Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment
Abstract
:1. Introduction
2. Flocculation Mechanism
2.1. Charge Neutralization
2.2. Polymer Bridging
3. Determination of Flocculation Efficiency and Mechanisms
4. Factors Affecting Flocculation
4.1. Effect of pH
4.2. Effect of Salt
4.3. Effect of Shear Rate
4.4. Effect of Other Factors
5. Bio-Based Polysaccharide Flocculants for Water Treatment
5.1. Starch and Its Derivatives
5.2. Chitosan and Its Derivatives
5.3. Cellulose and Its Derivatives
5.4. Other Examples of Natural Polymers Flocculants
6. A New Approach in Obtaining Flocculants
6.1. Bioflocculants Produced by Microorganisms
6.2. Nanoflocculants
6.3. Smart Flocculants—Stimuli Responsive Biopolymers
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kowal, A.L.; Swiderska-Broz, M. Oczyszczanie Wody; Wydawnictwo Naukowe PWN: Warszawa-Wroclaw, Poland, 2000; pp. 161–190. [Google Scholar]
- Ahmad, M.; Ahmed, S.; Swami, B.L.; Ikram, S. Adsorption of heavy metal ions: Role of chitosan and cellulose for water treatment. Int. J. Pharmacogn. 2015, 2, 280–289. [Google Scholar]
- Nechita, P. Applications of chitosan in wastewater treatment. In Biological Activities and Application of Marine Polysaccharides; Shalaby, E., Ed.; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/books/biological-activities-and-application-of-marine-polysaccharides/application-of-chitosan-in-wastewater-treatment (accessed on 10 January 2020).
- Ghernaout, D.; Ghernaout, B. Sweep flocculation as a second form of charge neutralization—A review. Desalin. Water Treat. 2012, 44, 15–28. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018, 36, 92–119. [Google Scholar] [CrossRef] [PubMed]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef]
- Shaikh, S.M.R.; Nasser, M.S.; Magzoub, M.; Benamor, A.; Hussein, I.A.; El-Nass, M.H.; Qiblawey, H. Effect of electrolytes on electrokinetics and flocculation behavior of bentonite—Polyacylamide dispersions. Appl. Clay Sci. 2018, 158, 46–54. [Google Scholar] [CrossRef]
- Qi, X.; Liu, J.; Wang, C.; Li, S.; Li, X.; Liang, Y.; Sarfaraz, K. Synthesis of the hydrophobic cationic Polyacrylamide (PADD) initiated by ultrasonic and its flocculation and treatment of coal mine wastewater. Processes 2020, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Feng, L.; Gao, B.; Zhou, Y.; Zhang, S.; Xu, B. Effect of the cationic block structure on the characteristics of sludge flocs formed by charge neutralization and patching. Materials 2017, 10, 487. [Google Scholar] [CrossRef]
- Rasteiro, G.M.; Garcia, F.A.; Hunkeler, D.; Pinheiro, I. Evaluation of the performance of dual polyelectrolyte systems on the re-flocculation ability of calcium carbonate aggregates in turbulent environment. Polymers 2016, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Geurts, M.; Sjollema, S.B.; Kramer, N.I.; Hermens, J.L.M.; Droge, S.T.J. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: How test design affects bioavailability and effect concentrations. Environ. Toxicol. Chem. 2014, 33, 606–615. [Google Scholar] [CrossRef]
- Jing, G.; Zhou, Z.; Zhou, J. Quantitative structure–activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus quadricauda. Chemosphere 2012, 86, 76–82. [Google Scholar] [CrossRef]
- Wilts, E.M.; Herzberger, J.; Long, T.E. Addressing water scarcity: Cationic polyelectrolytes in water treatment and purification. Polym. Int. 2018, 67, 799–814. [Google Scholar] [CrossRef]
- Virk-Baker, M.K.; Nagy, T.R.; Barnes, S.; Groopman, J. Dietary acrylamide and human cancer: A systematic review of literature. Nutr. Cancer 2014, 66, 774–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, B.R.; Dhuldhoya, N.C.; Merchant, U.C. Flocculants—An ecofriendly approach. J. Polym. Environ. 2006, 14, 195–202. [Google Scholar] [CrossRef]
- Mishra, S.; Mukul, G.; Sen, G.; Jha, U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. Int. J. Biol. Macromol. 2011, 48, 106–111. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Jiang, Z.; Cai, T.; Li, H.; Li, H.; Li, A.; Cheng, R. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. Hazard. Mater. 2013, 254–255, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Okieimen, F.E. Preparation, characterization, and properties of cellulose-polyacrylamide graft copolymers. J. Appl. Polym. Sci. 2003, 89, 913–923. [Google Scholar] [CrossRef]
- Saikh, S.M.R.; Nasser, M.S.; Hussein, I.; Benamor, A.; Onaizi, S.A.; Qiblawey, H. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review. Sep. Purif. Technol. 2017, 187, 137–161. [Google Scholar] [CrossRef]
- Smith, P.G.; Scott, J.S. Dictionary of Water and Waste Management, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2005; pp. 88, 175. [Google Scholar]
- Choy, S.Y.; Prasad, K.M.N.; Wu, T.Y.; Ramanan, R.N. A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. Int. J. Environ. Sci. Technol. 2015, 12, 367–390. [Google Scholar] [CrossRef] [Green Version]
- Aydin, M.E.; Lazarova, Z.; Tor, A.; Ozcan, S. Coagulation, flocculation and chemical precipitation. In Best Practice Guide on Metals Removal from Drinking Water by Treatment; Ersoz, M., Barrott, L., Eds.; IWA Publishing: London, UK, 2012; pp. 29–36. [Google Scholar]
- Walczak, R. Optimization of the coagulation process the search for more effective water coagulants. Technol. Wody 2020, 2, 14–19. [Google Scholar]
- Derjaguin, B.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. URS 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the stability of lyophobic colloids. J. Phys. Chem. 1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anielak, A.M. Wysokoefektywne Metody Oczyszczania Wody, 1st ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2015; pp. 69–85. [Google Scholar]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Vajihinejad, V.; Gumfekar, S.P.; Bazoubandi, B.; Najafabadi, Z.R.; Soares, J.B.P. Water soluble polymer flocculants: Synthesis, characterization, and performance assessment. Macromol. Mater. Eng. 2019, 304, 1800526. [Google Scholar] [CrossRef] [Green Version]
- Fawell, P.D. Solid-liquid separation of clay tailings, chapter 8. In Clays in the Minerals Processing Value Chain; Grafe, M., Klauber, C., McFarlane, A.J., Robinson, D.J., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 327–380. [Google Scholar] [CrossRef]
- Dao, V.H.; Cameron, N.R.; Saito, K. Synthesis, properties and performances of organic polymers employed in flocculation applications. Polym. Chem. 2016, 7, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Franks, G.V. Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 2006, 22, 6775–6786. [Google Scholar] [CrossRef]
- Lemanowicz, M.; Gierczycki, A.; Kuźnik, W. Review of stimuli-responsive polymers application as stabilization agents in solid-liquid dispersion systems. Polimery 2016, 61, 92–97. [Google Scholar] [CrossRef]
- Zhu, Z. A simple explicit expression for the flocculation dynamics modeling of cohesive sediment based on entropy considerations. Entropy 2018, 20, 845. [Google Scholar] [CrossRef] [Green Version]
- Molino, B.; Bufalo, G.; De Vincenzo, A.; Ambrosone, L. Semiempirical model for assessing dewatering process by flocculation of dredged sludge in an artificial reservoir. Appl. Sci. 2020, 10, 3051. [Google Scholar] [CrossRef]
- Tanguay, M.; Fawell, P.; Adkins, S. Modelling the impact flocculants on the performance of a thickener feedwell. Appl. Math. Model. 2014, 38, 4262–4276. [Google Scholar] [CrossRef]
- Oyegbile, B.; Ay, P.; Narra, S. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review. Environ. Eng. Res. 2016, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Xuejun, W.; Guojun, S.; Guangpeng, C. Synthesis and flocculation performance of a chitosan-acrylamide-fulvic acid ternary copolymer. Carbohydr. Polym. 2017, 170, 182–189. [Google Scholar]
- Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 2016, 95, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Li, D. Microfluidic methods for measuring zeta potential. Interface Sci. Technol. 2004, 2, 617–640. [Google Scholar]
- Czemierska, M.; Szcześ, A.; Jarosz-Wilkołazka, A. Purification of wastewater by natural flocculants. J. Biotechnol. Comput. Biol. Bionanotechnol. 2015, 96, 272–278. [Google Scholar] [CrossRef]
- Gregory, J.; Barany, S. Adsorption and flocculation by polymers and polymer mixtures. Adv. Colloid. Interface Sci. 2011, 169, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, H.; Liang, X.; Tan, Y.; Yao, X.; Wang, P. A novel hyperbranched polymeric flocculant for waste-water treatment. J. Polym. Environ. 2018, 26, 2782–2792. [Google Scholar] [CrossRef]
- Yu, W.; Li, G.; Xu, Y.; Yang, X. breakage and re-growth of flocs formed by alum and PACl. Powder Technol. 2009, 189, 439–443. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, S.; Chiang, P.; Shah, K.J. Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water Energy Nexus 2019, 2, 26–36. [Google Scholar] [CrossRef]
- Saxena, k.; Brighu, U.; Choudhary, A. Parameters affecting enhanced coagulation: A review. Environ. Technol. Rev. 2018, 7, 156–176. [Google Scholar] [CrossRef]
- Cui, H.; Huang, X.; Yu, Z.; Chen, P.; Cao, X. Application progress of enhanced coagulation in water treatment. RSC Adv. 2020, 10, 20231–20244. [Google Scholar] [CrossRef]
- Ankcorn, P.D. Claryfing turbidity—The potential and limitations of turbidity as a surrogate for water-quality monitoring. In Proceedings of the 2003 Georgia Water Resources Conference; Hatcher, K.J., Ed.; The University of Georgia: Athens, GA, USA, 2003. [Google Scholar]
- Malkov, V. New water turbidity measurement technology. Environ. Technol. 2016. Available online: https://www.envirotech-online.com/article/water-wastewater/9/hach-company/new-water-turbidity-measurement-technology/2074 (accessed on 2 July 2020).
- Grenda, K.; Gamelas, J.A.F.; Arnold, J.; Cayre, O.J.; Rasteiro, M.G. Evaluation of anionic and cationic pulp-based flocculants with diverse lignin contents for application in effluent treatment from the textile industry: Flocculation monitoring. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Zhang, Y.; Fatehi, P. Sulfomethylated kraft lignin as a flocculant for cationic dye. Colloids Surf. A Physicochem. Eng. Asp. 2016, 503, 19–27. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Fraeye, I.; Muylaert, K. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour. Technol. 2012, 124, 508–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blockx, J.; Verfaillie, A.; Eyley, S.; Deschaume, O.; Bartic, C.; Muylaert, K.; Thielemans, W. Cationic cellulose nanocrystals for flocculation of microalgae: Effect of degree of substitution and crystallinity. ACS Appl. Nano Mater. 2019, 2, 3394–3403. [Google Scholar] [CrossRef]
- Ghimici, L.; Constantin, M. A review of the use of pullulan derivatives in waste water purification. React. Funct. Polym. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Mohammadi, E.; Daraei, H.; Ghanbari, R.; Athar, S.D.; Zandsalimi, Y.; Ziaee, A.; Maleki, A.; Yetilmezsoy, K. Synthesis of carboxylated chitosan modified with ferromagnetic nanoparticles for adsorptive removal of fluoride, nitrate, and phosphate anions from aqueous solutions. J. Mol. Liquids 2019, 273, 116–124. [Google Scholar] [CrossRef]
- Yu, W.-Z.; Gregory, J.; Yang, Y.-L.; Sun, M.; Liu, T.; Li, G.-B. Effect of coagulation and applied breakage shear on the regrowth of kaolin flocs. Environ. Eng. Sci. 2010, 27. [Google Scholar] [CrossRef]
- Cruz, D.; Pimentel, M.; Russo, A.; Cabral, W. Charge neutralization mechanism efficiency in water with high color turbidity ratio using aluminium sulfate and flocculation index. Water 2020, 12, 572. [Google Scholar] [CrossRef] [Green Version]
- Teh, C.Y.; Budiman, P.M.; Pui Yee Shak, K.; Wu, T.W. Recent advancement of coagulation−flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Lopez-Molando, E.A.; Oropeza-Guzman, M.T.; Ochoa-Teran, A. Improving the efficiency of a coagulation-flocculation wastewater treatment of the semiconductor industry through zeta potential measurements. J. Chem. 2014. [Google Scholar] [CrossRef]
- Manual of Water Supply Practices—M12, 5th ed.; Simplified Procedures for Water Examination; AWWA: Denver, CO, USA, 2002.
- Tassinari, B.; Conaghan, S.; Freeland, B.; Marison, W. Application of turbidity meters for the quantitative analysis of flocculation in a jar test apparatus. J. Environ. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Fujisaki, K. Experimental study on flocculation performance of chitosan-based flocculant using a novel jar tester. J. Civ. Eng. Environ. Sci. 2018, 4, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Lam, K.M.; Li, X.Y.; Zhong, R.S.; Zhang, X.H. PIV characterisation of flocculation dynamics and floc structure in water treatment. Colloids Surf. A Physicochem. Eng. Asp. 2011, 379, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.J.; Friedrichs, C.T. Image processing methods for in situ estimation of cohesive sediment floc size, settling velocity, and density. Limnol. Oceanogr. Methods 2015, 13, 250–264. [Google Scholar] [CrossRef]
- Li, S.; Hu, T.; Xu, Y.; Wang, J.; Chu, R.; Yin, Z.; Mo, F.; Zhu, L. A review on flocculation as an efficient method to harvest energy microalgae: Mechanism, performances, influencing factors and perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110005. [Google Scholar] [CrossRef]
- Kim, M. Factors affecting flocculation performance of synthetic polymer for turbidity control. J. Agric. Chem. Environ. 2013, 2, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhu, C.; Zheng, H.; Sun, W.; Xu, Y.; Xiao, X.; You, Z.; Liu, C. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment. Chem. Eng. Res. Des. 2017, 119, 23–32. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, Y.; Guo, J.; Li, F.; Fan, W.; Liao, Y.; Guan, Q. Characterization and evaluation of dewatering properties of PADB, a highly efficient cationic flocculant. Ind. Eng. Chem. Res. 2014, 53, 2572–2582. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Mathew, A.K.; Pandey, A.; Sukumaran, R.V. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Biores. Technol. 2016, 213, 216–221. [Google Scholar] [CrossRef]
- Feng, L.; Li, X.; Lu, W.; Liu, Z.; Xu, C.; Chen, Y.; Zheng, H. Preparation of a graft modified flocculant based on chitosan by ultrasonic initiation and its synergistic effect with kaolin for the improvement of acid blue 83 (AB 83) removal. Int. J. Biol. Macromol. 2020, 150, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Tonhato, A.J.; Hasan, S.D.M.; Sebastien, N.Y. Optimization of coagulation/flocculation of brewery wastewater employing organic flocculant based on vegetable tannin. Water Air Soil Pollut. 2019, 230, 202. [Google Scholar] [CrossRef]
- Chen, N.; Liu, W.; Huang, J.; Qiu, X. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. Int. J. Biol. Macromol. 2020, 146, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Gala, A.; Sanak-Rydlewska, S. Removal of Pb2+ ions from aqueous solutions on plum stones crushed to particle size below 0.5 mm. Arch. Min. Sci. 2011, 56, 71–80. [Google Scholar]
- Romero, C.P.; Jeldres, R.I.; Quezada, G.R.; Concha, F. Zeta potential and viscosity of colloidal silica suspension: Effect of seawater salts, pH, flocculant, and share rate. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 210–218. [Google Scholar] [CrossRef]
- Quezada, G.R.; Rozas, R.E.; Toledo, P.G. Molecular dynamics simulations of quartz (101)—Water and corundum (001) water interfaces: Effect of surface charge and ions on cation adsorption, water orientation, and surface charge reversal. J. Phys. Chem. C 2017, 121, 25271–25282. [Google Scholar] [CrossRef]
- Jeldres, R.I.; Toledo, P.G.; Concha, F.; Stickland, A.D.; Usher, S.P.; Scales, P.J. Impact of seawater salts on the viscoelastic behavior of flocculated mineral suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 461, 295–302. [Google Scholar] [CrossRef]
- Eisma, D. Flocculation and de-flocculation of suspended matter in estuaries. Neth. J. Sea Res. 1986, 20, 183–199. [Google Scholar] [CrossRef]
- Van der Lee, W.T.B. Temporal variation of floc size and settling velocity in the Dollard estuary. Cont. Shelf Res. 2020, 20, 1495–1511. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Song, S.; Dong, X.; Chen, R.; Dong, Y. Effect of shear-induced breakage and reflocculation on the floc structure, settling, and dewatering of coal tailings. Physiochem. Probl. Miner. Process. 2020, 56, 363–373. [Google Scholar] [CrossRef]
- Grenda, K.; Arnold, J.; Gamelas, A.F.; Rasteiro, M.G. Environmental friendly cellulose-based polyelectrolytes in water treatment. Water Sci. Technol. 2017, 76, 1490–1499. [Google Scholar] [CrossRef] [PubMed]
- Kolya, H.; Sasmal, D.; Tripathy, T. Novel biodegradable flocculating agents based on grafted starch family for the industrial effluent treatment. Polym. Environ. 2017, 25, 408–418. [Google Scholar] [CrossRef]
- Saeed, A.; Fatehi, P.; Ni, Y. Chitosan as a flocculant for pre-hydrolysis liquor of kraft-based dissolving pulp production process. Carbohydr. Polym. 2011, 86, 1630–1636. [Google Scholar] [CrossRef]
- Ziolkowska, D.; Shyichuk, A.; Cysewski, P.; Organisciak, A. Flokulacyjna efektywność kationowej skrobi ziemniaczanej w obecności koagulantów. Chemik 2011, 65, 309–314. [Google Scholar]
- Ziolkowska, D.; Shyichuk, A. Flocculation abilities of industrial cationic starches. Polimery 2011, 56, 244–246. [Google Scholar] [CrossRef]
- Li, H.; Cai, T.; Yuan, B.; Li, R.; Yang, H.; Li, A. Flocculation of both kaolin and hematite suspensions using the starch-based flocculants and their floc properties. Ind. Eng. Chem. Res. 2015, 54, 59–67. [Google Scholar] [CrossRef]
- Klimaviciute, R.; Sableviciene, D.; Bendoraitiene, J.; Zemaitaitis, A. Kaolin dispersion destabilization with microparticles of cationic starches. Desalin. Water Treat. 2010, 20, 243–252. [Google Scholar] [CrossRef]
- Kolya, H.; Tripathy, T. Preparation, investigation of metal ion removal and flocculation performances of grafted hydroxyethyl starch. Int. J. Biol. Macromol. 2013, 62, 557–564. [Google Scholar] [CrossRef]
- Kolya, H.; Tripathy, T. Hydroxyethyl starch-g-Poly-(N,N-dimethylacrylamide-co-acrylic acid): An efficient dye removing agent. Eur. Polym. J. 2013, 49, 4265–4275. [Google Scholar] [CrossRef]
- Pontius, F.W. Chitosan as a drinking water treatment coagulant. Am. J. Civil. Eng. 2016, 4, 205–2015. [Google Scholar] [CrossRef] [Green Version]
- Al-Manhel, A.J.; Al-Hilphy, A.R.S.; Niamah, A.K. Extraction of chitosan, characterisation and its use for water purification. J. Saudi Soc. Agric. Sci. 2018, 17, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, Y.; Miao, C. Preparation of cationic chitosan-polyacrylamide flocculant and its properties in wastewater treatment. J. Ocean. Univ. China 2011, 10, 42–46. [Google Scholar] [CrossRef]
- Wu, H.; Yang, R.; Li, R.; Long, C.; Yang, H.; Li, A. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology. Environ. Sci. Pollut. Res. 2015, 22, 13038–13048. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Shang, Y.; Lu, Y.; Chen, Y.; Huang, X.; Chen, A.; Jiang, Y.; Gu, W.; Qian, X.; Yang, H.; et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem. Eng. J. 2011, 172, 287–295. [Google Scholar] [CrossRef]
- Tran, N.V.N.; Yu, Q.J.; Nguyen, T.P.; Wang, S. Coagulation of chitin production wastewater from shrimp scraps with by-product chitosan and chemical coagulants. Polymers 2020, 12, 607. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, A.; Pan, S.; Sun, W.; Zhu, C.; Shah, K.J.; Zheng, H. Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation. J. Environ. Manag. 2019, 248, 109241. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, M.; Zhu, C.; Xu, Y.; Zheng, H.; Xiao, X.; Wu, H.; Xia, T.; You, Z. UV-Initiated graft copolymerization of cationic chitosan-based flocculants for treatment of zinc phosphate-contaminated wastewater. Ind. Eng. Chem. Res. 2016, 55, 10025–10035. [Google Scholar] [CrossRef]
- Das, R.; Ghorai, S.; Pal, S. Flocculation characteristics of polyacrylamide grafted hydroxypropyl methyl cellulose: An efficient biodegradable flocculant. Chem. Eng. J. 2013, 229, 144–152. [Google Scholar] [CrossRef]
- Khiari, R.; Dridi-Dhaouadi, S.; Aguir, C.; Mhenni, M.F. Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. J. Environ. Sci. China 2010, 22, 1539–1543. [Google Scholar] [CrossRef]
- Suoprajärvi, T.; Liimatainen, H.; Hormi, O.; Niinimäki, J. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem. Eng. J. 2013, 231, 59–67. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Yang, X.; Liu, H.; Zhang, X.; Yao, J. An eco-friendly one-step synthesis of dicarboxyl cellulose for potential application in flocculation. Eng. Chem. Res. 2015, 54, 2825–2829. [Google Scholar] [CrossRef]
- Lu, Z.; An, X.; Zhang, H.; Liu, L.; Dai, H.; Cao, H.; Lu, B.; Liu, H. Cationic cellulose nano-fibers (CCNF) as versatile flocculants of wood pulp for high wet web performance. Carbohydr. Polym. 2020, 229, 115434. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lou, C.; Hua, F.; Deng, H.; Tian, X. Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents. J. Clean. Prod. 2020, 251. [Google Scholar] [CrossRef]
- Suopajarvi, T.; Koivuranta, E.; Liimatainen, H.; Niinimaki, J. Flocculation of municipal wastewater with anionic nanocelluloses: Influence of nanocellulose characteristics on floc morphology and strength. J. Environ. Chem. Eng. 2014, 2, 2005–2012. [Google Scholar] [CrossRef]
- Kono, H. Cationic flocculants derived from native cellulose: Preparation, biodegradability, and removal of dyes in aqueous solution. Resour. Effic. Technol. 2017, 3, 55–63. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, W.; Yang, G.; Liu, Y. Preparation of cellulose-base amphoteric flocculant and its application in the treatment of wastewater. Carbohydr. Polym. 2019, 215, 179–188. [Google Scholar] [CrossRef]
- Peng, B.; Yao, Z.; Wang, X.; Crombeen, M.; Sweeney, D.G.; Tam, K.C. Cellulose-based materials in wastewater treatment of petroleum industry. Green Energy Environ. 2020, 5, 37–49. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, L.; Caihua, N. Preparation and flocculation properties of modified alginate amphiphilic polymeric nano-flocculants. Environ. Sci. Pollut. Res. 2019, 26, 32397–32406. [Google Scholar] [CrossRef]
- Sand, A.; Yadav, M.; Mishra, D.K.; Behari, K. Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties interms of swelling capacity, metal-ion uptake and flocculation. Carbohydr. Polym. 2010, 80, 1147–1154. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, L.; Sang, X.; Shi, G.; Ni, C. Preparation and flocculation performance study of a novel amphoteric alginate flocculant. J. Phys. Chem. Solids 2020, 141, 109408. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Song, G.; Lou, T. Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal. Int. J. Biol. Macromol. 2020, 156, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Ghimici, L.; Constantin, M. Novel thermosensitive flocculating agent based on pullulan. J. Hazard. Mater. 2011, 192, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Ghimici, L.; Constantin, M. Removal of the commercial pesticides novadim progress, Bordeaux mixture and Karate Zeon by pullulan derivatives based flocculants. J. Environ. Manag. 2018, 218, 31–38. [Google Scholar] [CrossRef]
- Ghimici, L.; Constantine, M. The separation of the pyrethroid insecticide Fastac 10 EC by cationic pullulan derivatives. React. Funct. Polym. 2015, 95, 12–18. [Google Scholar] [CrossRef]
- Ghorai, S.; Sarkar, A.; Panda, A.B.; Pal, S. Evaluation of the flocculation characteristics of polyacrylamide grafted xanthan gum/silica hybrid nanocomposite. Ind. Eng. Chem. Res. 2013, 9731–9740. [Google Scholar] [CrossRef]
- Ghorai, S.; Sinhamahpatra, A.; Sarkar, A.; Panda, A.B.; Pal, S. Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: Application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour. Technol. 2012, 119, 181. [Google Scholar] [CrossRef] [PubMed]
- Kolya, H.; Tripathy, T.; De, B.R. Flocculation performance of grafted xanthan gum: A comprehensive study. J. Phys. Sci. 2012, 16, 221–234. [Google Scholar]
- Ghimici, L.; Nichifor, M. Dextran derivatives application as flocculants. Carbohydr. Polym. 2018, 190, 162–174. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, H.; Sun, Y.; Zhang, S.; Liang, J.; Liu, Y.; An, Y. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles. Sci. Total Environ. 2018, 640–641, 243–254. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Chen, Y. Remocal of oil and Cr(VI) from wastewater using modified pectin flocculants. J. Environ. Eng. 2014, 140. [Google Scholar] [CrossRef]
- Ibarra-Rodriguez, D.; Lizardi-Mendoza, J.; Lopez-Maldonado, E.A.; Oropeza-Guzman, M.T. Capacity of ‘nopal’ pectin as a dual koagulant-flocculant agent for heavy metals removal. Chem. Eng. 2017, 323, 19–28. [Google Scholar] [CrossRef]
- Ho, Y.C.; Norli, I.; Alkarhi, A.F.M.; Morad, N. Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): A comparative study on treatment and optimization in kaolin suspension. Bioresour. Technol. 2010, 101, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, H.; Obita, T.; Hirose, J.; Hayashi, S.; Takasaki, Y. Flocculation properties of pectin in various suspensions. Bioresour. Technol. 2002, 84, 287–290. [Google Scholar] [CrossRef]
- Buenaño, B.; Vera, E.; Aldás, M.B. Study of coagulating/flocculating characteristics of organic polymers extracted from biowaste for water treatment. Ing. Investig. 2019, 39, 24–35. [Google Scholar]
- Mao, Y.; Millett, R.; Lee, C.S.; Yakubov, G.; Harding, S.E.; Binner, E. Investigating the influence of pectin content and structure on its functionality in bio-flocculant extracted from okra. Carbohydr. Polym. 2020, 241, 116414. [Google Scholar] [CrossRef] [PubMed]
- Zamudio, E.; Rojas-Valencia, M.N.; Chairez, I.; Torres, L. Coliforms and helminth eggs removal by coagulation-flocculation treatment based on natural polymers. J. Water Resour. Protect. 2013, 5, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Ozaki, M.; Murakami, K. Elucidation of the aggregation mechanism of bentonite with cationic guar gum a flocculant and application to filtration. Colloids Surf. A 2020, 596, 124660. [Google Scholar] [CrossRef]
- Hasan, A.; Fatehi, P. Flocculation of kaolin particles with cationic lignin polymers. Sci. Rep. 2019, 9, 2672. [Google Scholar] [CrossRef]
- Özacar, M.; Sengil, I.A. Effectiveness of tannins obtained from valonia as a coagulant aid for dewatering of sludge. Water Res. 2000, 34, 1407–1412. [Google Scholar] [CrossRef]
- Heredia, B.; Martín, J.S. Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J. Hazard. Mater. 2009, 165, 1215–1218. [Google Scholar] [CrossRef]
- Wang, L.; Liang, W.; Yu, J.; Liang, Z.; Ruan, L.; Zhang, Y. Flocculation of microcystis aeruginosa using modified larch tannin. Environ. Sci. Technol. 2013, 47, 5771–5777. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Hoover, R.; Shahidi, F.; Perera, C.; Jane, J. Composition, molecular structure and physicochemical properties of starches from four field pea cultivars. Food Chem. 2001, 74, 189–202. [Google Scholar] [CrossRef]
- Sulich, A.; Kabsch-Korbutowicz, M. Wykorzystanie skrobi ziemniaczanej jako naturalnego flokulantu w procesach oczyszczania wód powierzchniowych. In Interdyscyplinarne Zagadnienia w Inżynierii i Ochronie Środowiska 4; Traczewska, T.M., Kaźmierczak, B., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2014; pp. 829–835. [Google Scholar]
- Lewandowicz, G.; Fornal, J.; Walkowski, A. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydr. Polym. 1998, 34, 213–220. [Google Scholar] [CrossRef]
- Pałasińska, M.; Fortuna, T.; Juszczak, L.; Fornal, J. Change in some physico-chemical properties of starch granules induced by heating and microwave radiation. Pol. J. Food Nutr. Sci. 2000, 9, 17–22. [Google Scholar]
- Lewicka, K.; Siemion, P.; Kurcok, P. Chemical modifications of starch: Microwave effect. Int. J. Polym. Sci. 2015, 2015, 867697. [Google Scholar] [CrossRef]
- Saritha, V.; Srinivas, N.; Srikanth Vuppala, N.V. Analysis and optimization of coagulation and flocculation process. Appl. Water Sci. 2017, 7, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbent used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Loganathan, P.; Gradzielski, M.; Bustamante, H.; Vigneswaran, S. Progress, challenges, and opportunities in enhancing NOM flocculation using chemically modified chitosan: A review towards future development. Environ. Sci. Water Res. 2020, 6, 45–61. [Google Scholar] [CrossRef]
- Mucha, M. Chitozan Wszechstronny Polimer ze Źródeł Odnawialnych, 1st ed.; WNT: Warszawa, Poland, 2010; pp. 91–96. [Google Scholar]
- Ang, T.; Kiatkittipong, K.; Kiatkittipong, W.; Chua, S.; Lim, J.W.; Show, P.; Bashir, M.J.K.; Ho, Y. Insight on extraction and characterisation of biopolymers as the green coagulants for microalgae harvesting. Water 2020, 12, 1388. [Google Scholar] [CrossRef]
- You, L.; Lu, F.; Li, D.; Qiao, Z.; Yin, Y. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer. J. Hazard. Mater. 2009, 172, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Wu, L.; Yu, F.; Lv, Y.; Chen, L.; Shi, Y.; Dai, B. pH-responsive chitosan-based flocculant for precise dye flocculation control and the recycling of textile dyeing effluents. RSC Adv. 2018, 8, 39334–39340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shi, Y.; Yan, B.; Wei, T.; Lv, Y.; Chen, L.; Yu, F.; Guo, X. Flocculant-assisted synthesis of graphene-like carbon nanosheets for oxygen reduction reaction and supercapacitor. Nanomaterilas 2019, 9, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Heinze, T. Cellulose: Structure and properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O.J., Ed.; Springer International Publishing: Basel, Switzerland, 2015; Advances in Polymer Science; Volume 271. [Google Scholar]
- Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: A review. Chem. Soc. Rev. 2009, 38, 2046–2064. [Google Scholar] [CrossRef]
- Noor, M.H.M.; Ngadi, N.; Inuwa, I.M.; Opotu, L.A.; Nawawi, M.G.M. Synthesis and application of polyacrylamide grafted magnetic cellulose flocculant for palm oil wastewater treatment. J. Environ. Chem. Eng. 2020, 8, 104014. [Google Scholar] [CrossRef]
- Liimatainen, H.; Sirvio, J.; Sundman, O.; Visanko, M.; Hormi, O. Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution. Bioresour. Technol. 2011, 102, 9626–9632. [Google Scholar] [CrossRef]
- Chen, J.; Kazzaz, A.E.; Mazandarani, N.A.; Feizi, Z.H.; Fatehi, P. Production of flocculants, adsorbents, and dispersants from lignin. Molecules 2018, 23, 868. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Gao, B.; Pan, J.; Shen, X.; Liu, C.; Yue, Q.; Xu, X. Effect of charge density and molecular weight of papermaking sludge-based flocculant on its decolorization efficiencies. Sci. Total Environ. 2020, 723, 138136. [Google Scholar] [CrossRef]
- Gozdanov, A.; Atkovska, K.; Lisickov, K.; Ruseska, G.; Dimitrov, A.T. Removal of heavy metal ions from wastewater using bio- and nanosorbents. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea; Cocca, M., Ed.; Springer Water, Springer International Publishing AG: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Murcia-Salvador, A.; Pellicer, J.A.; Rodriguez-Lopez, M.I.; Gomez-Lopez, V.M.; Nunez-Delicado, E.; Gabaldon, J.A. Egg by-products as a tool to remove direct blue 78 dye from wastewater: Kinetics, equilibrium modeling, thermodynamics and desorption properties. Materials 2020, 13, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.-Y. Emerging usage of plant-based coagulants for water and wastewater treatment. Process. Biochem. 2010, 45, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, G.; Sivakumar, T.; Kumar, A.V. Application of plant based coagulants for wastewater treatment. Int. J. Adv. Eng. Res. Stud. 2011, 1, 88–92. [Google Scholar]
- Yongabi, K.A. Biocoagulants fr water and wastewater purification: A review. Int. Rev. Chem. Eng. 2010, 2, 444–458. [Google Scholar]
- Jayaram, K.; Murthy, I.Y.L.N.; Lalhruaitluanga, H.; Prasad, M.N.V. Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L. Colloids Surf. B Biointerfaces 2009, 71, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.; Gang, F.; Fowler, J.; Watts, M. Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment. Colloids Surf. A 2008, 327, 9–16. [Google Scholar] [CrossRef]
- Diaz, A.; Rincon, N.; Escorihuela, A.; Fernandez, N.; Chacin, E.; Forster, C.F. A preliminary evaluation of turbidity removal by natural coagulants indigenous to Venezuela. Process. Biochem. 1999, 35, 391–395. [Google Scholar] [CrossRef]
- Saenz, C.; Sepulveda, E.; Matsuhiro, B. Opuntia spp mucilage’s: A functional component with industrial perspectives. J. Arid. Environ. 2004, 57, 275–290. [Google Scholar] [CrossRef]
- Natumanya, R.; Okot-Okumu, J. Evaluating coagulant activity of locally available Syzygium cumini, Artocarpus heterophyllus and Moringa oleifera for treatment of community drinking water, Uganda. Int. J. Biol. Chem. Sci. 2015, 9, 2535–2554. [Google Scholar] [CrossRef] [Green Version]
- Sriamornsak, P. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn Univ. Int. J. 2003, 3, 206–228. [Google Scholar]
- Sundar Raj, A.A.; Rubila, S.; Jayabalan, R.; Ranganathan, T.V. A Review on Pectin: Chemistry due to General Properties of Pectin and Its Pharmaceutical Uses. Available online: https://www.omicsonline.org/scientific-reports/srep550.php (accessed on 26 July 2020).
- Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin—An emerging new bioactive food polysaccharide. Trends Food Sci. Tech. 2012, 24, 64–73. [Google Scholar] [CrossRef]
- Piriyaprasarth, S.; Sriamorsnak, P. Flocculating and suspending properties of commercial citrus pectin and pectin extracted from pomelo (Citrus maxima) peel. Carbohydr. Polym. 2011, 83, 561–568. [Google Scholar] [CrossRef]
- Rebah, F.B.; Mnif, W.; Siddeeg, S.M. Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: A review. Symmetry 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wu, S.; Du, C.; Zhong, Y.; Yang, C. Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment. Int. J. Environ. Res. Public Health 2020, 17, 1360. [Google Scholar] [CrossRef] [Green Version]
- Nwodo, U.U.; Agunbiade, M.O.; Green, E.; Nwamadi, M.; Rumbold, K.; Oko, A.I. Characterization of an exopolymeric flocculant produced by a brachybacterium sp. Materials 2013, 6, 1237–1254. [Google Scholar] [CrossRef] [Green Version]
- Barrere, G.C.; Barber, C.E.; Daniels, M.J. Molecular cloning of genes involved in the production of the extracellular polysaccharide xanthan by Xanthomonas campestris pv. campestris. Int. J. Biol. Macromol. 1986, 8, 372–374. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, F.; Chi, Z.; Yue, L.; Liu, G.; Zhang, T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 2009, 82, 793–804. [Google Scholar] [CrossRef]
- Shahadat, M.; Teng, T.T.; Rafatullah, M.; Shaikh, Z.A.; Sreekrishnan, T.R.; Ali, S.W. Bacterial bioflocculants: A review of recent advances and perspectives. Chem. Eng. J. 2017, 328, 1139–1152. [Google Scholar] [CrossRef]
- Okaiyeto, K.; Nwodo, U.U.; Okoli, S.A.; Mabinya, L.V.; Okoh, A. Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. MicrobiologyOpen 2016, 5, 177–211. [Google Scholar] [CrossRef]
- Sajayan, A.; Kiran, G.S.; Priyadharshini, S.; Poulose, N.; Selvin, J. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environ. Pollut. 2017, 228, 118–127. [Google Scholar] [CrossRef]
- Tang, W.; Song, L.; Li, D.; Qiao, J.; Zhao, T.; Zhao, H. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2. PLoS ONE 2014, 9, e114591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sam, S.; Kucukasik, F.; Yenigun, O.; Nicolaus, B.; Oner, E.T.; Yukselen, M.A. Flocculating performances of exopolysacharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Bioresour. Technol. 2011, 102, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ye, Z.L.; Fang, X.L.; Li, Y.H. Production and characteristics of a bioflocculants produced by Bacillus sp. F19. Bioresour. Technol. 2008, 99, 7686–7691. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.F.; Cheng, W. Characteristics and culture conditions of a bioflocculant produced by Penicillium sp. Biomed. Environ. Sci. 2010, 23, 213–218. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Production and characteristics of a heavy metals removing bioflocculants produced by Pseudomonas aeruginosa. Pol. J. Microbiol. 2012, 61, 281–289. [Google Scholar]
- Wang, S.G.; Gong, W.X.; Liu, X.W.; Tian, L.; Yue, Q.Y.; Gao, B.Y. Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater. Biochem. Eng. J. 2007, 36, 81–86. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Zhou, J. Characterization of a bioflocculant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal. Bioresour. Technol. 2013, 137, 226–232. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, K.; Liao, D.; Li, X.; Liu, X.; Zeng, G.; Li, X. A novel bioflocculant produced by Klebsiella sp. and its application to sludge dewatering. Water Environ. J. 2012, 26, 560–566. [Google Scholar] [CrossRef]
- Abdel-Aziz, S.M.; Hamed, H.A.; Mouafi, F.E. Acidic exopolysaccharide flocculant produced by the fungus Mucor rouxii using beet-molasses. Res. Biotechnol. 2012, 3, 1–12. [Google Scholar]
- Subudhi, S.; Batta, N.; Pathak, M.; Bisht, V.; Devi, A.; Lal, B.; Al Khulifah, B. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste. Chemosphere 2014, 113, 116–124. [Google Scholar] [CrossRef]
- Zhang, C.L.; Cui, Y.N.; Wang, Y. Bioflocculant produced by Gram-positive Bacillus xn12 and Streptomyces xn17 for swine wastewater application. Chem. Biochem. Eng. Q. 2013, 27, 245–250. [Google Scholar]
- Zhao, G.; Ma, F.; Wei, L.; Chua, H. Using rice straw fermentation liquor to produce bioflocculants during an anaerobic dry fermentation process. Bioresour. Technol. 2012, 113, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, G.; Wang, G. Characteristics for production of hydrogen and bioflocculant by Bacillus sp. XF-56 from marine intertidal sludge. Int. J. Microbiol. 2015, 40, 1414–1419. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, S.; Lei, H.; Chen, R.; Yu, Q.; Li, H.L. Production of novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour. Technol. 2009, 100, 3650–3656. [Google Scholar] [CrossRef]
- Bisht, V.; Lal, B. Exploration of performance kinetics and mechanism of action of a potential novel bioflocculant BF-VB2 on clay and dye wastewater flocculation. Front. Microbiol. 2019, 10, 1288. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Harichund, C. Isolation and characterization of heavy metal removing bacterial bioflocculants. Afr. J. Microbiol. Res. 2011, 5, 599–607. [Google Scholar]
- Guo, J.; Yang, C.; Zeng, G. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge. Bioresour. Technol. 2013, 143, 289–297. [Google Scholar] [CrossRef]
- Liang, Z.; Baoping, H.; Hong, L. Optimum conditions to treat high-concentration microparticle slime water with bioflocculants. Min. Sci. Technol. China 2010, 20, 478–484. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Lin, B.; Xia, S.Q.; Wang, X.J.; Yang, A.M. Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as a carbon source. J. Environ. Sci. (China) 2007, 19, 667–673. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, S.; Zhang, J. Enhanced dewatering of waste sludge with microbial flocculant TJ-F1 as a novel conditioner. Water Res. 2010, 44, 3087–3092. [Google Scholar] [CrossRef]
- Aznildris, A.H.R.A.; Al-Joubory, H.H.R.; Uemura, Y.; Ibn Abubakar, B.S.U. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus. J. Environ. Manag. 2015, 150, 466–471. [Google Scholar]
- Xia, X.; Lan, S.; Li, X.; Xie, Y.; Liang, Y.; Yan, P.; Chen, Z.; Xing, Y. Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity water treatment. Chemosphere 2018, 206, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Salehizadeh, H.; Shojaosadati, S.A. Removal of metal ions from aqueous solution by polysaccharide produced by Bacillus fimrus. Water Res. 2003, 37, 4231–4235. [Google Scholar] [CrossRef]
- Ab Rahman, N.N.N.; Shahadat, M.; Omar, F.M.; Chew, A.W.; Ab Kadir, M.O. Dry Trichoderma biomass: Biosorption behavior for the treatment of toxic heavy metal ions. Desalin. Water Treat. 2016, 57, 13106–13112. [Google Scholar] [CrossRef]
- Agunbiade, M.; Pohl, C.; Ashafa, O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz. J. Microbiol. 2018, 49, 731–741. [Google Scholar] [CrossRef]
- Li, J.; Yun, Y.Q.; Xing, L.; Song, L. Novel bioflocculants produced by salt-tolerant alkaliphilic strain Oceanobacillus polygoni HG6 and its application in tannery wastewater treatment. Biosci. Biotechnol. Biochem. 2017, 81, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, A.; Ismail, A.F. Nanotechnology in Water and Wastewater Treatment: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Jumadi, J.; Kamari, A.; Hargreaves, J.S.J.; Yusof, N. A review on nano-based materials used as flocculants. Int. J. Environ. Sci. Technol. 2020, 17, 3571–3594. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Yang, Z.; Yang, W.; Wu, J.; Dong, C. Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chem. Eng. J. 2016, 304, 325–334. [Google Scholar] [CrossRef]
- Leshuk, T.; Holmes, A.B.; Ranatunga, D.; Chen, P.Z.; Jiang, Y.; Gu, F. Magnetic flocculation for nanoparticle separation and catalyst recycling. Environ. Sci. Nano 2018, 5, 509–519. [Google Scholar] [CrossRef]
- Wang, B.; Xu, W.; Fu, J.; Wang, W.; Xiao, X. Preparation of two nanometer magnetic flocculants and treatment of slime wastewater. IOP Conf. Ser. Earth Environ. Sci. 2019, 345, 012015. [Google Scholar] [CrossRef]
- Yin, H.; Liu, L.; Wang, X.; Wang, T.; Zhou, Y.; Liu, B.; Shan, Y.; Wang, L.; Lü, X. A novel flocculant prepared by lignin nanoparticles—Gelatin complex from switchgrass for the capture of Staphylococcus aureus and Escherichia coli. Colloids Surf. A 2018, 545, 51–59. [Google Scholar] [CrossRef]
- Shak, K.P.Y.; Pang, Y.L.; Mah, S.K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J. Nanotechnol. 2018, 9, 2479–2498. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From fundamentals to advanced applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A Review. BioResources 2017, 12, 9556–9661. [Google Scholar]
- Voisin, H.; Bergström, L.; Liu, P.; Mathew, A.P. Nanocellulose-based materials for water purification. Nanomaterials 2017, 7, 57. [Google Scholar] [CrossRef]
- Sharma, P.R.; Sharma, S.K.; Lindström, T.; Hsiao, B.S. Nanocellulose-enabled membranes for water purification: Perspectives. Adv. Sustain. Syst. 2020, 4, 1900114. [Google Scholar] [CrossRef]
- Morantes, D.; Muñoz, E.; Kam, D.; Shoseyov, O. Highly charged cellulose nanocrystals applied as a water treatment flocculant. Nanomaterials 2019, 9, 272. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, D.; Eyley, S.; Van den Mooter, G.; Muylaert, K.; Thielemans, W. Highly charged cellulose-based nanocrystals as flocculants for harvesting chlorella vulgaris. Bioresour. Technol. 2015, 194, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Min, S.; Shin, H. Nanocellulose size regulates microalgal flocculation and lipid metabolism. Sci. Rep. 2016, 6, 35684. [Google Scholar] [CrossRef] [Green Version]
- Hizam, M.; Noor, M.; Ngadi, N.; Luing, W.S. Synthesis of magnetic cellulose as flocculant for pre-treatment of anaerobically treated palm oil mill effluent. Chem. Eng. Trans. 2018, 63, 589–594. [Google Scholar] [CrossRef]
- Raj, P.; Batchelor, W.; Blanco, A.; La Fuente, E.; Negro, C.; Garnier, G. Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation. J. Colloid Interface Sci. 2016, 481, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, T.; Wan, X.; He, D. Washing and dyeing wastewater treatment by combined nano flocculation and photocatalysis processes. J. Geosci. Environ. Prot. 2015, 3, 66–71. [Google Scholar] [CrossRef]
- Huang, X.; Wan, Y.; Shi, B.; Shi, J. Effects of powdered activated carbon on the coagulation-flocculation process in humic acid and humic acid-kaolin water treatment. Chemosphere 2020, 238, 124637. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, K. The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomater. Nanotechnol. 2016, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Joseph, L.; Boateng, L.K.; Flora, J.R.V.; Park, Y.G.; Son, A.; Badawy, M.; Yoon, Y. Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon. Sep. Purif. Technol. 2013, 107, 37–47. [Google Scholar] [CrossRef]
- Simate, G.S.; Iyuke, S.E.; Ndlovu, S.; Heydenrych, M. The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes. Water Res. 2012, 46, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.H.A.; Mian, S.A.; Ali, G. An overview of the recent progress in the synthesis and applications of carbon nanotubes. J. Carbon Res. 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Singh, E.; Srivastava, R.; Kumar, U.; Katheria, A.D. Carbon nanotube: A review on introduction, fabrication techniques and optical applications. Nanosci. Nanotechnol. Res. 2017, 4, 120–126. [Google Scholar] [CrossRef]
- Simate, G.S. The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes ’sandwiched’ in a granular filter bed. J. Ind. Eng. Chem. 2015, 21, 1277–1285. [Google Scholar] [CrossRef]
- Rocha, J.D.R.; Rogers, R.E.; Dichiara, A.B.; Capasse, R.C. Emerging investigators series: Highly effective adsorption of organic aromatic molecules from aqueous environments by electronically sorted single-walled carbon nanotubes. Environ. Sci. Water Res. Technol. 2017, 3, 203–212. [Google Scholar] [CrossRef]
- Savage, N.; Diallo, M.S. Nanomaterials and water purification: Opportunities and challenges. J. Nanoparticle Res. 2005, 7, 331–342. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Xiou, H.; Zhang, Y.; Shi, X.; Lü, X.; Chen, X. Understanding flocculation mechanism of grapheme oxide for organic dyes from water: Experimental and molecular dynamics simulation. AIP Adv. 2015, 5, 117151. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Li, G.; Liu, H.; Zeng, L.; Zhao, L.; Jia, J.; Zhang, M.; Zhou, W.; Liu, H.; Hu, Y. Electrochemical flocculation integrated hydrogen evolution reaction of fe@n-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media. Adv. Sci. (Weinh) 2019, 6, 1901458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, O.; Mazumdar, B.; Chaudhari, P.K. Treatment of wastewater by electrocoagulation: A review. Environ. Sci. Pollut. Res. 2014, 21, 2397–2413. [Google Scholar] [CrossRef]
- Manafi, M.R.; Manafi, P.; Agarwal, S.; Bharti, A.K.; Asif, M.; Gupta, V.K. Synthesis of nanocomposites from polyacrylmide and graphene oxide: Application as flocculants for water purification. J. Colloid Interface Sci. 2017, 490, 505–510. [Google Scholar] [CrossRef]
- Rytwo, G. The use of clay-polymer nanocomposites in wastewater pretreatment. Sci. World J. 2012, 498503. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Patra, A.S.; Ghorai, S.; Sarkar, A.K.; Das, R.; Sarkar, S. Modified guar gum/SiO2: Development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ. Sci. Water Res. Technol. 2015, 1, 84–95. [Google Scholar] [CrossRef]
- Schmidt, B. Nanocomposite starch graft copolymers with carbon nanotubes—Synthesis and flocculation efficiency. Polimery 2020, 65, 226–231. [Google Scholar] [CrossRef]
- Fosso-Kankeu, E.; Mittal, H.; Waanders, F.; Ntwampe, I.O.; Ray, S.S. Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. Int. J. Environ. Sci. Technol. 2016, 13, 711–724. [Google Scholar] [CrossRef] [Green Version]
- Shafranek, R.T.; Millik, S.C.; Smith, P.T.; Lee, C.U.; Boydson, A.J.; Nelson, A. Stimuli-responsive materials in additive manufacturing. Prog. Polym. Sci. 2019, 93, 36–67. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.R.; Elvira, C.; Gallardo, A.; Vázques, B.; Roman, J.S. Smart polymers and their applications as biomaterials. In Topics in Tissue Engineering, 2nd ed.; Ashammakhi, N., Reis, R., Chiellini, E., Eds.; Woodhead Publishing, Sawston: Cambridge, UK, 2019; Volume 3. [Google Scholar]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhu, M.; Wu, S.; Shen, X.; Li, S. Stimuli-responsive biopolymers: An inspiration for synthetic smart materials and their applications in self-controlled catalysis. J. Inorg. Organomet. Polym. 2020, 30, 69–87. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, W.A.; Luo, W.; Fang, Y. Synthesis of superabsorbent polymers by irradiation and their applications in agriculture. J. Appl. Polym. Sci. 2004, 93, 1748–1755. [Google Scholar] [CrossRef]
- Tian, Y.; Ju, B.; Zhang, S.; Hou, L. Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal. Carbohydr. Polym. 2015, 136, 1209–1217. [Google Scholar] [CrossRef]
- Koyilapu, R.; Tiwari, R.; Krishnamoorthi, S.; Kumar, K. Synthesis, characterization, and flocculation studies of β-cyclodextrin-based stimuli-responsive star copolymer: An environment remediation. Glob. Chall. 2020, 4, 1900089. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, Q.; Mao, D.; Bai, N.; Dong, H. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously. Bioresour. Technol. 2017, 245, 649–655. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.; Shawon, Z.B.; Tay, W.J.; Hidajat, K.; Uddin, M.S. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 2013, 91, 322–332. [Google Scholar] [CrossRef]
- Kabir, S.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Fayos, B.; Arnal, J.M.; Sancho, M. Natural coagulants: Analysis of potential use for drinking water treatment in developed and developing countries. Desalin. Water Treat. 2018, 103, 307–314. [Google Scholar] [CrossRef]
- Pathak, M.; Sarma, H.K.; Bhattacharyya, K.G.; Subudhi, S.; Bisht, V.; Lal, B.; Devi, A. Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals. Front. Microbiol. 2017, 8, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bio-Based Flocculants | Applications | Reference |
---|---|---|
Starch: | ||
| Turbidity removal from suspension of kaolin, bentonite, and natural clay | [82,83] |
| Clarification of kaolin and hematite suspension | [84] |
| Kaolin suspensions clarification | [85] |
| Kaolin suspension clarification | [16] |
| Removal of metal ions | [86] |
| Removal of dye from its aqueous solution | [87] |
Chitosan: | ||
| Surface water treatment | [88] |
| Turbidity and TDS removal | [89] |
| Dyes removal from aqueous solutions | [17] |
| Color removal | [37] |
| Dyes removal | [90] |
| Dyes removal | [91] |
| Turbidity removal | [92] |
| Dye removal | [69] |
| Removal of fluoride, nitrate and phosphate from aqueous solution | [54] |
| ||
| Turbidity removal | [93] |
| Heavy metal removal | [94] |
| Water purification from zinc phosphate | [95] |
Cellulose: | ||
| Water decolorization | [79] |
| Clarification of kaolin and iron-ore suspension | [96] |
| Turbidity removal from drinking water | [97] |
| Municipal wastewater treatment; Turbidity removal | [98,99] |
| Kaolin suspension clarification | [18] |
| Flocculation in pulp slurries | [100] |
| Decolorization of colored effluents | [101] |
| Turbidity and COD removal | [102] |
| Anionic dyes solution remediation | [103] |
| Textile industry effluent treatment | [49] |
| Decolorization and turbidity removal | [104] |
| Treatment of water contaminated by oil spills (removal of organic and inorganic matter, adsorption of heavy metals) | [105] |
Alginate | ||
| Removal heavy metal ions and organic pollutants from wastewater | [106] |
| Coal fine suspension clarification | [107] |
| Heavy metal ions and humic acids removal | [108] |
| Water decolorization | [109] |
| ||
| Turbidity removal | [110] |
| Removal of pesticides | [111,112] |
Xanthan gum | ||
| Mine wastewater treatment for color removal, treatment of synthetic effluents and removal of Pb(II) ions from aqueous solution | [113,114] |
| Wastewater treatment | [115] |
Dextran | ||
| Removal of turbidity and pesticides | [116] |
| Removal dyes from wastewater | [117] |
Pectin | ||
| Removal of oil and Cr(VI) from wastewater | [118] |
| Heavy metal ions removal | [119] |
| Kaolin suspension treatment | [120] |
| Kaolin suspension treatment | [121] |
| Turbidity removal | [122] |
| Suspended solids removal | [123] |
Guar gum | ||
| Removal of COD, turbidity and biological contaminants from municipal wastewater | [124] |
| Bentonite aggregation | [125] |
Lignin and tannin | ||
| Removing of cationic dye | [50] |
| Turbidity removal | [126] |
| Turbidity removal | [127] |
| Heavy metal removal | [128] |
| Algal water treatment | [129] |
Microorganism | Applications | Reference |
---|---|---|
Bacillus cereus | Wastewater treatment for heavy metal removal | [173] |
Enterobacter sp. | Kaolin clay flocculation | [174] |
Klebsiella sp. | Water treatment; removal of amoeba cyst from water; sludge dewatering | [172,180,181] |
Mucor rouxii | Wastewater treatment | [182] |
Achromobacter sp. | Wastewater treatment | [183] |
Bacillus and Streptomyces sp. | Swine wastewater treatment | [184] |
Bacillus and Rhizobium radiobacter | Water treatment | [185] |
Basillus sp. | Treatment of wastewater | [186] |
Treatment of low temperature drinking water | [187] | |
Industrial wastewater treatment (COD removal and dye decolorization) | [188] | |
Penicillium sp. | Management of industrial wastewater | [188] |
Herbaspirillium spp. and Pseudomonas sp. | Industrial effluents and wastewater treatment (suspension particle and heavy metals removal) | [189] |
Rhodococcus sp. | Treatment of swine wastewater | [190] |
Serratia sp. | Treatment of wastewater | [191] |
Staphylococcus and Pseudomonas sp. | Treatment of industrial wastewater (COD, indigotin and dyeing wastewater) | [192] |
Proteus mirabilis | Wastewater treatment (waste sludge dewatering) | [193] |
Aspergillus flavus | Suspended solids removal | [194] |
Klebsiella variicola | Removal of turbidity and SS in drinking water | [195] |
Bacillus firmus | Water treatment (removal of metal ions such as Pb, Cu, Zn) | [196] |
Trichoderma sp. | Heavy metals ions removal | [197] |
Streptomyces platensis | Kaolin clay flocculation | [198] |
Oceanobacillus polygoni | Tannery wastewater treatment | [199] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maćczak, P.; Kaczmarek, H.; Ziegler-Borowska, M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials 2020, 13, 3951. https://doi.org/10.3390/ma13183951
Maćczak P, Kaczmarek H, Ziegler-Borowska M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. Materials. 2020; 13(18):3951. https://doi.org/10.3390/ma13183951
Chicago/Turabian StyleMaćczak, Piotr, Halina Kaczmarek, and Marta Ziegler-Borowska. 2020. "Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment" Materials 13, no. 18: 3951. https://doi.org/10.3390/ma13183951