The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress
Abstract
:1. Introduction
2. Results
2.1. Absorbency Dynamic Study
2.2. Water Sorption and Solubility
2.3. Photoelastic Study
3. Discussion
4. Materials and Methods
4.1. Absorbency Dynamic Study
4.2. Water Sorption and Solubility
4.3. Photoelastic Study
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Kleverlaan, C.J.; Feilzer, A.J.; Knobloch, L.A.; Seghi, R.R. Polymerization shrinkage and contraction stress of dental resin composites. Dent. Mater. 2005, 21, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; Tantbirojn, D.; Lee, M.S.; Tu, L.S.; Delong, R. Can hygroscopic expansion compensate polymerization shrinkage? Part I. Deformation of restored teeth. Dent. Mater. 2011, 27, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Liu, W.; Hao, Z.; Wu, X.; Yin, J.; Panjiyar, A.; Liu, X.; Shen, J.; Wang, H. Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer. Int. J. Mol. Sci. 2014, 15, 2400–2412. [Google Scholar] [CrossRef] [PubMed]
- Van Dijken, J.W.V.; Lindberg, A. A 15-year randomized controlled study of a reduced shrinkage stress resin composite. Dent. Mater. 2015, 31, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Biradar, B.; Biradar, S.; Ms, A. Evaluation of the effect of water on three different light cured composite restorative materials stored in water: An in vitro study. Int. J. Dent. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; de Oliveira Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Feilzer, A.J.; Kakaboura, A.I.; de Gee, A.J.; Davidson, C.L. The influence of water sorption on the development of setting shrinkage stress in traditional and resin-modified glass ionomer cements. Dent. Mater. 1995, 11, 186–190. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L.; Wiltbank, B.D.; Shah, N.C. Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent. Mater. 2004, 20, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.C.; Marouf, A.S.; Al-Hindi, A.M. Photo-polymerization shrinkage-stress kinetics in resin-composites: Methods development. Dent. Mater. 2003, 19, 1–11. [Google Scholar] [CrossRef]
- Lu, H.; Stansbury, J.W.; Dickens, S.H.; Eichmiller, F.C.; Bowman, C.N. Probing the origins and control of shrinkage stress in dental resin-composites: I. Shrinkage stress characterization technique. J. Mater. Sci. Mater. Med. 2004, 15, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Kaisarly, D.; Gezawi, M.E. Polymerization shrinkage assessment of dental resin composites: A literature review. Odontology 2016, 104, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent. Mater. 2016, 32, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.S.; Ferracane, J.L.; Sakaguchi, R.L.; Condon, J.R. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent. Mater. 2002, 18, 436–444. [Google Scholar] [CrossRef]
- McCabe, J.F.; Rusby, S. Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials 2004, 25, 4001–4007. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.L.; Rapson, J.E.; Dickson, G. Hardening shrinkage and hygroscopic expansion of composite resins. J. Dent. Res. 1982, 61, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Kei, L.; Wei, S.H.Y.; Cheung, G.S.P.; Tay, F.R.; Pashley, D.H. The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction. J. Adhes. Dent. 2002, 4, 61–71. [Google Scholar] [PubMed]
- Park, J.W.; Ferracane, J.L. Water aging reverses residual stresses in hydrophilic dental composites. J. Dent. Res. 2014, 93, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.C.; Kisumbi, B.K.; Toworfe, G.K. Dimensional changes of resin/ionomer restoratives in aqueous and neutral media. Dent. Mater. 2000, 16, 89–96. [Google Scholar] [CrossRef]
- Attin, T.; Buchalla, W.; Kielbassa, A.M.; Hellwig, E. Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent. Mater. 1995, 11, 359–362. [Google Scholar] [CrossRef]
- Alrahlah, A.; Silikas, N.; Watts, D.C. Hygroscopic expansion kinetics of dental resin-composites. Dent. Mater. 2014, 30, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Domarecka, M.; Sokołowska, A.; Szynkowska, M.I.; Sokołowski, K.; Sokołowski, J.; Łukomska-Szymańska, M. Wybrane właściwości materiałów kompozytowych typu flow o niskim skurczu polimeryzacyjnym. Przem. Chem. 2014, 93, 775–778. [Google Scholar] [CrossRef]
- Bowen, R.L.; Nemoto, K.; Rapson, J.E. Adhesive bonding of various materials to hard tooth tissues: Forces developing in composite materials during hardening. J. Am. Dent. Assoc. 1983, 106, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Domarecka, M.; Sokołowski, K.; Krasowski, M.; Łukomska-Szymańska, M.; Sokołowski, J. The shrinkage stress of modified flowable dental composites. Dent. Med. Probl. 2015, 424–433. [Google Scholar] [CrossRef]
- Domarecka, M.; Sokołowski, K.; Krasowski, M.; Szczesio, A.; Bociong, K.; Sokołowski, J.; Łukomska-Szymańska, M. Influence of water sorption on the shrinkage stresses of dental composites. J. Stomatol. 2016, 69, 412–419. [Google Scholar] [CrossRef]
- Hunter, G.; Lane, D.M.; Scrimgeour, S.N.; McDonald, P.J.; Lloyd, C.H.; Livings, S. Measurement of the diffusion of liquids into dental restorative resins by stray-field nuclear magnetic resonance imaging (STRAFI). Dent. Mater. 2003, 19, 632–638. [Google Scholar] [CrossRef]
- Bellenger, V.; Verdu, J.; Morel, E. Structure-properties relationships for densely cross-linked epoxide-amine systems based on epoxide or amine mixtures. J. Mater. Sci. 1989, 24, 63–68. [Google Scholar] [CrossRef]
- Vanlandingham, M.R.; Eduljee, R.F.; Gillespie, J.W. Moisture diffusion in epoxy systems. J. Appl. Polym. Sci. 1999, 71, 787–798. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Palin, W.M. Effects of particulate filler systems on the properties and performance of dental polymer composites. In Non-Metallic Biomaterials for Tooth Repair and Replacement; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent. Mater. 2011, 27, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Boaro, L.C.; Gonçalves, F.; Guimarães, T.C.; Ferracane, J.L.; Pfeifer, C.S.; Braga, R.R. Sorption, solubility, shrinkage and mechanical properties of “low-shrinkage” commercial resin composites. Dent. Mater. 2013, 29, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Silikas, N.; Zhang, Z.; Watts, D.C. Diffusion and concurrent solubility of self-adhering and new resin–matrix composites during water sorption/desorption cycles. Dent. Mater. 2011, 21, 97–205. [Google Scholar] [CrossRef] [PubMed]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, V.E.S. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Øysæd, H.; Ruyter, I.E. Water sorption and filler characteristics of composites for use in posterior teeth. J. Dent. Res. 1986, 65, 1315–1318. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent. Mater. 2008, 24, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Landel, R.F.; Nielsen, L.E. Mechanical Properties of Polymers and Composies, 2nd ed.; Marcell Dekker Inc.: New York, NY, USA, 1994; pp. 377–459. [Google Scholar]
- Witzel, M.F.; Ballester, R.Y.; Meira, J.B.C.; Lima, R.G.; Braga, R.R. Composite shrinkage stress as a function of specimen dimensions and compliance of the testing system. Dent. Mater. 2007, 23, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Tauböck, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, M.; Zhou, X.; Lu, L.; Li, Y.; Gong, C.; Cheng, X. A case of water absorption and water/fertilizer retention performance of super absorbent polymer modified sulphoaluminate cementitious materials. Constr. Build. Mater. 2017, 150, 538–546. [Google Scholar] [CrossRef]
- Timoshenko, S.G.J. Theory of Elasticity; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
Material | Contraction Stress after 0.5 h (MPa) | Contraction Stress after 56 Days of Water Immersion (MPa) | Contraction Stress Drop (%) | Sorption (µg/mm3) | Solubility (µg/mm3) |
---|---|---|---|---|---|
Filtek Ultimate | 10.2 ± 1.1 | 2.3 ± 1.1 | 77 | 27.1 ± 1.1 | 2,8 ± 1,5 |
Gradia Direct LoFlo | 12.0 ± 0.9 | 3.1 ± 0.1 | 74 | 35.0 ± 0.9 | 2.1 ± 0.5 |
Heliomolar Flow | 9.9 ± 0.9 | 2.6 ± 0.9 | 74 | 34.6 ± 0.3 | 2.6 ± 0.4 |
Tetric EvoCeram | 7.0 ± 1.1 | 0.8 ± 0.2 | 89 | 19.5 ± 1.1 | 1.1 ± 0.1 |
Tetric EvoCeram Bulk Fill | 6.3 ± 0.3 | 3.1 ± 0.1 | 51 | 17.7 ± 1.0 | 1.1 ± 0.8 |
Tetric EvoFlow | 9.4 ± 0.5 | 4.7 ± 0.2 | 50 | 20.2 ± 0.3 | 2.4 ± 0.2 |
Tetric EvoFlow Bulk Fill | 9.4 ± 0.3 | 4.7 ± 0.2 | 50 | 10.6 ± 0.1 | 1.7 ± 0.3 |
X-tra Base | 10.4 ± 0.9 | 4.7 ± 0.2 | 55 | 6.6 ± 2.3 | 0.2 ± 0.1 |
Venus BulkFil | 8.1 ± 1.1 | 4.2 ± 0.9 | 48 | 17.4 ± 0.6 | 2.0 ± 0.6 |
Ceram.X one | 12.5 ± 0.4 | 6.3 ± 0.2 | 50 | 15.9 ± 1.2 | 0.5 ± 0.1 |
Material | Manufacturer (Country) | Composition | Curing Time (s) | Type |
---|---|---|---|---|
Filtek Ultimate | 3 M ESPE (USA) | bis-GMA, UDMA, TEGDMA, bis-EMA, PEGDMA, silica, zirconia (79 wt %) | 10 | Nanocomposite |
Gradia Direct LoFlo | GC (Japan) | UDMA, dimethacrylate component (trade secret), fluoro-alumino-silicate glass filler, HDR pre-polymerized fillers (40 wt %) | 10 | Microhybrid |
Heliomolar Flow | Ivoclar Vivadent (Germany) | bis-GMA, UDMA, TEGDMA, highly dispersed silicon dioxide, prepolymer, ytterbium trifluoride (51 wt %) | 20 | flowable resin composite |
Tetric EvoCeram | Ivoclar Vivadent | bis-GMA, UDMA, ethoxylated bis-EMA, barium glass, ytterbium trifluoride, spherical mixed oxide, acyl phosphine oxide (75 wt %) | 10 | Nanohybrid |
Tetric EvoCeram Bulk Fill | Ivoclar Vivadent | bis-GMA, UDMA, barium glass, ytterbium trifluoride, mixed oxide, prepolimerized filler, acyl phosphine oxide (80 wt %) | 10 | Nanohybrid |
Tetric EvoFlow | Ivoclar Vivadent | Bis-GMA, UDMA, decanediol dimethacrylate, barium glass, ytterbium trifluoride, silica, mixed oxide, acyl phosphine oxide (62 wt %) | 10 | nanohybrid flowable composite |
Tetric EvoFlow Bulk Fill | Ivoclar Vivadent | bis-GMA EBADMA, highly reactive patented Ivocerin light initiator, composite filler (62 wt %) | 10 | bulkfill, nanohybrid |
X-tra Base | VOCO (Germany) | bis-EMA, aliphatic dimethacrylate, UDMA, 75 wt % filler loading | 10 | bulkfill, microhybrid |
Venus Bulk Fill | Heraeus (Japan) | UDMA, EBADMA (bis-EMA), ethyl-4-dimethylaminobenzoate, BHT barium-alumino-fluoro-silicate glasses, ytterbiumtrifluoride, silicon dioxide (65 wt %) | 20 | flowable, low-shrinkage composite/bulkfill |
Ceram.X one | Dentsply (USA) | dimethacrylate resin, methacrylate modified polysiloxane, ethyl-4(dimethylamino)benzoate, barium-aluminium-borosilicate glass, methacrylate functionalised silicon dioxide nano filler (76 wt %) | 20 | nanocomposite |
Material | Manufacturer (Country) | Composition | Curing Time (s) | Indicated Composite |
---|---|---|---|---|
Easy Bond | 3 M ESPE (USA) | bis-GMA, HEMA, water, ethanol, phosphoric acid 6-methacryloxy-hexylesters, silane treated silica, copolymer of acrylic and itaconic acid, (dimetylamino)ethyl methacrylate | 10 | Filtek Ultimate |
G-Bond | GC (Japan) | 4-META, UDMA, TEGDMA, acetone | 10 | Gradia Direct LoFlo |
AdheSE® One F | Ivoclar Vivadent (Germany) | bis-acrylamide derivative, bis-methacrylamide dihydrogenphosphate, amino acid acrylamide, hydroxyalkyl methacrylamide, water, stabilisers, initiators | 10 | Heliomolar, Tetric EvoCeram, EvoFlow |
OptiBond | Kerr (USA) | GPDM, mono- and difunctional methacrylate monomers, water, acetone, ethanol, nanofillers, camphorquinone | 10 | X-tra base |
iBOND® Self Etch | Heraeus (Japan) | 4-META, UDMA, glutaraldehyde, acetone, water, photoinitiators, stabilizers | 20 | Venus Bulk Fill |
XP Bond | Dentsply (USA) | TCB, PENTA, UDMA, TEGDMA, HEMA, butylated benzenediol (stabilizer), Ethyl-4-dimethylaminobenzoate; Camphorquinone; Functionalized amorphous silica; t-butanol | 10 | Ceram.X One |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bociong, K.; Szczesio, A.; Sokolowski, K.; Domarecka, M.; Sokolowski, J.; Krasowski, M.; Lukomska-Szymanska, M. The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress. Materials 2017, 10, 1142. https://doi.org/10.3390/ma10101142
Bociong K, Szczesio A, Sokolowski K, Domarecka M, Sokolowski J, Krasowski M, Lukomska-Szymanska M. The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress. Materials. 2017; 10(10):1142. https://doi.org/10.3390/ma10101142
Chicago/Turabian StyleBociong, Kinga, Agata Szczesio, Krzysztof Sokolowski, Monika Domarecka, Jerzy Sokolowski, Michal Krasowski, and Monika Lukomska-Szymanska. 2017. "The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stress" Materials 10, no. 10: 1142. https://doi.org/10.3390/ma10101142