the Internet of Things. Appl. Sci. 2024, 14, 1180. [Google Scholar] [CrossRef]
- Ilyas, B.; Raouf, S.M.; Abdelkader, S.; Camel, T.; Said, S.; Lei, H. An efficient and reliable chaos-based iot security core for udp/ip wireless communication. IEEE Access 2022, 10, 49625–49656. [Google Scholar] [CrossRef]
- Sadoudi, S.; Azzaz, M.S.; Djeddou, M.; Benssalah, M. An FPGA real-time implementation of the Chen’s chaotic system for securing chaotic communications. Int. J. Nonlinear Sci. 2009, 7, 467–474. [Google Scholar]
- ŞAHİN, M.; Guler, H.; HAMAMCI, S. Design and realization of a hyperchaotic memristive system for communication system on FPGA. Trait. Signal 2020, 37, 939–953. [Google Scholar] [CrossRef]
- Elsafty, A.H.; Tolba, M.F.; Said, L.A.; Madian, A.H.; Radwan, A.G. Enhanced hardware implementation of a mixed-order nonlinear chaotic system and speech encryption application. Int. J. Electron. Commun. 2020, 125, 153347. [Google Scholar] [CrossRef]
- Pano-Azucena, A.; Tlelo-Cuautle, E.; Rodriguez-Gomez, G.; De La Fraga, L. FPGA-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials. Aip Adv. 2018, 8, 075217. [Google Scholar] [CrossRef]
- TL, C.; LM, P. Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 1991, 38, 453–456. [Google Scholar]
- Babajans, R.; Cirjulina, D.; Kolosovs, D.; Litvinenko, A. Experimental Study on Analog and Discrete Chaos Oscillators Synchronization. In Proceedings of the 2023 Workshop on Microwave Theory and Technology in Wireless Communications (MTTW), Riga, Latvia, 4–6 October 2023; pp. 24–28. [Google Scholar]
- Babajans, R.; Cirjulina, D.; Capligins, F.; Kolosovs, D.; Litvinenko, A. Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design. Appl. Sci. 2024, 14, 915. [Google Scholar] [CrossRef]
- Karimov, T.; Butusov, D.; Andreev, V.; Karimov, A.; Tutueva, A. Accurate synchronization of digital and analog chaotic systems by parameters re-identification. Electronics 2018, 7, 123. [Google Scholar] [CrossRef]
- Shao, W.; Fu, Y.; Cheng, M.; Deng, L.; Liu, D. Chaos Synchronization Based on Hybrid Entropy Sources and Applications to Secure Communication. IEEE Photonics Technol. Lett. 2021, 33, 1038–1041. [Google Scholar] [CrossRef]
- Tutueva, A.V.; Moysis, L.; Rybin, V.G.; Kopets, E.E.; Volos, C.; Butusov, D.N. Fast synchronization of symmetric Hénon maps using adaptive symmetry control. Chaos Solitons Fractals 2022, 155, 111732. [Google Scholar] [CrossRef]
- Tutueva, A.; Moysis, L.; Rybin, V.; Zubarev, A.; Volos, C.; Butusov, D. Adaptive symmetry control in secure communication systems. Chaos Solitons Fractals 2022, 159, 112181. [Google Scholar] [CrossRef]
- Rybin, V.; Butusov, D.; Rodionova, E.; Karimov, T.; Ostrovskii, V.; Tutueva, A. Discovering chaos-based communications by recurrence quantification and quantified return map analyses. Int. J. Bifurc. Chaos 2022, 32, 2250136. [Google Scholar] [CrossRef]
- Butcher, J.C.; Wanner, G. Runge-Kutta methods: Some historical notes. Appl. Numer. Math. 1996, 22, 113–151. [Google Scholar] [CrossRef]
- Süli, E.; Mayers, D.F. An Introduction to Numerical Analysis; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ralston, A. Runge-Kutta methods with minimum error bounds. Math. Comput. 1962, 16, 431–437. [Google Scholar] [CrossRef]
- Rybin, V.; Butusov, D.; Babkin, I.; Pesterev, D.; Arlyapov, V. Some Properties of a Discrete Lorenz System Obtained by Variable Midpoint Method and Its Application to Chaotic Signal Modulation. Int. J. Bifurc. Chaos 2024, 34, 2450009. [Google Scholar] [CrossRef]
- Gokyildirim, A.; Kocamaz, U.E.; Uyaroglu, Y.; Calgan, H. A novel five-term 3D chaotic system with cubic nonlinearity and its microcontroller-based secure communication implementation. Int. J. Electron. Commun. 2023, 160, 154497. [Google Scholar] [CrossRef]
- Rybin, V.; Babkin, I.; KVİTKO, D.; Karimov, T.; Nardo, L.; Nepomuceno, E.; Butusov, D. Estimating Optimal Synchronization Parameters for Coherent Chaotic Communication Systems in Noisy Conditions. Chaos Theory Appl. 2023, 5, 141–152. [Google Scholar] [CrossRef]
- Guillén-Fernández, O.; Tlelo-Cuautle, E.; de la Fraga, L.G.; Sandoval-Ibarra, Y.; Nuñez-Perez, J.C. An image encryption scheme synchronizing optimized chaotic systems implemented on raspberry pis. Mathematics 2022, 10, 1907. [Google Scholar] [CrossRef]
- Sambas, A.; Vaidyanathan, S.; Zhang, X.; Koyuncu, I.; Bonny, T.; Tuna, M.; Alçin, M.; Zhang, S.; Sulaiman, I.M.; Awwal, A.M.; et al. A novel 3D chaotic system with line equilibrium: Multistability, integral sliding mode control, electronic circuit, FPGA implementation and its image encryption. IEEE Access 2022, 10, 68057–68074. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Carbajal-Gomez, V.; Obeso-Rodelo, P.; Rangel-Magdaleno, J.; Nunez-Perez, J.C. FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 2015, 82, 1879–1892. [Google Scholar] [CrossRef]
- Sambas, A.; Miroslav, M.; Vaidyanathan, S.; Ovilla-Martínez, B.; Tlelo-Cuautle, E.; Abd El-Latif, A.A.; Abd-El-Atty, B.; Benkouider, K.; Bonny, T. A New Hyperjerk System with a Half Line Equilibrium: Multistability, Period Doubling Reversals, Antimonotonocity, Electronic Circuit, FPGA Design and an Application to Image Encryption. IEEE Access 2024, 12, 9177–9194. [Google Scholar] [CrossRef]
- Rybin, V.; Karimov, T.; Bayazitov, O.; Kvitko, D.; Babkin, I.; Shirnin, K.; Kolev, G.; Butusov, D. Prototyping the Symmetry-Based Chaotic Communication System Using Microcontroller Unit. Appl. Sci. 2023, 13, 936. [Google Scholar] [CrossRef]
M | PM | |||||
---|---|---|---|---|---|---|
Case 1 | −24 | 25 | 49 | 0.1 | 0.0965 | 0.0035 |
Case 2 | −34 | 35 | 69 | 0.1 | 0.09525 | 0.00475 |
Case 3 | −54 | 55 | 109 | 0.1 | 0.094 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babkin, I.; Rybin, V.; Andreev, V.; Karimov, T.; Butusov, D. Coherent Chaotic Communication Using Generalized Runge–Kutta Method. Mathematics 2024, 12, 994. https://doi.org/10.3390/math12070994
Babkin I, Rybin V, Andreev V, Karimov T, Butusov D. Coherent Chaotic Communication Using Generalized Runge–Kutta Method. Mathematics. 2024; 12(7):994. https://doi.org/10.3390/math12070994
Chicago/Turabian StyleBabkin, Ivan, Vyacheslav Rybin, Valery Andreev, Timur Karimov, and Denis Butusov. 2024. "Coherent Chaotic Communication Using Generalized Runge–Kutta Method" Mathematics 12, no. 7: 994. https://doi.org/10.3390/math12070994