The Influence of Concrete Sludge from Residual Concrete on Fresh and Hardened Cement Paste Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Paste Design and Sample Preparation
2.3. Test Methods
3. Results and Discussion
3.1. Parameters of Concrete Sludge
3.2. Properties of Fresh Cement Paste
3.3. Hardened Cement Pastes’ Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanif, A. Recycled Aggregates Use in Precast Concrete: Properties & Applications 2017; LAMBERT Academic Publishing: Saarbruecken, Germany, 2017; ISBN 978-3-330-07808-6. [Google Scholar]
- Brundtland, G.H. Our common future: Report of the world commission on environment and development. Med. War 1987, 4, 17–25. [Google Scholar]
- Hanif, A.; Kim, Y.; Lu, Z.; Park, C. Early-age behaviour of recycled aggregate concrete under steam curing regime. J. Clean. Prod. 2017, 152, 103–114. [Google Scholar] [CrossRef]
- ERMCO. European Ready Mixed Concrete Organization, Ready-Mixed Concrete Industry Statistics: Year 2018. 2019. Available online: http://ermco.eu/new/wp-content/uploads/2020/08/ERMCO-Statistics-30.08.2019-R4-1.pdf (accessed on 22 January 2021).
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Djamaluddin, A.; Caronge, M.; Tjaronge, M.W.; Tabran Lando, A. Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Stud. Constr. Mater. 2020, 12, e00325. [Google Scholar] [CrossRef]
- Nassar, R.U.D.; Soroushian, P. Field investigation of concrete incorporating milled waste glass. J. Solid Waste Technol. Manag. 2011, 37, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Aprianti, S.E. A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production—A review Part II. J. Clean. Prod. 2017, 142, 4178–4194. [Google Scholar] [CrossRef]
- Jani, Y.; Hogland, W. Waste glass in the production of cement and concrete—A review. J. Environ. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Ji, Y.; Liu, G.; Liu, C.; She, W.; Sun, W. Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures. J. Clean. Prod. 2018, 196, 358–369. [Google Scholar] [CrossRef]
- Guerrero, A.; Goni, S.; Campillo, I.; Moragues, A. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Environ. Sci. Technol. 2004, 38, 320–3213. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Menke, C.; Price, L. The CO2 abatement cost curve for the Thailand cement industry. J. Clean. Prod. 2010, 18, 1509–1518. [Google Scholar] [CrossRef]
- Maheswaran, S.; Kalaiselvam, S.; Saravana Karthikeyan, S.K.S.; Kokila, C.; Palani, G.S. β-Belite cements (β-Dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem. Concr. Compos. 2016, 66, 57–65. [Google Scholar] [CrossRef]
- Ludwig, H.M.; Zhang, W. Research review of cement clinker chemistry. Cem. Concr. Res. 2015, 75, 24–37. [Google Scholar] [CrossRef]
- Naik, T.R.; Moriconi, G. Environmental-friendly durable concrete made with recycled materials for sustainable concrete construction 2005. In Proceedings of the CANMET/ACI International Symposium on Sustainable Development of Cement Concrete, Toronto, ON, Canada, 5–7 October 2005; p. 2. [Google Scholar]
- Raju, S.; Kumar, P.R. Effect of using glass powder in concrete. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 421–427. [Google Scholar]
- Hanif, A.; Kim, Y.; Lee, K.; Park, C.; Sim, J. Influence of cement and aggregate type on steam-cured concrete—An experimental study. Mag. Concr. Res. 2017, 69, 694–702. [Google Scholar] [CrossRef]
- Kumar, R.; Samanta, A.K.; Roy, D.K.S. Characterization and development of ecofriendly concrete using industrial waste—A review. J. Urban Environ. Eng. 2014, 8, 98–108. [Google Scholar] [CrossRef] [Green Version]
- De Sensale, G.R. Stregth development of concrete with rice-husk ash. Cem. Concr. Compos. 2006, 28, 158–160. [Google Scholar] [CrossRef]
- Hanif, A.; Parthasarathy, P.; Ma, H.; Fan, T.; Li, Z. Properties improvement of fly ash cenosphere modified cement pastes using nano-silica. Cem. Concr. Compos. 2017, 81, 35–48. [Google Scholar] [CrossRef]
- Collepardi, M.; Collepardi, S.; Skarp, U.; Troli, R. Optimization of silica fume, fly ash, and amorphous nano-silica in superplasticized high-performance concrete. ACI Spec. Publ. 2004, 221, 495–505. [Google Scholar]
- Kwan, A.K.H.; Chen, J.J. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technol. 2013, 234, 19–25. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 2003, 33, 578–584. [Google Scholar] [CrossRef]
- Ghrici, M.; Kenai, S.; Said-Mansour, M. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 2007, 29, 542–549. [Google Scholar] [CrossRef]
- Celik, K.; Meral, C.; Gursel, A.P.; Mehta, P.K.; Horvath, A.; Monteiro, P.J. Mechanical properties, durability, and life-cycle assesment of self-consolidating concrete mixtures made with blended Portland cements containing fly ash and limestone powder. Cem. Concr. Compos. 2015, 56, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Xuan, D.; Poon, C.S.; Zheng, W. Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review. Resour. Conserv. Recycl. 2018, 136, 238–247. [Google Scholar] [CrossRef]
- Borger, J.; Carrasquillo, R.L.; Fowler, D.W. Use of recycled wash water and returned plastic concrete in the production of fresh concrete. Adv. Cem.-Based Mater. 1994, 1, 267–274. [Google Scholar] [CrossRef]
- Correia, S.L.; Souza, F.L.; Dienstmann, G.; Segadaes, A.M. Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments. Waste Manag. 2009, 29, 2886–2891. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.W.Y.; Tam, C.M. Economic comparison of recycling over-ordered fresh concrete: A case study approach. Resour. Conserv. Recycl. 2007, 52, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Rughooputh, R.; Rana, J.O.; Joorawon, K. Possibility of using fresh concrete waste in concrete for non-structural civil engineering works as a waste management strategy. KSCE J. Civ. Eng. 2017, 21, 94–99. [Google Scholar] [CrossRef]
- Serifou, M.; Sbartaï, Z.M.; Yotte, S.; Boffoue, M.O.; Emeruwa, E.; Bos, F. A study of concrete made with fine and coarse aggregates recycled from fresh concrete waste. J. Constr. Eng. 2013, 13, 317182. [Google Scholar] [CrossRef] [Green Version]
- De Brito Prado Vieira, L.; de Figueiredo, A.D. Evaluation of concrete recycling system efficiency for ready-mix concrete plants. Waste Manag. 2016, 56, 337–351. [Google Scholar] [CrossRef]
- Shi, M.; Ling, T.; Gan, B.; Guo, M. Turning concrete waste powder into carbonated artificial aggregates. Constr. Build. Mater. 2019, 199, 178–184. [Google Scholar] [CrossRef]
- Da Silva, D.O.F. Reuse of Residual Sludge from the Concrete Manufacturing Process 2016; University of Sao Paulo: Sao Paulo, Brazil, 2016; Available online: https://www.teses.usp.br/teses/disponiveis/3/3153/tde-24062016-152439/pt-br.php (accessed on 18 December 2022). (In Portuguese)
- Ferrari, G.; Miyamoto, M.; Ferrari, A. New sustainable technology for recycling returned concrete. Constr. Build. Mater. 2014, 67, 353–359. [Google Scholar] [CrossRef]
- Xuan, D.; Zhan, B.; Poon, C.S.; Zheng, W. Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. Constr. Build. Mater. 2016, 113, 664–672. [Google Scholar] [CrossRef]
- Schoon, J.; Buysser, K.D.; Driessche, I.V.; Belie, N.D. Feasibility Study of the use of concrete sludge as alternative raw material for portland clinker production. J. Mater. Civ. Eng. 2015, 27, 04014272. [Google Scholar] [CrossRef] [Green Version]
- Audo, M.; Mahieux, P.Y.; Turcry, P. Utilization of sludge from ready-mixed concrete plants as a substitute for limestone fillers. Constr. Build. Mater. 2016, 112, 790–799. [Google Scholar] [CrossRef]
- Zhang, J.X.; Fujiwara, T. Concrete sludge powder for soil stabilization. Transp. Res. Rec. 2007, 2026, 54–59. [Google Scholar] [CrossRef]
- Reiterman, P.; Mondschein, P.; Doušova, B.; Davidova, V.; Keppert, M. Utilization of concrete slurry waste for soil stabilization. Case Stud. Constr. Mater. 2022, 16, e00900. [Google Scholar] [CrossRef]
- Audo, M.; Mahieux, P.Y.; Turcry, P.; Chateau, L.; Churlaud, C. Characterization of ready mixed concrete plants dry sludge and incorporation into mortars: Origin of pollutants. Environmental characterization and impacts on mortars characteristics. J. Clean. Prod. 2018, 183, 153–161. [Google Scholar] [CrossRef]
- LST EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardisation: London, UK, 2011.
- LST EN 1008:2005; Mixing Water for Concrete—Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete. European Committee for Standardisation: London, UK, 2005.
- LST ISO 4316:1997; Surface Active Agents. Determination of pH of Aqueous Solutions. Potentiometric Method. European Committee for Standardisation: London, UK, 1997.
- LST EN 12350-5:2019; Testing Fresh Concrete—Part 5: Flow Table Test. European Committee for Standardisation: London, UK, 2019.
- LST EN 12390-7:2019; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. European Committee for Standardisation: London, UK, 2019.
- LST EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardisation: London, UK, 2019.
- LST EN 12390-5:2019; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. European Committee for Standardisation: London, UK, 2019.
- Hernanzdez, N.; Lizarazo-Marriaga, J.; Rivas, M.A. Petrographic characterization of Portlandite crystal sizes in cement pastes affected by different hydration environments. Constr. Build. Mater. 2018, 182, 541–549. [Google Scholar] [CrossRef]
- French, W.J. Concrete petrography: Review. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 17–48. [Google Scholar] [CrossRef]
- Slamečka, T.; Škvara, F. The effect of water ratio on microstructure and composition of the hydration products of portland cement pastes. Ceram.—Silikáty 2002, 46, 152–158. [Google Scholar]
- Vaičiukynienė, D.; Balevičius, G.; Vaičiukynas, V.; Kantautas, A.; Jakevičius, L. Synergic effect between two pozzolans: Clinoptilolite and silica gel by-product in a ternary blend of a Portland cement system. Constr. Build. Mater. 2022, 344, 128155. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Gallucciand, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Camiletti, J.; Soliman, A.M.; Nehdi, M.L. Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete. Mag. Concr. Res. 2013, 65, 297–307. [Google Scholar] [CrossRef]
Chemical Composition of Concrete Sludge, % | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | SO3 | Fe2O3 | MgO | K2O | P2O5 | TiO2 | SrO | MnO | Cl |
40.9 | 14.9 | 3.14 | 2.40 | 2.37 | 2.26 | 0.89 | 0.38 | 0.21 | 0.06 | 0.04 | 0.03 |
Properties | Dry Concrete Sludge |
---|---|
Specific surface area, cm2/g | 316 |
Particle density, kg/m3 | 2774 |
Bulk density, kg/m3 | 826 |
With Dried Concrete Sludge | |||||||
Batches | 0 | I | II | III | IV | V | VI |
Cement, % | 100 | 95 | 90 | 85 | 80 | 75 | 70 |
Water, % | 100 | ||||||
Chemical admixture, % | 0.40 | ||||||
Dry concrete sludge, % | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
w/c | 0.35 | ||||||
With Wet Concrete Sludge | |||||||
Cement, % | 100 | 95 | 90 | 85 | 80 | 75 | 70 |
Water, % | 100 | 95 | 90 | 85 | 80 | 75 | 70 |
Chemical admixture, % | 0.40 | ||||||
Wet concrete sludge, % | 0 | 10 | 20 | 30 430 | 40 | 50 | 60 |
w/c | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pocius, E.; Nagrockienė, D.; Pundienė, I. The Influence of Concrete Sludge from Residual Concrete on Fresh and Hardened Cement Paste Properties. Materials 2023, 16, 2531. https://doi.org/10.3390/ma16062531
Pocius E, Nagrockienė D, Pundienė I. The Influence of Concrete Sludge from Residual Concrete on Fresh and Hardened Cement Paste Properties. Materials. 2023; 16(6):2531. https://doi.org/10.3390/ma16062531
Chicago/Turabian StylePocius, Edvinas, Džigita Nagrockienė, and Ina Pundienė. 2023. "The Influence of Concrete Sludge from Residual Concrete on Fresh and Hardened Cement Paste Properties" Materials 16, no. 6: 2531. https://doi.org/10.3390/ma16062531