Strength and Failure Analysis of Fiber-Wound Composite Gas Cylinder via Numerical Simulation
Abstract
:1. Introduction
2. Stress Analysis
2.1. Modeling of Filament Wound Composite Gas Cylinder
2.2. Autofrettage Stress of Filament-Wound Composite Gas Cylinder
3. Failure Analysis of Cylinder
4. Conclusions
- Starting from the perspective of autofrettage treatment and damage analysis of a fiber-wound composite gas cylinder, the angle and thickness of the fiber layer are calculated by using the grid theory for modeling. The fiber winding method is geodesic winding. The ABAQUS subroutine compiled by the Hashin criteria is used to analyze the damage during the process from working pressure to blasting pressure of the fiber-wound composite gas cylinder.
- The simulation results show that applying autofrettage pressure can reduce the stress level of the inner liner under working pressure and increase the stress of the fiber layer. In other words, applying autofrettage pressure can improve the stress distribution between the inner liner and the fiber under working pressure. In the study, failure analysis was carried out on a fully wound carbon fiber gas cylinder with an aluminum alloy inner liner under nominal working pressure of 35 MPa. According to the simulation results, it was found that the initial damage of the matrix of the fiber layer appeared in the transition section between the dome and the barrel body, and the damage generally started from the circumferential winding layer and the outer layer of the winding layer.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Botzung, M.; Chaudourne, S.; Gillia, O.; Perret, C.; Latroche, M.; Percheronguegan, A.; Marty, P. Simulation and experimental validation of a hydrogen storage tank with metal hydrides. Int. J. Hydrogen Energy 2008, 33, 98–104. [Google Scholar] [CrossRef]
- Mirzaei, M. Failure analysis of an exploded gas cylinder. Eng. Fail. Anal. 2008, 15, 820–834. [Google Scholar] [CrossRef]
- Mirzaei, M.; Harandi, A.; Karimi, R. Finite element analysis of deformation and fracture of an exploded gas cylinder. Eng. Fail. Anal. 2009, 16, 1607–1615. [Google Scholar] [CrossRef]
- Jorgensen, S.W. Hydrogen storage tanks for vehicles: Recent progress and current status. Curr. Opin. Solid State Mater. Sci. 2011, 15, 39–43. [Google Scholar] [CrossRef]
- Vasiliev, V.V.; Krikanov, A.A.; Razin, A.F. New generation of filament-wound composite pressure vessels for commercial applications. Compos. Struct. 2003, 62, 449–459. [Google Scholar] [CrossRef]
- Parnas, L.; Katırcı, N. Design of fiber-reinforced composite pressure vessels under various loading conditions. Compos. Struct. 2002, 58, 83–95. [Google Scholar] [CrossRef]
- Chapelle, D.; Perreux, D. Optimal design of a type 3 hydrogenvessel: Part I-analytic modeling of the cylindrical section. Int. J. Hydrogen Energy 2006, 31, 627–638. [Google Scholar] [CrossRef]
- Chen, R.X. The Analysis and Design of Filament Wound Gas Cylinder. Solid Rocket Technol. 2008, 31, 625–628, 634. [Google Scholar]
- Belardi, V.G.; Ottaviano, M.; Vivio, F. Bending theory of composite pressure vessels: A closed-form analytical approach. Compos. Struct. 2024, 329, 117799. [Google Scholar] [CrossRef]
- Azeem, M.; Ya, H.H.; Alam, M.A.; Kumar, M.; Stabla, P.; Smolnicki, M.; Gemi, L.; Khan, R.; Ahmed, T.; Ma, Q.; et al. Application of filament winding technology in composite pressure vessels and challenges: A review. J. Energy Storage 2022, 49, 103468. [Google Scholar] [CrossRef]
- Statnikov, R.; Gavriushin, S.; Dang, M.; Statnikov, A. Multicriteria design of composite pressure vessels. Int. J. Multicriteria Decis. Mak. 2014, 4, 252–278. [Google Scholar] [CrossRef]
- Alam, S.; Yandek, G.R.; Lee, R.C.; Mabry, J.M. Design and development of a filament wound composite overwrapped pressure vessel. Compos. C Open Access 2020, 2, 100045. [Google Scholar] [CrossRef]
- Daghia, F.; Baranger, E.; Tran, D.-T.; Pichon, P. A hierarchy of models for the design of composite pressure vessels. Compos. Struct. 2020, 235, 111809. [Google Scholar] [CrossRef]
- Xiao, L.J.; Yao, C.; Shen, W.; Lu, W.G. Layer Design of Carbon Fiber Fully Wound Aluminum Cylinder. Mater. Sci. Technol. 2021, 29, 37–38. [Google Scholar]
- Wang, X.; Tian, M.; Chen, X.; Xie, P.; Yang, J.; Chen, J.; Yang, W. Advances on materials design and manufacture technology of plastic liner of type IV hydrogen storage vessel. Int. J. Hydrogen Energy 2022, 47, 8382–8408. [Google Scholar] [CrossRef]
- Solazzi, L.; Vaccari, M. Reliability design of a pressure vessel made of composite materials. Compos. Struct. 2022, 279, 114726. [Google Scholar] [CrossRef]
- Rahul, B.; Chand, D.S.; Dharani, J. A comprehensive review on the performance analysis of composite overwrapped pressure vessels. Eng. Appl. Sci. Res. 2022, 49, 272–287. [Google Scholar]
- Baum, M.R. Rocket missiles generated by failure of a high pressure liquid storage vessel. J. Loss Prev. Process Ind. 1998, 11, 11–24. [Google Scholar] [CrossRef]
- Wibawa, L.A.N.; Diharjo, K.; Raharjo, W.W.; Jihad, B.H. Stress analysis of thick-walled cylinder for rocket motor case under internal pressure. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 70, 106–115. [Google Scholar] [CrossRef]
- Preuster, P.; Alekseev, A.; Wasserscheid, P. Hydrogen storage technologies for future energy systems. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 445–471. [Google Scholar] [CrossRef]
- Sinigaglia, T.; Lewiski, F.; Martins, M.E.S.; Siluk, J.C.M. Production, storage, fuel stations of hydrogen and its utilization in automotive applications—A review. Int. J. Hydrogen Energy 2017, 42, 24597–24611. [Google Scholar] [CrossRef]
- Alves, M.P.; Gul, W.; Cimini Junior, C.A.; Ha, S.K. A review on industrial perspectives and challenges on material, manufacturing, design and development of compressed hydrogen storage tanks for the transportation sector. Energies 2022, 15, 5152. [Google Scholar] [CrossRef]
- Fayaz, H.; Saidur, R.; Razali, N.; Anuar, F.; Saleman, A.; Islam, M. An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 2012, 16, 5511–5528. [Google Scholar] [CrossRef]
- Yamashita, A.; Kondo, M.; Goto, S.; Ogami, N. Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai”; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Johnson, K.; Veenstra, M.J.; Gotthold, D.; Simmons, K.; Alvine, K.; Hobein, B.; Houston, D.; Newhouse, N.; Yeggy, B.; Vaipan, A.; et al. Advancements and opportunities for on-board 700 bar compressed hydrogen tanks in the progression towards the commercialization of fuel cell vehicles. SAE Int. J. Altern. Powertrains 2017, 6, 201–218. [Google Scholar] [CrossRef]
- Park, G.; Jang, H.; Kim, C. Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4). J. Mech. Sci. Technol. 2021, 35, 3507–3517. [Google Scholar] [CrossRef]
- Hossain, A.K.; Davies, P.A. Pyrolysis liquids and gases as alternative fuels in internal combustion engines—A review. Renew. Sustain. Energy Rev. 2013, 21, 165–189. [Google Scholar] [CrossRef]
- Barthélémy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Ergashev, M.I.; Abdullaaxatov, E.A.; Xametov, Z.M. Application of gas cylinder equipment to the system of internal combustion engines in Uzbekistan. Acad. Res. Educ. Sci. 2022, 3, 1112–1119. [Google Scholar]
- Blakeman, T.C.; Branson, R.D. Oxygen supplies in disaster management. Respir. Care 2013, 58, 173–183. [Google Scholar] [CrossRef]
- Srivastava, U. Anaesthesia gas supply: Gas cylinders. Indian J. Anaesth. 2013, 57, 500–506. [Google Scholar] [CrossRef]
- Hartung, R. Planar-wound filamentary pressure vessels. AIAA J. 1963, 1, 2842–2844. [Google Scholar] [CrossRef]
- Shan, M. (Translator). Dome thickness of filament winding composite pressure vessels. Missiles Space Veh. 1991, 306, 66–75. [Google Scholar]
- Liang, C.C.; Chen, H.-W.; Wang, C.-H. Optimum design of dome contour for filament wound composite pressure vessels based on a shape factor. Compos. Struct. 2002, 58, 469–480. [Google Scholar] [CrossRef]
- Kim, C.-U.; Kang, I.-H.; Hong, C.-S.; Kim, C.-G. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Compos. Struct. 2005, 67, 443–452. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumari, A.S. Design and Failure analysis of Geodesic Dome of a Composite Pressure vessel. Int. J. Eng. Res. Technol. 2012, 1, 2270-0181. [Google Scholar]
- Cho, S.-M.; Kim, K.-S.; Lee, S.-K.; Jung, G.-S.; Lee, S.-K.; Lyu, S.-K. Effect of dome curvature on failure mode of type 4 composite pressure vessel. Int. J. Precis. Eng. Manuf. 2018, 19, 405–410. [Google Scholar] [CrossRef]
- Zu, L.; Xu, H.; Wang, H.; Zhang, B.; Zi, B. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding. Compos. Struct. 2019, 207, 41–52. [Google Scholar] [CrossRef]
- Jois, K.C.; Welsh, M.; Gries, T.; Sackmann, J. Numerical analysis of filament wound cylindrical composite pressure vessels accounting for variable dome contour. J. Compos. Sci. 2021, 5, 56. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Bera, T.; Semwal, K.; Badhe, R.M.; Sharma, A.; Kapur, G.S.; Ramakumar, S.; Neogi, S. Effects of dome shape on burst and weight performance of a type-3 composite pressure vessel for storage of compressed hydrogen. Compos. Struct. 2022, 293, 115732. [Google Scholar] [CrossRef]
- Padovec, Z.; Vondráček, D.; Mareš, T. The analytical and numerical stress analysis of various domes for composite pressure vessels. Appl. Comput. Mech. 2023, 16, 151–166. [Google Scholar] [CrossRef]
- David, C.; Susan, C.M.; Liyang, Z. The Effect of Fiber Volume Fraction on Filament Wound Composite Pressure Vessel Strength. Compos. Part B 2001, 32, 413–429. [Google Scholar]
- Mertiny, P.; Ellyin, F.; Hothan, A. An experimental investigation on the effect of multiangle filament winding on the strength of tubular composite structures. Compos. Sci. Technol. 2004, 64, 1–9. [Google Scholar] [CrossRef]
- Hocine, A.; Chapelle, D.; Boubakar, M.; Benamar, A.; Bezazi, A. Experimental and analytical investigation of the cylindrical part of a metallic vessel reinforced by filament winding while submitted to internal pressure. Int. J. Press. Vessel. Pip. 2009, 86, 649–655. [Google Scholar] [CrossRef]
- Sharifi, S.; Gohari, S.; Sharifiteshnizi, M.; Vrcelj, Z. Numerical and experimental study on mechanical strength of internally pressurized laminated woven composite shells incorporated with surface-bounded sensors. Compos. Part B Eng. 2016, 94, 224–237. [Google Scholar] [CrossRef]
- Kharat, A.; Kamble, S. Stress analysis in composite pressure vessels—A review. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 272–287. [Google Scholar]
- Pavan, A.E.; Ahmed, K.S. Effect of Constituent Shell Thickness on Burst Pressure of Composite Overwrapped Pressure Vessel. Carbon 2018, 552, 112–118. [Google Scholar]
- Magnucki, K.; Jasion, P.; Rodak, M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel. Int. J. Press. Vessel. Pip. 2018, 161, 17–21. [Google Scholar] [CrossRef]
- Kumar, A.E.; Santosh, R.K.; Teja, S.R.; Abishek, E. Static and dynamic analysis of pressure vessels with various stiffeners. Mater. Today Proc. 2018, 5, 5039–5048. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, C.; Luo, X. Strength Analysis and Influence Factors Research of Carbon-Fiber Wound Composite Gas Cylinder with Aluminum Liner. In Proceedings of the ASME 2020 Pressure Vessels & Piping Conference, Virtual, 3 August 2020. [Google Scholar]
- Lin, J.; Zheng, C.; Dai, Y.; Wang, Z.; Lu, J. Prediction of composite pressure vessel dome contour and strength analysis based on a new fiber thickness calculation method. Compos. Struct. 2023, 306, 116590. [Google Scholar] [CrossRef]
- Son, D.S.; Hong, J.H.; Chang, S.H. Determination of the autofrettage pressure and estimation of material failures of a Type III hydrogen pressure vessel by using finite element analysis. Int. J. Hydrog. Energy 2012, 37, 12771–12781. [Google Scholar] [CrossRef]
- Hu, G.; Ren, M.; Chen, H.; Ma, Y. Effect of autofrettage technique upon fracture strength of metallic liners for composite overwrapped pressure vessels. Fuhe Cailiao Xuebao (Acta Mater. Compos. Sin.) 2013, 30, 201–205. [Google Scholar]
- Zhang, G.; Wang, H.; Guan, K. Autofrettage Analysis and Prediction of Burst Pressure of Carbon Fiber-winding Hydrogen Storage Vessels by FEM. Press. Vessel. Technol. 2011, 28, 27–34+43. [Google Scholar]
- Enqi, W.; Shiheng, Z.; Weipu, X.; Yin, M.; Yue, C. Fatigue analysis of high-pressure hydrogen storage vessel based on optimum autofrettage pressure. J. Reinf. Plast. Compos. 2023, 42, 313–322. [Google Scholar] [CrossRef]
- Onder, A.; Sayman, O.; Dogan, T.; Tarakcioglu, N. Burst failure load of composite pressure vessels. Compos. Struct. 2009, 89, 159–166. [Google Scholar] [CrossRef]
- Saxena, P.; Gorji, N.E. COMSOL simulation of heat distribution in perovskite solar cells: Coupled optical-electrical-thermal 3-D analysis. IEEE J. Photovolt. 2019, 9, 1693–1698. [Google Scholar] [CrossRef]
- Rafiee, R.; Salehi, A. Estimating the burst pressure of a filament wound composite pressure vessel using two-scale and multi-scale analyses. Mech. Adv. Mater. Struct. 2022, 29, 2668–2683. [Google Scholar] [CrossRef]
- Hu, X.; Tan, S.; Xia, D.; Min, L.; Xu, H.; Yao, W.; Sun, Z.; Zhang, P.; Bui, T.Q.; Zhuang, X.; et al. An overview of implicit and explicit phase field models for quasi-static failure processes, implementation and computational efficiency. Theor. Appl. Fract. Mech. 2023, 124, 103779. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Wang, X.; Yao, W. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus. Eng. Fract. Mech. 2018, 204, 268–287. [Google Scholar] [CrossRef]
- Bui, T.Q.; Hu, X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng. Fract. Mech. 2021, 248, 107705. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M.; Soni, A. Advances and researches on non destructive testing: A review. Mater. Today Proc. 2018, 5, 3690–3698. [Google Scholar] [CrossRef]
- Gupta, R.; Mitchell, D.; Blanche, J.; Harper, S.; Tang, W.; Pancholi, K.; Baines, L.; Bucknall, D.G.; Flynn, D. A review of sensing technologies for non-destructive evaluation of structural composite materials. J. Compos. Sci. 2021, 5, 319. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, W.; Hu, X.; Bui, T.Q. 3D micromechanical progressive failure simulation for fiber-reinforced composites. Compos. Struct. 2020, 249, 112534. [Google Scholar] [CrossRef]
- Min, L.; Hu, X.; Yao, W.; Bui, T.Q.; Zhang, P. On realizing specific failure initiation criteria in the phase field model. Comput. Methods Appl. Mech. Eng. 2022, 394, 114881. [Google Scholar] [CrossRef]
- Zhang, P.; Tan, S.; Hu, X.; Yao, W.; Zhuang, X. A double-phase field model for multiple failures in composites. Compos. Struct. 2022, 293, 115730. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Pan, Z.-B.; Liu, J.; Ma, L.-H.; Zhou, J.-Y.; Su, Y.-F. Review on optimization design, failure analysis and non-destructive testing of composite hydrogen storage vessel. Int. J. Hydrogen Energy 2022, 47, 38862–38883. [Google Scholar] [CrossRef]
- Icardi, U.; Longo, A.; Locatto, S. Assessment of recent theories for predicting failure of composite laminates. Appl. Mech. Rev. 2007, 2, 76–86. [Google Scholar] [CrossRef]
- Kam, T.Y.; Liu, Y.W.; Lee, F.T. First-ply failure strength of laminated composite pressure vessels. Compos. Struct. 1997, 38, 65–70. [Google Scholar] [CrossRef]
- Chang, R.R. Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels. Compos. Struct. 2000, 49, 237–243. [Google Scholar] [CrossRef]
- Madhavi, M.; Venkat, R. Predicting structural behavior of filament wound composite pressure vessel using three dimensional shell analysis. J. Inst. Eng. (India) Ser. C 2014, 95, 41–50. [Google Scholar] [CrossRef]
- Rafiee, R.; Torabi, M.A. Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 2018, 185, 573–583. [Google Scholar] [CrossRef]
- Paal, O.; Udichi, S.; Waen, W.; Zakarias, Y.; Baadal, A. Exploring the Consequence of Stress Concentration Elements on the Breakdown of Pressure Vessels. Int. J. Technol. Sci. Res. 2023, 13, 4401–4406. [Google Scholar]
- Eachan, C.; Gabor, G.; Jabali, I.; Naagarjun, L.; Baadal, A. Investigating the Effect of Stress Intensity Factors on the Failure of Pressure Vessels. Int. J. Eng. Appl. Sci. 2023, 12, 210–215. [Google Scholar]
- Nagumo, Y.; Onodera, S.; Okabe, T. Prediction of transverse crack progression based on continuum damage mechanics and its application to composite laminates and filament-wound cylindrical pressure vessels. Adv. Compos. Mater. 2022, 31, 600–616. [Google Scholar] [CrossRef]
- Lin, S.; Yang, L.; Xu, H.; Jia, X.; Yang, X.; Zu, L. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion. Compos. Struct. 2021, 255, 113046. [Google Scholar] [CrossRef]
- DOT-CFFC Standard, Carbon-Fiber Aluminum Cylinders. 2007. Available online: https://opac.lib.dlut.edu.cn/space/databaseDetail/312 (accessed on 21 December 2023).
- Simulia Inc. Wound Composite Modeler for ABAQUS User; Simulia Inc.: Johnston, RI, USA, 2016. [Google Scholar]
- Jordon, J.B.; Horstemeyer, M.F.; Solanki, K.; Xue, Y. Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mech. Mater. 2007, 39, 920–931. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
E1/GPa | 130 | Xt/MPa | 2080 |
E2/GPa | 7.7 | Xc/MPa | 1250 |
E3/GPa | 7.7 | Yt/MPa | 60 |
v12 | 0.3 | Yc/MPa | 140 |
v13 | 0.3 | Sxy/MPa | 110 |
v23 | 0.35 | Gft/N/mm | 133 |
G12/GPa | 4.8 | Gfc/N/mm | 10 |
G13/GPa | 4.8 | Gmt/N/mm | 0.5 |
G23/GPa | 3.8 | Gmc/N/mm | 1.6 |
Gs/N/mm | 1.6 |
Autofrettage Pressure /MPa | Zero Pressure /MPa | Working Pressure /MPa | Hydraulic Test Pressure /MPa | Minimum Burst Pressure /MPa |
---|---|---|---|---|
40 | 0 | 35 | 52.5 | 120 |
Working Pressure /MPa | Hydraulic Test Pressure /MPa | Minimum Burst Pressure /MPa |
---|---|---|
35 | 52.5 | 120 |
Working Pressure | Hydraulic Test Pressure | Minimum Burst Pressure | |||||||
---|---|---|---|---|---|---|---|---|---|
Maxi-Mum Mises Stress of Liner/MPa | Maxi-Mum S1 Stress of Circum-Ferential Fiber Layer/MPa | Maxi-Mum S1 Stress of Spiral Fiber Layer/MPa | Maximum MISES Stress of Liner/MPa | Maxi-Mum S1 Stress of Circu-Mfere-Ntial Fiber Layer/MPa | Maxi-Mum S1 Stress of Spiral Fiber Layer/MPa | Maxi-Mum Mises Stress of Liner/MPa | Maxi-Mum S1 Stress of Circumferential Fiber Layer/MPa | Maxi-Mum S1 Stress of Spiral Fiber Layer/MPa | |
No Autofrett-age Pressure | 302.9 | 1045 | 772 | 318.7 | 2412 | 1897 | 330 | 7201 | 8380 |
Autofrett-age Pressure | 274.2 | 1328 | 925.2 | 318.7 | 2413 | 1564 | 330 | 6842 | 7842 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Yang, B.; Zhou, S. Strength and Failure Analysis of Fiber-Wound Composite Gas Cylinder via Numerical Simulation. Materials 2024, 17, 717. https://doi.org/10.3390/ma17030717
Wu X, Yang B, Zhou S. Strength and Failure Analysis of Fiber-Wound Composite Gas Cylinder via Numerical Simulation. Materials. 2024; 17(3):717. https://doi.org/10.3390/ma17030717
Chicago/Turabian StyleWu, Xiaodi, Bo Yang, and Song Zhou. 2024. "Strength and Failure Analysis of Fiber-Wound Composite Gas Cylinder via Numerical Simulation" Materials 17, no. 3: 717. https://doi.org/10.3390/ma17030717