Excellent Electrochromic Properties of Ti4+-Induced Nanowires V2O5 Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of V2O5 Precursor Solution
2.3. Synthesis of Ti4+-Doped V2O5 Precursor Solution
2.4. Fabrication of Undoped V2O5 and Ti4+-Doped V2O5 Films
2.5. Fabrication of EC Devices
2.6. Material Characterization
2.7. Electrochemical and EC Measurements
3. Results and Discussion
3.1. Microstructural Characterization
3.2. EC Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuana, S.; Duana, X.; Liua, J.; Yun Ye, Y.; Lva, F.; Liu, T.; Wang, Q.; Zhang, X. Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Mater. 2021, 42, 317–369. [Google Scholar] [CrossRef]
- Okpara, C.; Olatunde, O.C.; Wojuola, O.B.; Onwudiwe, D.C. Applications of transition metal oxides and chalcogenides and their composites in water treatment: A review. Environ. Adv. 2023, 11, 100341. [Google Scholar] [CrossRef]
- Ishibe, T.; Tomeda, A.; Watanabe, K.; Kamakura, Y.; Mori, N.; Naruse, N.; Mera, Y.; Yamashita, Y.; Nakamura, Y. Methodology of thermoelectric power factor enhancement by controlling nanowire interface. ACS Appl. Mater. Interfaces 2018, 10, 37709–37716. [Google Scholar] [CrossRef]
- Maeng, S.; Kim, S.-W.; Lee, D.-H.; Moon, S.-E.; Kim, K.-C.; Maiti, A. SnO2 nanoslab as NO2 sensor: Identification of the NO2 sensing mechanism on a SnO2 surface. ACS Appl. Mater. Interfaces 2014, 6, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xie, Y. Promising vanadium oxide and hydroxide nanostructures: From energy storage to energy saving. Energy Environ. Sci. 2010, 3, 1191–1206. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, K.; Gao, Y.; Luo, H.; Lu, L. Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication. Adv. Energy Mater. 2017, 7, 1700547. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Zhao, Y.; Hu, T.; Gao, Z.; Meng, C. Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Appl. Surf. Sci. 2016, 377, 385–393. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Jiang, W.; Liang, J.; Tang, Z.; Hu, M.; Robichaud, J.; Djaoued, Y. 2D vanadium oxide inverse opal films: Cycling stability exploration as an electrochromic active electrode. J. Mater. Chem. C 2023, 11, 923–993. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, L.; Mandler, D.; Lee, P.S. High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices. J. Mater. Chem. C 2013, 1, 7380–7386. [Google Scholar] [CrossRef]
- Qi, Y.; Qin, K.; Zou, Y.; Lin, L.; Jian, Z.; Chen, W. Flexible electrochromic thin films with ultrafast responsion based on exfoliated V2O5 nanosheets/graphene oxide via layer-by-layer assembly. Appl. Surf. Sci. 2020, 514, 145950. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, G.; Yang, H.; Bi, W.; Liang, X.; Zhang, Y.; Zhang, G.; Wu, G. Controlled synthesis of V2O5/MWCNT core/shell hybrid aerogels through a mixed growth and self-assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J. Mater. Chem. A 2015, 3, 15692–15699. [Google Scholar] [CrossRef]
- Takahashi, K.; Wang, Y.; Cao, G.Z. Ni−V2O5∙nH2O core−shell nanocable arrays for enhanced electrochemical intercalation. J. Phys. Chem. B 2005, 109, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Lantelme, F.; Mantoux, A.; Groult, H.D. Electrochemical study of phase transition processes in lithium insertion in V2O5 electrodes. J. Electrochem. Soc. 2003, 150, A1202. [Google Scholar] [CrossRef]
- Yu, M.; Zeng, Y.; Han, Y.; Cheng, X.; Zhao, W.; Liang, C.; Tong, Y.; Tang, H.; Lu, X. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles. Adv. Funct. Mater. 2015, 25, 3534–3540. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Vernardou, D.; Koudoumas, E. Tunable properties of Mg-doped V2O5 thin films for energy applications: Li-ion batteries and electrochromics. J. Phys. Chem. C 2017, 121, 70–79. [Google Scholar] [CrossRef]
- Wu, Y.J.; Gao, G.H.; Wu, G.M. Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J. Mater. Chem. A 2015, 3, 1828–1832. [Google Scholar] [CrossRef]
- Chao, D.; Xia, X.; Liu, J.; Fan, Z.; Ng, C.F.; Lin, J.; Zhang, H.; Shen, Z.X.; Fan, H.J. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800. [Google Scholar] [CrossRef]
- Xiong, C.; Aliev, A.E.; Gnade, B.; Balkus, K.J. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2008, 2, 293–301. [Google Scholar] [CrossRef]
- Luo, Y.; Bai, Y.; Mistry, A.; Zhang, Y.; Zhao, D.; Sarkar, S.; Hand, J.V.; Rezaei, S.; Chuang, A.C.; Carrillo, L.; et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation. Nat. Mater. 2022, 21, 217–227. [Google Scholar] [CrossRef]
- Tong, Z.; Li, N.; Lv, H.; Tian, Y.; Qu, H.; Zhang, X.; Li Zhao, J.Y. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Sol. Energy Mater. Sol. Cells 2016, 146, 135–143. [Google Scholar] [CrossRef]
- Kang, W.; Yan, C.; Wang, X.; Foo, C.; Tan, A.; Chee, K.; Lee, P. Green synthesis of nanobelt-membrane hybrid structured vanadium oxide with high electrochromic contrast. J. Mater. Chem. C 2014, 2, 4727–4732. [Google Scholar] [CrossRef]
- Li, G.; Qiu, Y.; Hou, Y.; Li, H.; Zhou, L.; Deng, H.; Zhang, Y. Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage. J. Mater. Chem. A 2015, 3, 1103–1109. [Google Scholar] [CrossRef]
- Tong, Z.; Hao, J.; Zhang, K.; Zhao, J.; Su, B.-L.; Li, Y. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J. Mater. Chem. C 2014, 2, 3651–3658. [Google Scholar] [CrossRef]
- Wei, D.; Scherer, M.R.J.; Bower, C.; Andrew, P.; Ryhanen, T.; Steiner, U. A nanostructured electrochromic supercapacitor. Nano Lett. 2012, 12, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Taya, M. Electrochromic windows based on V2O5–TiO2 and poly (3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) coatings. Sol. Energy Mater. Sol. Cells 2012, 107, 225–229. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Vernardou, D.; Koudoumas, E.; Tsoukalas, D.; Raptis, Y.S. Tungsten doping effect on V2O5 thin film electrochromic performance. Electrochim. Acta 2019, 321, 134743. [Google Scholar] [CrossRef]
- Yao, J.H.; Yin, Z.L.; Zou, Z.G.; Li, Y.W. Y-doped V2O5 with enhanced lithium storage performance. RSC Adv. 2017, 7, 32327–32335. [Google Scholar] [CrossRef]
- Yu, H.; Rui, X.; Tan, H.; Chen, J.; Huang, X.; Xu, C.; Liu, W.; Denis, Y.; Hng, H.H.; Hoster, H.E. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 2013, 5, 4937–4943. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Liu, C.; Fu, H.; Nan, X.; Wang, K.; Li, X.; Ma, W.; Lu, X.; Cao, G. Enhanced electrochemical properties of Sn-doped V2O5 as a cathode material for lithium ion batteries. Electrochim. Acta 2016, 222, 1831–1838. [Google Scholar] [CrossRef]
- Thakur, V.K.; Ding, G.; Ma, J.; Lee, P.S.; Lu, X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 2012, 24, 4071–4096. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.-M.; Cai, Y.; Yang, B.; Gu, C.; Zhang, S.X.-A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 2020, 49, 8687–8720. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Li, W.; Fu, G.; Zhang, Q.; Liu, J.; Jin, Y.; Wang, H. Recent progress and advances in electrochromic devices exhibiting infrared modulation. J. Mater. Chem. A 2022, 10, 6269–6290. [Google Scholar] [CrossRef]
- Li, H.; Liao, J.; Liu, Y.; Deng, Y.; Liang, J.; Tang, Z.; Liu, F.; Robichaud, J.; Djaoued, Y. Impact of impedance on electrochromic properties of W-doped V2O5 films. Next Mater. 2024, 2, 100149. [Google Scholar] [CrossRef]
- Li, H.; Tang, Z.; Liu, Y.; Robichaud, J.; Liang, J.; Jiang, W.; Djaoued, Y. Two-Dimensional V2O5 Inverse Opal: Fabrication and Electrochromic Application. Materials 2022, 15, 2904. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhu, H.; Zhang, B.; Li, J.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 2020, 32, 2001113. [Google Scholar] [CrossRef]
- Su, D.; Zhao, Y.; Yan, D.; Ding, C.; Ning, M.; Zhang, J. Enhanced composites of V2O5 nanowires decorating on graphene layers as ideal cathode materials for lithium-ion batteries. J. Alloys Compd. 2017, 695, 2974–2980. [Google Scholar] [CrossRef]
- Li, Y.W.; Yao, J.H.; Liu, C.J.; Zhao, W.M.; Deng, W.X.; Zhong, S.K. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. Int. J. Hydrogen Energy 2010, 35, 2539–2545. [Google Scholar] [CrossRef]
- Xia, X.; Tu, J.; Mai, Y.; Chen, R.; Wang, X.; Gu, C.; Zhao, X. Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 2011, 17, 10898–10905. [Google Scholar] [CrossRef]
- Cai, G.F.; Zhou, D.; Xiong, Q.Q.; Zhang, J.H.; Wang, X.L.; Gu, C.D.; Tu, J.P. Efficient electrochromic materials based on TiO2@ WO3 core/shell nanorod arrays. Sol. Energy. Mat. Sol. C 2013, 117, 231–238. [Google Scholar] [CrossRef]
- Runnerstrom, E.L.; Llordés, A.; Lounis, S.; Milliron, D.J. Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 2014, 50, 10555–10572. [Google Scholar] [CrossRef]
- Gillaspie, D.T.; Tenent, R.C.; Dillon, A.C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592. [Google Scholar] [CrossRef]
- Deb, S.K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 2008, 92, 245–258. [Google Scholar] [CrossRef]
- Liu, Y.N.; Jia, C.Y.; Wan, Z.Q.; Weng, X.; Xie, J.; Deng, L. Electrochemical and electrochromic properties of novel nanoporous NiO/V2O5 hybrid film. Sol. Energy Mater. Sol. Cells 2015, 132, 467–475. [Google Scholar] [CrossRef]
- Tritschler, U.; Beck, F.; Schlaad, H.; Cölfen, H. Electrochromic properties of self-organized multifunctional V2O5–polymer hybrid films. J. Mater. Chem. C 2015, 3, 950–954. [Google Scholar] [CrossRef]
- Salek, G.; Bellanger, B.; Mjejri, I.; Gaudon, M.; Rougier, A. Polyol synthesis of Ti-V2O5 nanoparticles and their use as electrochromic films. Inorg. Chem. 2016, 55, 9838–9847. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.-H.; Chandrasekar, A.; Arul, K.T.; Huang, Y.-C.; Nga, T.T.T.; Chen, C.-L.; Chen, J.-L.; Wei, D.-H.; Asokan, K.; Yeh, P.-H.; et al. Improving electrochromic properties of V2O5 smart film through Ti incorporation: Local atomic and electronic perspectives. Opt. Mater. X 2024, 22, 100301. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Tsai, C.-W.; Chen, P.-W. Electrochromic properties of V2O5-z thin films sputtered onto flexible PET/ITO substrates. Solid State Ion. 2008, 179, 290–297. [Google Scholar] [CrossRef]
400 nm | |||||||
---|---|---|---|---|---|---|---|
Samples | T0 (%) ¥ | Tc (%) ¥ | Tb (%) ¥ | ΔT (%) * | $ | Reversibility & (%) | CE (cm2/C) |
Undoped V2O5 film | 28.00 | 45.50 | 29.70 | −15.80 | 0.19 | 93.93 | 23.57 |
Ti4+-doped V2O5 film | 17.80 | 35.90 | 17.80 | −18.10 | 0.30 | 100.00 | 34.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Li, H.; Liang, J.; Liao, J.; Huang, M.; Chen, R.; Long, Y.; Robichaud, J.; Djaoued, Y. Excellent Electrochromic Properties of Ti4+-Induced Nanowires V2O5 Films. Materials 2024, 17, 4680. https://doi.org/10.3390/ma17194680
Deng Y, Li H, Liang J, Liao J, Huang M, Chen R, Long Y, Robichaud J, Djaoued Y. Excellent Electrochromic Properties of Ti4+-Induced Nanowires V2O5 Films. Materials. 2024; 17(19):4680. https://doi.org/10.3390/ma17194680
Chicago/Turabian StyleDeng, Yufei, Hua Li, Jian Liang, Jun Liao, Min Huang, Rui Chen, Yinggui Long, Jacques Robichaud, and Yahia Djaoued. 2024. "Excellent Electrochromic Properties of Ti4+-Induced Nanowires V2O5 Films" Materials 17, no. 19: 4680. https://doi.org/10.3390/ma17194680