Cost-Effective Thermomechanical Processing of Nanostructured Ferritic Alloys: Microstructure and Mechanical Properties Investigation †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM-EBSD Characterization
3.2. STEM-EDS Characterization
3.3. APT Characterization
4. Discussion
4.1. Correlation between Microstructure and Mechanical Properties
4.2. Formation of Precipitates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | annular dark-field |
AGI | average grain intercept |
APT | atom probe tomography |
BF | bright-field |
CNA | castable nanostructured alloy |
CTMP | continuous thermomechanical processing |
DSA | dynamic strain aging |
EBSD | electron backscatter diffraction |
EDS | energy dispersive X-ray spectroscopy |
FIB | focused ion-beam |
FM | ferritic/martensitic |
HIP | hot isostatic pressing |
NDS | nitride dispersion strengthened |
NFA | nanostructured ferritic alloy |
ODS | oxide-dispersion strengthened |
SD | standard deviation |
SEM | scanning electron microscopy |
SPD | severe plastic deformation |
STEM | scanning transmission electron microscopy |
TE | total elongation |
TEM | transmission electron microscopy |
TKD | transmission Kikuchi diffraction |
UE | uniform elongation |
UTS | ultimate tensile strength |
YS | yield stress |
Appendix A
References
- Cabet, C.; Dalle, F.; Gaganidze, E.; Henry, J.; Tanigawa, H. Ferritic-martensitic steels for fission and fusion applications. J. Nucl. Mater. 2019, 523, 510–537. [Google Scholar] [CrossRef]
- Sridharan, N.; Gussev, M.N.; Field, K.G. Performance of a ferritic/martensitic steel for nuclear reactor applications fabricated using additive manufacturing. J. Nucl. Mater. 2019, 521, 45–55. [Google Scholar] [CrossRef]
- Xiu, P.; Massey, C.P.; Green, T.M.K.; Taller, S.; Isheim, D.; Sridharan, N.; Field, K.G. Microchemical evolution of irradiated additive-manufactured HT9. J. Nucl. Mater. 2022, 559, 153410. [Google Scholar] [CrossRef]
- Henry, J.; Maloy, S.A. 9—Irradiation-Resistant Ferritic and Martensitic Steels as Core Materials for Generation IV Nuclear Reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 329–355. [Google Scholar]
- Kim, T.K.; Kim, S.H. Study on the cold working process for FM steel cladding tubes. J. Nucl. Mater. 2011, 411, 208–212. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Möslang, A.; Muroga, T.; Tanigawa, H. Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion 2013, 53, 104024. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Zinkle, S.J.; Henry, J.; Levine, S.M.; Edmondson, P.D.; Gilbert, M.R.; Tanigawa, H.; Kessel, C.E. Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: A review. J. Phys. Energy 2022, 4, 034003. [Google Scholar] [CrossRef]
- Odette, G.R. Recent Progress in Developing and Qualifying Nanostructured Ferritic Alloys for Advanced Fission and Fusion Applications. JOM 2014, 66, 2427–2441. [Google Scholar] [CrossRef]
- Hoelzer, D.T.; Stinson, I.A.; Massey, C.P. High-Temperature Tensile and Creep Test Results on Thin Wall Tube Specimens of ODS Alloys 14YWT and OFRAC; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2022; 21p. [Google Scholar]
- Jiang, Z.; Zeng, Q.; Anderoglu, O.; Maloy, S.; Odette, G.R.; Ehmann, K.F.; Cao, J. Characterization of 14YWT oxide dispersion strengthened structural materials under electrically-assisted tension. Mater. Sci. Eng. A 2019, 745, 484–494. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Designing Radiation Resistance in Materials for Fusion Energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, Y. The effect of sink strength on helium bubble formation at elevated temperatures. Nucl. Anal. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Boutard, J.L.; Hoelzer, D.T.; Kimura, A.; Lindau, R.; Odette, G.R.; Rieth, M.; Tan, L.; Tanigawa, H. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications. Nucl. Fusion 2017, 57, 092005. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Xu, B.; Zhang, J.; Sun, M.; Li, D. Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy. Int. J. Extrem. Manuf. 2021, 3, 032001. [Google Scholar] [CrossRef]
- Mansur, L.K.; Lee, E.H. Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys. J. Nucl. Mater. 1991, 179–181, 105–110. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Bhattacharya, A.; Chen, D.; Zhao, Y.; Kai, J.-J.; Henry, J.; Zinkle, S.J. The role of Cr concentration and temperature on cavity swelling with co-injected helium in dual-ion irradiated Fe and Fe-Cr alloys. Mater. Des. 2022, 223, 111134. [Google Scholar] [CrossRef]
- Tan, L.; Katoh, Y.; Snead, L.L. Development of castable nanostructured alloys as a new generation RAFM steels. J. Nucl. Mater. 2018, 511, 598–604. [Google Scholar] [CrossRef]
- Tan, L.; Graening, T.; Hu, X.; Zhong, W.; Yang, Y.; Zinkle, S.J.; Katoh, Y. Effects of carbonitrides and carbides on microstructure and properties of castable nanostructured alloys. J. Nucl. Mater. 2020, 540, 152376. [Google Scholar] [CrossRef]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Edalati, K.; Wang, Q.; Enikeev, N.A.; Peters, L.-J.; Zehetbauer, M.J.; Schafler, E. Significance of strain rate in severe plastic deformation on steady-state microstructure and strength. Mater. Sci. Eng. A 2022, 859, 144231. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Lowe, T.C.; Valiev, R.Z. The use of severe plastic deformation techniques in grain refinement. JOM 2004, 56, 64–68. [Google Scholar] [CrossRef]
- Byun, T.; Collins, D.A.; Lin, Y.-R.; Hanson, K.O.; Kanies, B.A.; Montoya, R.A.; Brand, M.J.; Kardoulaki, E.; Beaux, M.F., II; Andersson, A.D.; et al. Feasibility Studies and Downselection of New Materials and Manufacturing Technologies for Nuclear Applications; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2023; 97p. [Google Scholar]
- Humphreys, F.J.; Prangnell, P.B.; Priestner, R. Fine-grained alloys by thermomechanical processing. Curr. Opin. Solid State Mater. Sci. 2001, 5, 15–21. [Google Scholar] [CrossRef]
- McClintock, D.A.; Sokolov, M.A.; Hoelzer, D.T.; Nanstad, R.K. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J. Nucl. Mater. 2009, 392, 353–359. [Google Scholar] [CrossRef]
- Aydogan, E.; Martinez, E.; March, K.; El-Atwani, O.; Krumwiede, D.L.; Hosemann, P.; Saleh, T.; Maloy, S.A. α′ formation kinetics and radiation induced segregation in neutron irradiated 14YWT nanostructured ferritic alloys. Sci. Rep. 2019, 9, 8345. [Google Scholar] [CrossRef]
- Aydogan, E.; Weaver, J.S.; Carvajal-Nunez, U.; Schneider, M.M.; Gigax, J.G.; Krumwiede, D.L.; Hosemann, P.; Saleh, T.A.; Mara, N.A.; Hoelzer, D.T.; et al. Response of 14YWT alloys under neutron irradiation: A complementary study on microstructure and mechanical properties. Acta Mater. 2019, 167, 181–196. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Chen, W.-Y.; Tan, L.; Hoelzer, D.T.; Yan, Z.; Hsieh, C.-Y.; Huang, C.-W.; Zinkle, S.J. Bubble formation in helium-implanted nanostructured ferritic alloys at elevated temperatures. Acta Mater. 2021, 217, 117165. [Google Scholar] [CrossRef]
- Auger, M.A.; Hoelzer, D.T.; Field, K.G.; Moody, M.P. Nanoscale analysis of ion irradiated ODS 14YWT ferritic alloy. J. Nucl. Mater. 2020, 528, 151852. [Google Scholar] [CrossRef]
- Harvey, C.; El Atwani, O.; Kim, H.; Lavender, C.; McCoy, M.; Sornin, D.; Lewandowski, J.; Maloy, S.A.; Pathak, S. Microstructural and micro-mechanical analysis of 14YWT nanostructured Ferritic alloy after varying thermo-mechanical processing paths into tubing. Mater. Charact. 2021, 171, 110744. [Google Scholar] [CrossRef]
- Hoelzer, D.T.; Unocic, K.A.; Sokolov, M.A.; Byun, T.S. Influence of processing on the microstructure and mechanical properties of 14YWT. J. Nucl. Mater. 2015, 471, 251–265. [Google Scholar] [CrossRef]
- Mazumder, B.; Parish, C.M.; Bei, H.; Miller, M.K. The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy. J. Nucl. Mater. 2015, 465, 204–211. [Google Scholar] [CrossRef]
- Byun, T.S.; Lach, T.G.; Lin, Y.-R.; Collins, D.A.; Epps, K.; Hoelzer, D.T. Characteristics of oxide-dispersion strengthened alloys produced by high-temperature severe deformation. J. Nucl. Mater. 2024, 597, 155129. [Google Scholar] [CrossRef]
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2004.
- ASTM E21-03a; Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2003; pp. 1–8.
- Trimby, P. Electron Backscatter Diffraction—Not Just Colouring by Numbers; Australian Microscopy Microanalysis Society: Broadway, NSW, Australia, 2016; pp. 21–28. [Google Scholar]
- Lin, Y.-R.; Bhattacharya, A.; Chen, D.; Kai, J.-J.; Henry, J.; Zinkle, S.J. Temperature-dependent cavity swelling in dual-ion irradiated Fe and Fe-Cr ferritic alloys. Acta Mater. 2021, 207, 116660. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, C.; Cui, Y.; Lin, Y.-R.; Zinkle, S.J. A deep learning model for automatic analysis of cavities in irradiated materials. Comput. Mater. Sci. 2023, 221, 112073. [Google Scholar] [CrossRef]
- ASTM E112-24; Standard Test Methods for Determining Average Grain Size. ASTM: West Conshohocken, PA, USA, 2004.
- Brimbal, D.; Beck, L.; Troeber, O.; Gaganidze, E.; Trocellier, P.; Aktaa, J.; Lindau, R. Microstructural characterization of Eurofer-97 and Eurofer-ODS steels before and after multi-beam ion irradiations at JANNUS Saclay facility. J. Nucl. Mater. 2015, 465, 236–244. [Google Scholar] [CrossRef]
- Hoelzer, D.T. Summary of Previous Mechanical Test Data on ODS Alloys 14YWT and OFRAC up to 1000 °C; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2021; 32p. [Google Scholar]
- Oñoro, M.; Macías-Delgado, J.; Auger, M.A.; de Castro, V.; Leguey, T. Mechanical properties and stability of precipitates of an ODS steel after thermal cycling and aging. Nucl. Mater. Energy 2020, 24, 100758. [Google Scholar] [CrossRef]
- Ukai, S.; Ohtsuka, S.; Kaito, T.; de Carlan, Y.; Ribis, J.; Malaplate, J. 10—Oxide Dispersion-Strengthened/Ferrite-Martensite Steels as Core Materials for Generation IV Nuclear Reactors. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 357–414. [Google Scholar]
- Chaouadi, R.; Coen, G.; Lucon, E.; Massaut, V. Crack resistance behavior of ODS and standard 9%Cr-containing steels at high temperature. J. Nucl. Mater. 2010, 403, 15–18. [Google Scholar] [CrossRef]
- Byun, T.S.; Yoon, J.H.; Hoelzer, D.T.; Lee, Y.B.; Kang, S.H.; Maloy, S.A. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness. J. Nucl. Mater. 2014, 449, 290–299. [Google Scholar] [CrossRef]
- Kim, J.H.; Byun, T.S.; Hoelzer, D.T.; Kim, S.-W.; Lee, B.H. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part I—Mechanical and microstructural observations. Mater. Sci. Eng. A 2013, 559, 101–110. [Google Scholar] [CrossRef]
- Sachdev, A.K. Dynamic Strain Aging of Various Steels. Metall. Trans. A 1982, 13, 1793–1797. [Google Scholar] [CrossRef]
- Mariappan, K.; Shankar, V.; Sandhya, R.; Prasad Reddy, G.V.; Mathew, M.D. Dynamic strain aging behavior of modified 9Cr–1Mo and reduced activation ferritic martensitic steels under low cycle fatigue. J. Nucl. Mater. 2013, 435, 207–213. [Google Scholar] [CrossRef]
- Bai, B.; Han, X.; Zheng, Q.; Jia, L.; Zhang, C.; Yang, W. Composition optimization of high strength and ductility ODS alloy based on machine learning. Fusion Eng. Des. 2020, 161, 111939. [Google Scholar] [CrossRef]
- Preininger, D. Effect of particle morphology and microstructure on strength, work-hardening and ductility behaviour of ODS-(7–13)Cr steels. J. Nucl. Mater. 2004, 329–333, 362–368. [Google Scholar] [CrossRef]
- Koch, C.C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 2003, 49, 657–662. [Google Scholar] [CrossRef]
- Hutař, P.; Kuběna, I.; Ševčík, M.; Šmíd, M.; Kruml, T.; Náhlík, L. Small fatigue crack propagation in Y2O3 strengthened steels. J. Nucl. Mater. 2014, 452, 370–377. [Google Scholar] [CrossRef]
- Springer, H.; Baron, C.; Szczepaniak, A.; Jägle, E.A.; Wilms, M.B.; Weisheit, A.; Raabe, D. Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition. Mater. Des. 2016, 111, 60–69. [Google Scholar] [CrossRef]
- Smith, T.M.; Kantzos, C.A.; Zarkevich, N.A.; Harder, B.J.; Heczko, M.; Gradl, P.R.; Thompson, A.C.; Mills, M.J.; Gabb, T.P.; Lawson, J.W. A 3D printable alloy designed for extreme environments. Nature 2023, 617, 513–518. [Google Scholar] [CrossRef]
- Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; de Carlan, Y. Development of new ferritic alloys reinforced by nano titanium nitrides. J. Nucl. Mater. 2015, 456, 449–454. [Google Scholar] [CrossRef]
- Tan, L.; Parish, C.M.; Hu, X. Microstructure and property tailoring of castable nanostructured alloys through thermomechanical treatments. J. Nucl. Mater. 2018, 509, 267–275. [Google Scholar] [CrossRef]
- Massey, C.P.; Hoelzer, D.T.; Edmondson, P.D.; Kini, A.; Gault, B.; Terrani, K.A.; Zinkle, S.J. Stability of a model Fe-14Cr nanostructured ferritic alloy after long-term thermal creep. Scr. Mater. 2019, 170, 134–139. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Bhattacharya, A.; Zinkle, S.J. The effect of helium on cavity swelling in dual-ion irradiated Fe and Fe-10Cr ferritic alloys. J. Nucl. Mater. 2022, 569, 153907. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Maziasz, P.J.; Stoller, R.E. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J. Nucl. Mater. 1993, 206, 266–286. [Google Scholar] [CrossRef]
- Nuttall, J.; Nutting, J. Structure and properties of heavily cold-worked fcc metals and alloys. Met. Sci. 1978, 12, 430–438. [Google Scholar] [CrossRef]
- Jiang, L.; Song, M.; Yang, L.; Yang, J.; Du, D.; Lou, X.; Chen, Y. A comparison study of void swelling in additively manufactured and cold-worked 316L stainless steels under ion irradiation. J. Nucl. Mater. 2021, 551, 152946. [Google Scholar] [CrossRef]
Sample ID | Powder Mixture (wt.%) | Consolidation Process | SPD-CTMP Process |
---|---|---|---|
HR-1CC | Fe-13.7Cr-2.9W-0.38Ti-0.23Y-0.07O | 6 hot-rolling cycles at 900 °C for 80% strain | 8 hot-rolling cycles at 600 °C for 220% strain |
HR-2CC | Fe-13.7Cr-2.9W-0.38Ti 0.23Y + (0.22)Fe2O3 | 6 hot-rolling cycles at 900 °C for 80% strain | 8 hot-rolling cycles at 600 °C for 220% strain |
HR-3A | Fe-13.7Cr-2.9W-0.38Ti-0.12Y + (0.3)Y2O3 | 6 hot-rolling cycles at 900 °C for 80% strain | 8 hot-rolling cycles at 550 °C for 240% strain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-R.; Zhao, Y.; Su, Y.-F.; Byun, T.S. Cost-Effective Thermomechanical Processing of Nanostructured Ferritic Alloys: Microstructure and Mechanical Properties Investigation. Materials 2024, 17, 4763. https://doi.org/10.3390/ma17194763
Lin Y-R, Zhao Y, Su Y-F, Byun TS. Cost-Effective Thermomechanical Processing of Nanostructured Ferritic Alloys: Microstructure and Mechanical Properties Investigation. Materials. 2024; 17(19):4763. https://doi.org/10.3390/ma17194763
Chicago/Turabian StyleLin, Yan-Ru, Yajie Zhao, Yi-Feng Su, and Thak Sang Byun. 2024. "Cost-Effective Thermomechanical Processing of Nanostructured Ferritic Alloys: Microstructure and Mechanical Properties Investigation" Materials 17, no. 19: 4763. https://doi.org/10.3390/ma17194763