Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review
Abstract
:1. Introduction
2. UHMWPE
3. “Historical” and Conventional Radiation Sterilized Polyethylenes
4. 1st Generation Highly Crosslinked Polyethylene
4.1. Improving the Wear Resistance
4.2. How to Prevent Oxidation
4.3. Microstructure, Mechanical Properties and Wear
4.4. Does the Counterface Matter with Crosslinked Polyethylene?
4.5. Thermal Treatments and Oxidation Stability
4.6. Clinical Outcomes and Retrieval Studies
5. 2nd Generation Highly Crosslinked Polyethylene
5.1. The Need for a 2nd Generation Crosslinked Polyethylene
5.2. Sequentially Irradiated and Annealed Highly Crosslinked Polyethylene
5.3. Antioxidants: The New frontier
5.4. Mechanical Properties, Oxidation Stability and Wear Performances
5.5. The Effects of Vitamin E on UHMWPE Wear Debris
5.6. Clinical Outcomes and Retrieval Studies
6. Conclusions
Conflicts of Interest
References
- Kurtz, S.M. The Origins of UHMWPE in Total Hip Arthroplasty. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 33–44. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Ser. A 2007, 89. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Ong, K.L.; Lau, E.; Widmer, M.; Maravic, M.; Gómez-Barrena, E.; de Pina, M.d.F.; Manno, V.; Torre, M.; Walter, W.L.; et al. International survey of primary and revision total knee replacement. Int. Orthop. 2011, 35, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467. [Google Scholar] [CrossRef] [PubMed]
- Sobieraj, M.C.; Rimnac, C.M. Ultra high molecular weight polyethylene: Mechanics, morphology, and clinical behavior. J. Mech. Behav. Biomed. Mater. 2009, 2, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Brostow, W.; Hagg Lobland, H.E. Spatial structures of macromolecules and associated properties. In Materials: Introduction and Applications; John Wiley & Sons: New York, NY, USA, 2017; pp. 178–183. [Google Scholar]
- Barron, D.; Birkinshaw, C. Ultra-high molecular weight polyethylene—Evidence for a three-phase morphology. Polymer 2008, 49, 3111–3115. [Google Scholar] [CrossRef]
- Kurtz, S.M. From Ethylene Gas to UHMWPE Component: The Process of Producing Orthopedic Implants. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 7–20. [Google Scholar] [CrossRef]
- Deplancke, T.; Lame, O.; Rousset, F.; Seguela, R.; Vigier, G. Mechanisms of Chain Reentanglement during the Sintering of UHMWPE Nascent Powder: Effect of Molecular Weight. Macromolecules 2015, 48, 5328–5338. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Zagorski, M. Packaging and Sterilization of UHMWPE. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 21–32. [Google Scholar] [CrossRef]
- Costa, L.; Bracco, P.; del Prever, E.M.B.; Kurtz, S.M.; Gallinaro, P. Oxidation and oxidation potential in contemporary packaging for polyethylene total joint replacement components. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 78, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Streicher, R.M. Ionizing irradiation for sterilization and modification of high molecular weight polyethylenes. Plast. Rubber Process. Appl. 1988, 10, 221–229. [Google Scholar]
- Premnath, V.; Bellare, A.; Merrill, E.W.W.; Jasty, M.; Harris, W.H.H. Molecular rearrangements in ultra high molecular weight polyethylene after irradiation and long-term storage in air. Polymer 1999, 40, 2215–2229. [Google Scholar] [CrossRef]
- Bracco, P.; Brunella, V.; Luda, M.P.; Brach del Prever, E.M.; Zanetti, M.; Costa, L. Oxidation behaviour in prosthetic UHMWPE components sterilised with high-energy radiation in the presence of oxygen. Polym. Degrad. Stab. 2006, 91. [Google Scholar] [CrossRef]
- Rimnac, C.M.; Klein, R.W.; Betts, F.; Wright, T.M. Post-irradiation aging of ultra-high molecular weight polyethylene. J. Bone Jt. Surg. Am. 1994, 76, 1052–1056. [Google Scholar] [CrossRef]
- Sutula, L.C.; Collier, J.P.; Saum, K.A.; Currier, B.H.; Currier, J.H.; Sanford, W.M.; Mayor, M.B.; Wooding, R.E.; Sperling, D.K.; Williams, I.R. The Otto Aufranc Award: Impact of gamma sterilization on clinical performance of polyethelene in the hip. Clin. Orthop. Relat. Res. 1995, 319, 28–40. [Google Scholar] [CrossRef]
- Costa, L.; Luda, M.P.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials 1998, 19, 659–668. [Google Scholar] [CrossRef]
- Costa, L.; Luda, M.P.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials 1998, 19, 1371–1385. [Google Scholar] [CrossRef]
- Costa, L.; Bracco, P. Mechanisms of Cross-Linking, Oxidative Degradation, and Stabilization of UHMWPE. In UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices, 3rd ed.; Kurtz, S.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 467–487. [Google Scholar] [CrossRef]
- Goldman, M.; Gronsky, R.; Ranganathan, R.; Pruitt, L. The effects of gamma radiation sterilization and ageing on the structure and morphology of medical grade ultra high molecular weight polyethylene. Polymer 1996, 37, 2909–2913. [Google Scholar] [CrossRef]
- Kurth, M.; Eyerer, P.; Ascherl, R.; Dittel, K.; Holz, U. An Evaluation of Retrieved UHMWPE Hip Joint Cups. J. Biomater. Appl. 1988, 3, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Y.; Lee, K.H. Wear of shelf-aged UHMWPE acetabular liners. Wear 1999, 225–229, 728–733. [Google Scholar] [CrossRef]
- Regis, M.; Bracco, P.; Giorgini, L.; Fusi, S.; Pria, P.D.; Costa, L.L.; Schmid, C. Correlation between in vivo stresses and oxidation of UHMWPE in total hip arthroplasty. J. Mater. Sci. Mater. Med. 2014, 25. [Google Scholar] [CrossRef] [PubMed]
- Medel, F.; Kurtz, S.M.; MacDonald, D.; Pascual, F.J.; Puértolas, J.A. Does Cyclic Stress Play a Role in Highly Crosslinked Polyethylene Oxidation? Clin. Orthop. Relat. Res. 2015, 473, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 2006, 21. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E. Survey of relations of chemical constituents in polymer-based materials with brittleness and its associated properties. Chem. Chem. Technol. 2016, 10, 595–601. [Google Scholar] [CrossRef]
- Edidin, A.A.; Jewett, C.W.; Kalinowski, A.; Kwarteng, K.; Kurtz, S.M. Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials 2000, 21, 1451–1460. [Google Scholar] [CrossRef]
- Edidin, A.A.; Herr, M.P.; Villarraga, M.L.; Muth, J.; Yau, S.S.; Kurtz, S.M. Accelerated aging studies of UHMWPE. I. Effect of resin, processing, and radiation environment on resistance to mechanical degradation. J. Biomed. Mater. Res. 2002, 61, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.P.; Sperling, D.K.; Currier, J.H.; Sutula, L.C.; Saum, K.A.; Mayor, M.B. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J. Arthroplast. 1996, 11, 377–389. [Google Scholar] [CrossRef]
- Baker, D.A.; Hastings, R.S.; Pruitt, L. Compression and tension fatigue resistance of medical grade ultra high molecular weight polyethylene: The effect of morphology, sterilization, aging and temperature. Polymer 2000, 41, 795–808. [Google Scholar] [CrossRef]
- White, S.E.; Paxson, R.D.; Tanner, M.G.; Whiteside, L.A. Effects of sterilization on wear in total knee arthroplasty. Clin. Orthop. Relat. Res. 1996, 331, 164–171. [Google Scholar] [CrossRef]
- Collier, M.B.; Engh, C.A., Jr.; McAuley, J.P.; Engh, G.A. Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J. Bone Jt. Surg. Ser. A 2007, 89. [Google Scholar] [CrossRef]
- McKellop, H.; Shen, F.W.; Lu, B.; Campbell, P.; Salovey, R. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study. J. Bone Jt. Surg. Ser. A 2000, 82, 1708–1725. [Google Scholar] [CrossRef]
- Young, S.K.; Keller, T.S.; Greer, K.W.; Gorhan, M.C. Wear testing of UHMWPE tibial components: Influence of oxidation. J. Tribol. 2000, 122. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E. Wear. In Materials: Introduction and Applications; John Wiley & Sons: New York, NY, USA, 2017; pp. 418–419. [Google Scholar]
- Endo, M.; Tipper, J.L.; Barton, D.C.; Stone, M.H.; Ingham, E.; Fisher, J. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2002, 216, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Essner, A.; Cooper, J. The Clinical Relevance of Hip Simulator Testing of High Performance Implants. Semin. Arthroplast. 2006, 17, 49–55. [Google Scholar] [CrossRef]
- Affatato, S.; Bordini, B.; Fagnano, C.; Taddei, P.; Tinti, A.; Toni, A. Effects of the sterilisation method on the wear of UHMWPE acetabular cups tested in a hip joint simulator. Biomaterials 2002, 23, 1439–1446. [Google Scholar] [CrossRef]
- Affatato, S.; Bersaglia, G.; Foltran, I.; Taddei, P.; Fini, G.; Toni, A. The performance of gamma- and EtO-sterilised UHWMPE acetabular cups tested under severe simulator conditions. Part 1: Role of the third-body wear process. Biomaterials 2002, 23, 4839–4846. [Google Scholar] [CrossRef]
- McKellop, H.A.; Shen, F.W.; Campbell, P.; Ota, T. Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra high molecular weight polyethylene acetabular cups in a hip joint simulator. J. Orthop. Res. 1999, 17, 329–339. [Google Scholar] [CrossRef] [PubMed]
- McKellop, H.; Shen, F.W.; Lu, B.; Campbell, P.; Salovey, R. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1999, 17, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.; Jasty, M.; Harris, W.H.; Gul, R.; McGarry, F. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 1999, 20, 1463–1470. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Rimnac, C.M.; Hozack, W.J.; Turner, J.; Marcolongo, M.; Goldberg, V.M.; Kraay, M.J.; Edidin, A.A. In vivo degradation of polyethylene liners after gamma sterilization in air. J. Bone Jt. Surg. Ser. A 2005, 87, 815. [Google Scholar] [CrossRef]
- Streicher, R.M. Sterilization and long-term aging of medical-grade UHMWPE. Radiat. Phys. Chem. 1995, 46, 893–896. [Google Scholar] [CrossRef]
- Goosen, J.H.M.; Verheyen, C.C.P.M.; Kollen, B.J.; Tulp, N.J.A. In vivo wear reduction of argon compared to air sterilized UHMW-polyethylene liners. Arch. Orthop. Trauma Surg. 2009, 129, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Muratoglu, O.K.; Evans, M.; Edidin, A.A. Advances in the processing, sterilization, and crosslinking of ultra- high molecular weight polyethylene for total joint arthroplasty. Biomaterials 1999, 20, 1659–1688. [Google Scholar] [CrossRef]
- Lu, S.; Orr, J.F.; Buchanan, F.J. The influence of inert packaging on the shelf ageing of gamma-irradiation sterilised ultra-high molecular weight polyethylene. Biomaterials 2003, 24, 139–145. [Google Scholar] [CrossRef]
- Currier, B.H.; Currier, J.H.; Mayor, M.B.; Lyford, K.A.; van Citters, D.W.; Collier, J.P. In Vivo Oxidation of γ-Barrier–Sterilized Ultra–High-Molecular-Weight Polyethylene Bearings. J. Arthroplast. 2007, 22, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Bracco, P.; del Prever, E.M.B.; Cannas, M.; Luda, M.P.; Costa, L. Oxidation behaviour in prosthetic UHMWPE components sterilised with high energy radiation in a low-oxygen environment. Polym. Degrad. Stab. 2006, 91, 2030–2038. [Google Scholar] [CrossRef]
- Wang, A.; Essner, A.; Polineni, V.; Stark, C.; Dumbleton, J. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements. Tribol. Int. 1998, 31, 17–33. [Google Scholar] [CrossRef]
- Wang, A.; Sun, D.C.; Yau, S.-S.; Edwards, B.; Sokol, M.; Essner, A.; Polineni, V.K.; Stark, C.; Dumbleton, J.H. Orientation softening in the deformation and wear of ultra-high molecular weight polyethylene. Wear 1997, 203–204, 230–241. [Google Scholar] [CrossRef]
- Wang, A. A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear 2001, 248, 38–47. [Google Scholar] [CrossRef]
- Campbell, P.; Doom, P.; Dorey, F.; Amstutz, H.C. Wear and morphology of ultra-high molecular weight polyethylene wear particles from total hip replacements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1996, 210, 167–174. [Google Scholar] [CrossRef] [PubMed]
- McKellop, H.A.; Campbell, P.; Park, S.-H.; Schmalzried, T.P.; Grigoris, P.; Amstutz, H.C.; Sarmiento, A. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin. Orthop. Relat. Res. 1995, 311, 3–20. [Google Scholar]
- Tipper, J.L.; Ingham, E.; Hailey, J.L.; Besong, A.A.; Fisher, J.; Wroblewski, B.M.; Stone, M.H. Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrieved Charnley hip prostheses. J. Mater. Sci. Mater. Med. 2000, 11, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, O.K.; Bragdon, C.R. Highly Cross-Linked and Melted UHMWPE. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 264–273. [Google Scholar] [CrossRef]
- Bracco, P.; Brunella, V.; Luda, M.P.; Zanetti, M.; Costa, L. Radiation-induced crosslinking of UHMWPE in the presence of co-agents: Chemical and mechanical characterisation. Polymer 2005, 46, 10648–10657. [Google Scholar] [CrossRef]
- Lewis, G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 2001, 22. [Google Scholar] [CrossRef]
- Gomoll, A.; Wanich, T.; Bellare, A. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J. Orthop. Res. 2002, 20, 1152–1156. [Google Scholar] [CrossRef]
- Baker, D.A.; Bellare, A.; Pruitt, L. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J. Biomed. Mater. Res. 2003, 66A, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Manley, M.; Wang, A.; Taylor, S.; Dumbleton, J. Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials. Bull. Hosp. Jt. Dis. 2003, 61, 17–26. [Google Scholar]
- Manley, M.T. Highly Cross-Linked and Annealed UHMWPE. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 274–292. [Google Scholar] [CrossRef]
- Oral, E.; Malhi, A.; Muratoglu, O. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 2006, 27, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Bistolfi, A.; Bellare, A. The relative effects of radiation crosslinking and type of counterface on the wear resistance of ultrahigh-molecular-weight polyethylene. Acta Biomater. 2011, 7, 3398–3403. [Google Scholar] [CrossRef] [PubMed]
- Medel, F.J.; Peña, P.; Cegoñino, J.; Gómez-Barrena, E.; Puértolas, J.A. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83B, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Ries, M.D.; Pruitt, L. Effect of cross-linking on the microstructure and mechanical properties of ultra-high molecular weight polyethylene. Clin. Orthop. Relat. Res. 2005, 440, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Atwood, S.A.; van Citters, D.W.; Patten, E.W.; Furmanski, J.; Ries, M.D.; Pruitt, L.A. Tradeoffs amongst fatigue, wear, and oxidation resistance of cross-linked ultra-high molecular weight polyethylene. J. Mech. Behav. Biomed. Mater. 2011, 4. [Google Scholar] [CrossRef] [PubMed]
- Affatato, S.; Bersaglia, G.; Rocchi, M.; Taddei, P.; Fagnano, C.; Toni, A. Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions. Biomaterials 2005, 26, 3259–3267. [Google Scholar] [CrossRef] [PubMed]
- Galvin, A.L.; Tipper, J.L.; Jennings, L.M.; Stone, M.H.; Jin, Z.M.; Ingham, E.; Fisher, J. Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations. Proc. Instit. Mech. Eng. Part H J. Eng. Med. 2007, 221, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, O.K.; Merrill, E.W.; Bragdon, C.R.; O’Connor, D.; Hoeffel, D.; Burroughs, B.; Jasty, M.; Harris, W.H. Effect of Radiation, Heat, and Aging on In Vitro Wear Resistance of Polyethylene. Clin. Orthop. Relat. Res. 2003, 417, 253–262. [Google Scholar]
- Wannomae, K.K.; Christensen, S.D.; Freiberg, A.A.; Bhattacharyya, S.; Harris, W.H.; Muratoglu, O.K. The effect of real-time aging on the oxidation and wear of highly cross-linked UHMWPE acetabular liners. Biomaterials 2006, 27, 1980–1987. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.P.; Currier, B.H.; Kennedy, F.E.; Currier, J.H.; Timmins, G.S.; Jackson, S.K.; Brewer, R.L. Comparison of Cross-Linked Polyethylene Materials for Orthopaedic Applications. Clin. Orthop. Relat. Res. 2003, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.O.; Jasty, M.; Harris, W.H. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. J. Arthroplast. 2001, 16, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Geller, J.A.; Malchau, H.; Bragdon, C.; Greene, M.; Harris, W.H.; Freiberg, A.A. Large Diameter Femoral Heads on Highly Cross-linked Polyethylene. Clin. Orthop. Relat. Res. 2006, 447, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Röhrl, S.; Nivbrant, B.; Mingguo, L.; Hewitt, B. In Vivo Wear and Migration of Highly Cross-Linked Polyethylene Cups. J. Arthroplast. 2005, 20, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Manning, D.W.; Chiang, P.P.; Martell, J.M.; Galante, J.O.; Harris, W.H. In Vivo Comparative Wear Study of Traditional and Highly Cross-li.nked Polyethylene in Total Hip Arthroplasty. J. Arthroplast. 2005, 20, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Krushell, R.J.; Fingeroth, R.J.; Cushing, M.C. Early Femoral Head Penetration of a Highly Cross-Linked Polyethylene Liner vs a Conventional Polyethylene Liner. J. Arthroplast. 2005, 20, 73–76. [Google Scholar] [CrossRef] [PubMed]
- D’Antonio, J.A.; Manley, M.T.; Capello, W.N.; Bierbaum, B.E.; Ramakrishnan, R.; Naughton, M.; Sutton, K. Five-year experience with Crossfire® highly cross-linked polyethylene. Clin. Orthop. Relat. Res. 2005. [Google Scholar] [CrossRef]
- Rajadhyaksha, A.D.; Brotea, C.; Cheung, Y.; Kuhn, C.; Ramakrishnan, R.; Zelicof, S.B. Five-Year Comparative Study of Highly Cross-Linked (Crossfire) and Traditional Polyethylene. J. Arthroplast. 2009, 24. [Google Scholar] [CrossRef] [PubMed]
- Dorr, L.D.; Wan, Z.; Shahrdar, C.; Sirianni, L.; Boutary, M.; Yun, A. Clinical performance of a Durasul highly cross-linked polyethylene acetabular liner for total hip arthroplasty at five years. J. Bone Jt. Surg. Ser. A 2005, 87, 1816. [Google Scholar] [CrossRef]
- Digas, G.; Karrholm, J.; Thanner, J.; Malchau, H.; Herberts, P. The Otto Aufranc Award: Highly Cross-linked Polyethylene in Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 2004, 429, 6–16. [Google Scholar] [CrossRef]
- Bragdon, C.R.; Doerner, M.; Martell, J.; Jarrett, B.; Palm, H.; Malchau, H. The 2012 John Charnley Award: Clinical Multicenter Studies of the Wear Performance of Highly Crosslinked Remelted Polyethylene in THA. Clin. Orthop. Relat. Res. 2013, 471, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Mutimer, J.; Devane, P.A.; Adams, K.; Horne, J.G. Highly Crosslinked Polyethylene Reduces Wear in Total Hip Arthroplasty at 5 Years. Clin. Orthop. Relat. Res. 2010, 468, 3228–3233. [Google Scholar] [CrossRef] [PubMed]
- Engh, C.A., Jr.; Stepniewski, A.S.; Ginn, S.D.; Beykirch, S.E.; Sychterz-Terefenko, C.J.; Hopper, R.H., Jr.; Engh, C.A. A Randomized Prospective Evaluation of Outcomes After Total Hip Arthroplasty Using Cross-linked Marathon and Non-cross-linked Enduron Polyethylene Liners. J. Arthroplast. 2006, 21, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rey, E.; Garcia-Cimbrelo, E.; Cruz-Pardos, A.; Ortega-Chamarro, J. New polyethylenes in total hip replacement: A Prospective, Comparative Clinical Study of two Types of Liner. J. Bone Jt. Surg. Br. Vol. 2008, 90–B, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Glyn-Jones, S.; Thomas, G.E.R.; Garfjeld-Roberts, P.; Gundle, R.; Taylor, A.; McLardy-Smith, P.; Murray, D.W. The John Charnley Award: Highly Crosslinked Polyethylene in Total Hip Arthroplasty Decreases Long-term Wear: A Double-blind Randomized Trial. Clin. Orthop. Relat. Res. 2015, 473, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Atienza, C., Jr.; Maloney, W.J. Highly cross-linked polyethylene bearing surfaces in total hip arthroplasty. J. Surg. Orthop. Adv. 2008, 17, 27–33. [Google Scholar] [PubMed]
- Kurtz, S.M.; Gawel, H.A.; Patel, J.D. History and Systematic Review of Wear and Osteolysis Outcomes for First-generation Highly Crosslinked Polyethylene. Clin. Orthop. Relat. Res. 2011, 469, 2262–2277. [Google Scholar] [CrossRef] [PubMed]
- Minoda, Y.; Aihara, M.; Sakawa, A.; Fukuoka, S.; Hayakawa, K.; Tomita, M.; Umeda, N.; Ohzono, K. Comparison between highly cross-linked and conventional polyethylene in total knee arthroplasty. Knee 2009, 16, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Park, J.-W. Comparison of Highly Cross-Linked and Conventional Polyethylene in Posterior Cruciate-Substituting Total Knee Arthroplasty in the Same Patients. J. Bone Jt. Surg.-Am. Vol. 2014, 96, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Hodrick, J.T.; Severson, E.P.; McAlister, D.S.; Dahl, B.; Hofmann, A.A. Highly Crosslinked Polyethylene is Safe for Use in Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 2806–2812. [Google Scholar] [CrossRef] [PubMed]
- Wannomae, K.K.; Bhattacharyya, S.; Freiberg, A.; Estok, D.; Harris, W.H.; Muratoglu, O. In Vivo Oxidation of Retrieved Cross-linked Ultra–High-Molecular-Weight Polyethylene Acetabular Components with Residual Free Radicals. J. Arthroplast. 2006, 21, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Currier, B.H.; Currier, J.H.; Mayor, M.B.; Lyford, K.A.; Collier, J.P.; van Citters, D.W. Evaluation of oxidation and fatigue damage of retrieved crossfire polyethylene acetabular cups. J. Bone Jt. Surg. Ser. A 2007, 89. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Hozack, W.; Turner, J.; Purtill, J.; MacDonald, D.; Sharkey, P.; Parvizi, J.; Manley, M.; Rothman, R. Mechanical Properties of Retrieved Highly Cross-Linked Crossfire Liners After Short-Term Implantation. J. Arthroplast. 2005, 20, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Austin, M.S.; Azzam, K.; Sharkey, P.F.; MacDonald, D.W.; Medel, F.J.; Hozack, W.J. Mechanical Properties, Oxidation, and Clinical Performance of Retrieved Highly Cross-Linked Crossfire Liners After Intermediate-Term Implantation. J. Arthroplast. 2010, 25, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Hozack, W.J.; Purtill, J.J.; Marcolongo, M.; Kraay, M.J.; Goldberg, V.M.; Sharkey, P.F.; Parvizi, J.; Rimnac, C.M.; Edidin, A.A. Otto Aufranc award paper: Significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin. Orthop. Relat. Res. 2006. [Google Scholar] [CrossRef] [PubMed]
- Furmanski, J.; Anderson, M.; Bal, S.; Greenwald, A.S.; Halley, D.; Penenberg, B.; Ries, M.; Pruitt, L. Clinical fracture of cross-linked UHMWPE acetabular liners. Biomaterials 2009, 30, 5572–5582. [Google Scholar] [CrossRef] [PubMed]
- Tower, S.S.; Currier, J.H.; Currier, B.H.; Lyford, K.A.; van Citters, D.W.; Mayor, M.B. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J. Bone Jt. Surg. Ser. A 2007, 89, 2212–2217. [Google Scholar] [CrossRef]
- Currier, B.H.; Currier, J.H.; Franklin, K.J.; Mayor, M.B.; Reinitz, S.D.; van Citters, D.W. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts. J. Arthroplast. 2015, 30, 2349–2353. [Google Scholar] [CrossRef] [PubMed]
- Currier, B.H.; van Citters, D.W.; Currier, J.H.; Carlson, E.M.; Tibbo, M.E.; Collier, J.P. In vivo oxidation in retrieved highly crosslinked tibial inserts. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 101B. [Google Scholar] [CrossRef]
- Miura, Y.; Hasegawa, M.; Sudo, A.; Pezzotti, G.; Puppulin, L. In Vivo degradation of middle-term highly cross-linked and remelted polyethylene cups: Modification induced by creep, wear and oxidation. J. Mech. Behav. Biomed. Mater. 2015, 51, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, O.K.; Wannomae, K.K.; Rowell, S.L.; Micheli, B.R.; Malchau, H. Ex Vivo Stability Loss of Irradiated and Melted Ultra-High Molecular Weight Polyethylene. J. Bone Jt. Surg.-Am. Vol. 2010, 92, 2809–2816. [Google Scholar] [CrossRef] [PubMed]
- Rowell, S.L.; Reyes, C.R.; Malchau, H.; Muratoglu, O.K. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation. J. Arthroplast. 2015, 30, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.W.; Higgs, G.; Parvizi, J.; Klein, G.; Hartzband, M.; Levine, H.; Kraay, M.; Rimnac, C.M.; Kurtz, S.M. Oxidative properties and surface damage mechanisms of remelted highly crosslinked polyethylenes in total knee arthroplasty. Int. Orthop. 2013, 37, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Bracco, P.; del Prever, E.B.; Luda, M.; Trossarelli, L. Analysis of products diffused into UHMWPE prosthetic components in vivo. Biomaterials 2001, 22, 307–315. [Google Scholar] [CrossRef]
- Oral, E.; Ghali, B.W.; Neils, A.; Muratoglu, O.K. A new mechanism of oxidation in ultrahigh molecular weight polyethylene caused by squalene absorption. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Dumbleton, J.H.; D’Antonio, J.A.; Manley, M.T.; Capello, W.N.; Wang, A. The Basis for a Second-generation Highly Cross-linked UHMWPE. Clin. Orthop. Relat. Res. 2006, 453, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zeng, H.; Yau, S.-S.; Essner, A.; Manely, M.; Dumbleton, J. Wear, oxidation and mechanical properties of a sequentially irradiated and annealed UHMWPE in total joint replacement. J. Phys. D Appl. Phys. 2006, 39, 3213–3219. [Google Scholar] [CrossRef]
- Wang, A.; Yau, S.-S.; Essner, A.; Herrera, L.; Manley, M.; Dumbleton, J. A Highly Crosslinked UHMWPE for CR and PS Total Knee Arthroplasties. J. Arthroplast. 2008, 23, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Sayeed, S.A.; Mont, M.A.; Costa, C.R.; Johnson, A.J.; Naziri, Q.; Bonutti, P.M.; Delanois, R.E. Early outcomes of sequentially cross-linked thin polyethylene liners with large diameter femoral heads in total hip arthroplasty. Bull. NYU Hosp. Jt. Dis. 2011, 69 (Suppl. 1), S90–S94. [Google Scholar] [PubMed]
- D’Antonio, J.A.; Capello, W.N.; Ramakrishnan, R. Second-generation Annealed Highly Cross-linked Polyethylene Exhibits Low Wear. Clin. Orthop. Relat. Res. 2012, 470, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Reinitz, S.D.; Currier, B.H.; van Citters, D.W.; Levine, R.A.; Collier, J.P. Oxidation and other property changes of retrieved sequentially annealed UHMWPE acetabular and tibial bearings. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; MacDonald, D.W.; Mont, M.A.; Parvizi, J.; Malkani, A.L.; Hozack, W. Retrieval Analysis of Sequentially Annealed Highly Crosslinked Polyethylene Used in Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 2015, 473, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Kop, A.M.; Pabbruwe, M.B.; Keogh, C.; Swarts, E. Oxidation of Second Generation Sequentially Irradiated and Annealed Highly Cross-Linked X3TM Polyethylene Tibial Bearings. J. Arthroplast. 2015, 30, 1842–1846. [Google Scholar] [CrossRef] [PubMed]
- Bracco, P.; Oral, E. Vitamin E-stabilized UHMWPE for Total Joint Implants: A Review. Clin. Orthop. Relat. Res. 2011, 469, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Grassie, N.; Scott, G. Polymer Degradation and Stabilisation; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Berzen, J.; Luketic, D. Stabilised Polyethylene Moulding Materials, esp. for Implants—Containing Polyethylene with Molecular wt. 105–107, Antioxidant, and Tocopherol, esp. Alpha-Tocopherol or Vitamin E, as Stabiliser. Eur. Patent No. 613,923, 25 October 1994. [Google Scholar]
- Wolf, C.; Krivec, T.; Blassnig, J.; Lederer, K.; Schneider, W. Examination of the suitability of alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses. J. Mater. Sci. Mater. Med. 2002, 13, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Kitakura, T.; Onmori, N.; Ikada, Y.; Aoyama, E. Prevention of fatigue cracks in ultrahigh molecular weight polyethylene joint components by the addition of vitamin E. J. Biomed. Mater. Res. 1999, 48, 474–478. [Google Scholar] [CrossRef]
- Parth, M.; Aust, N.; Lederer, K. Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of α-tocopherol with respect to its application in medical implants. J. Mater. Sci. Mater. Med. 2002, 13, 917–921. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Bracco, P.; Costa, L.; Oral, E.; Muratoglu, O.K. Vitamin E-Blended UHMWPE Biomaterials. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 293–306. [Google Scholar] [CrossRef]
- Oral, E.; Muratoglu, O.K. Highly Cross-Linked UHMWPE Doped with Vitamin E. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 307–325. [Google Scholar] [CrossRef]
- Oral, E.; Muratoglu, O.K. Vitamin E diffused, highly crosslinked UHMWPE: A review. Int. Orthop. 2011, 35, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Gijsman, P.; Smelt, H.J.; Schumann, D. Hindered amine light stabilizers: An alternative for radiation cross-linked UHMwPE implants. Biomaterials 2010, 31, 6685–6691. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Shen, J.; Gao, G.; Xu, Y.; Hou, R.; Cong, Y.; Cheng, Y. Natural polyphenol-stabilised highly crosslinked UHMWPE with high mechanical properties and low wear for joint implants. J. Mater. Chem. B 2013, 1, 4727. [Google Scholar] [CrossRef]
- Narayan, V. Alternate Antioxidants for Orthopedic Devices. In UHMWPE Biomaterials Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 326–351. [Google Scholar] [CrossRef]
- Shen, J.; Gao, G.; Liu, X.; Fu, J. Natural Polyphenols Enhance Stability of Crosslinked UHMWPE for Joint Implants. Clin. Orthop. Relat. Res. 2014, 473. [Google Scholar] [CrossRef] [PubMed]
- Hope, N.; Bellare, A. A Comparison of the Efficacy of Various Antioxidants on the Oxidative Stability of Irradiated Polyethylene. Clin. Orthop. Relat. Res. 2015, 473, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Bracco, P.; Brunella, V.; Zanetti, M.; Luda, M.P.; Costa, L. Stabilisation of ultra-high molecular weight polyethylene with Vitamin E. Polym. Degrad. Stab. 2007, 92, 2155–2162. [Google Scholar] [CrossRef]
- Costa, L.; Carpentieri, I.; Bracco, P. Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polym. Degrad. Stab. 2009, 94, 1542–1547. [Google Scholar] [CrossRef]
- Lerf, R.; Zurbrügg, D.; Delfosse, D. Use of vitamin E to protect cross-linked UHMWPE from oxidation. Biomaterials 2010, 31. [Google Scholar] [CrossRef] [PubMed]
- Oral, E.; Greenbaum, E.S.; Malhi, A.S.; Harris, W.H.; Muratoglu, O.K. Characterization of irradiated blends of α-tocopherol and UHMWPE. Biomaterials 2005, 26, 6657–6663. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Dumbleton, J.; Siskey, R.S.; Wang, A.; Manley, M. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J. Biomed. Mater. Res. Part A 2009, 90, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Oral, E.; Wannomae, K.K.; Rowell, S.L.; Muratoglu, O.K. Diffusion of vitamin E in ultra-high molecular weight polyethylene. Biomaterials 2007, 28, 5225–5237. [Google Scholar] [CrossRef] [PubMed]
- Kohm, A.; Furmanski, J.; Pruitt, L. Effect of alpha-tocopherol on UHMWPE fatigue resistance. In Transactions of the 52nd Orthopedic Research Society; Orthopaedic Research Society: Chicago, IL, USA, 2006; p. 662. [Google Scholar]
- Oral, E.; Wannomae, K.K.; Hawkins, N.; Harris, W.H.; Muratoglu, O.K. α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials 2004, 25, 5515–5522. [Google Scholar] [CrossRef] [PubMed]
- Oral, E.; Christensen, S.D.; Malhi, A.S.; Wannomae, K.K.; Muratoglu, O.K. Wear Resistance and Mechanical Properties of Highly Cross-linked, Ultrahigh–Molecular Weight Polyethylene Doped With Vitamin E. J. Arthroplast. 2006, 21, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Bellare, A.; D’Angelo, F.; Ngo, H.D.; Thornhill, T.S. Oxidation resistance and abrasive wear resistance of vitamin E stabilized radiation crosslinked ultra-high molecular weight polyethylene. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Affatato, S.; Bracco, P.; Costa, L.; Villa, T.; Quaglini, V.; Toni, A. In vitro wear performance of standard, crosslinked, and vitamin-E-blended UHMWPE. J. Biomed. Mater. Res. Part A 2012, 100A. [Google Scholar] [CrossRef] [PubMed]
- Haider, H.; Weisenburger, J.N.; Kurtz, S.M.; Rimnac, C.M.; Freedman, J.; Schroeder, D.W.; Garvin, K.L. Does Vitamin E–Stabilized Ultrahigh-Molecular-Weight Polyethylene Address Concerns of Cross-Linked Polyethylene in Total Knee Arthroplasty? J. Arthroplast. 2012, 27, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Schwiesau, J.; Fritz, B.; Kutzner, I.; Bergmann, G.; Grupp, T.M. CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities. BioMed Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, C.; Alvarez, E.; Vinciguerra, J.; Bruce, D.A.; DesJardins, J.D. Reduction of Total Knee Replacement Wear with Vitamin E Blended Highly Cross-Linked Ultra-High Molecular Weight Polyethylene. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Teramura, S.; Sakoda, H.; Terao, T.; Fujiwara, K.; Kawai, K.; Tomita, N. Reduction of Wear Volume from Accelerated Aged UHMWPE Knee Components by the Addition of Vitamin E. J. Biomech. Sc. Eng. 2009, 4, 589–596. [Google Scholar] [CrossRef]
- Bladen, C.L.; Teramura, S.; Russell, S.L.; Fujiwara, K.; Fisher, J.; Ingham, E.; Tomita, N.; Tipper, J.L. Analysis of wear, wear particles, and reduced inflammatory potential of vitamin E ultrahigh-molecular-weight polyethylene for use in total joint replacement. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101B, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Bichara, D.A.; Malchau, E.; Sillesen, N.H.; Cakmak, S.; Nielsen, G.P.; Muratoglu, O.K. Vitamin E-Diffused Highly Cross-Linked UHMWPE Particles Induce Less Osteolysis Compared to Highly Cross-Linked Virgin UHMWPE Particles In Vivo. J. Arthroplast. 2014, 29, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Banche, G.; Allizond, V.; Bracco, P.; Bistolfi, A.; Boffano, M.; Cimino, A.; Brach Del Prever, E.M.; Cuffini, A.M. Interplay between surface properties of standard, vitamin E blended and oxidised ultra high molecular weight polyethylene used in total joint replacement and adhesion of Staphylococcus aureus and Escherichia coli. Bone Jt. J. 2014, 96B. [Google Scholar] [CrossRef] [PubMed]
- Banche, G.; Bracco, P.; Allizond, V.; Bistolfi, A.; Boffano, M.; Cimino, A.; Brach del Prever, E.M.; Cuffini, A.M. Do Crosslinking and Vitamin E Stabilization Influence Microbial Adhesions on UHMWPE-based Biomaterials? Clin. Orthop. Relat. Res. 2014, 473. [Google Scholar] [CrossRef] [PubMed]
- Banche, G.; Bracco, P.; Bistolfi, A.; Allizond, V.; Boffano, M.; Costa, L.; Cimino, A.; Cuffini, A.M.; Brach del Prever, E.M. Vitamin e blended Uhmwpe may have the potential to reduce bacterial adhesive ability. J. Orthop. Res. 2011, 29. [Google Scholar] [CrossRef] [PubMed]
- Scemama, C.; Anract, P.; Dumaine, V.; Babinet, A.; Courpied, J.P.; Hamadouche, M. Does vitamin E-blended polyethylene reduce wear in primary total hip arthroplasty: A blinded randomised clinical trial. Int. Orthop. 2017, 41, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Shareghi, B.; Johanson, P.-E.; Kärrholm, J. Femoral Head Penetration of Vitamin E-Infused Highly Cross-Linked Polyethylene Liners. J. Bone Jt. Surg.-Am. Vol. 2015, 97, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Salemyr, M.; Muren, O.; Ahl, T.; Bodén, H.; Chammout, G.; Stark, A.; Sköldenberg, O. Vitamin-E diffused highly cross-linked polyethylene liner compared to standard liners in total hip arthroplasty. A randomized, controlled trial. Int. Orthop. 2015, 39, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Sillesen, N.H.; Greene, M.E.; Nebergall, A.K.; Huddleston, J.I.; Emerson, R.; Gebuhr, P.; Troelsen, A.; Malchau, H. 3-year follow-up of a long-term registry-based multicentre study on vitamin E diffused polyethylene in total hip replacement. Hip Int. 2016, 26, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Nebergall, A.K.; Troelsen, A.; Rubash, H.E.; Malchau, H.; Rolfson, O.; Greene, M.E. Five-Year Experience of Vitamin E–Diffused Highly Cross-Linked Polyethylene Wear in Total Hip Arthroplasty Assessed by Radiostereometric Analysis. J. Arthroplast. 2016, 31, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Rowell, S.L.; Muratoglu, O.K. Investigation of surgically retrieved, vitamin E-stabilized, crosslinked UHMWPE implants after short-term in vivo service. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Currier, B.H.; Currier, J.H.; Holdcroft, L.A.; van Citters, D.W. Effectiveness of anti-oxidant polyethylene: What early retrievals can tell us. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017. [Google Scholar] [CrossRef] [PubMed]
Control | 50 kGy | 100 kGy | 200 kGy | |
---|---|---|---|---|
Crystallinity (%) | 50.1 ± 0.5 | 45.6 ± 0.7 | 46.3 ± 0.8 | 47.1 ± 0.4 |
Lamellar thickness (nm) | 20.0 | 18.1 | 18.7 | 19.1 |
Elastic modulus (MPa) | 495 ± 56 | 412 ± 50 | 386 ± 23 | 266 ± 30 |
Yield stress (MPa) | 20.2 ± 1.0 | 19.9 ± 0.8 | 18.9 ± 0.7 | 20.2 ± 1.0 |
True stress at break (MPa) | 315.5 ± 31.6 | 237.6 ± 12.3 | 185.7 ± 7.5 | 126.0 ± 14.0 |
Decrease in true stress at break (%) | - | 24 | 41 | 60 |
ΔKincep (MPa√m) | 1.41 | 0.91 | 0.69 | 0.55 |
Decrease in ΔKincep (%) | - | 35 | 51 | 61 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. https://doi.org/10.3390/ma10070791
Bracco P, Bellare A, Bistolfi A, Affatato S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials. 2017; 10(7):791. https://doi.org/10.3390/ma10070791
Chicago/Turabian StyleBracco, Pierangiola, Anuj Bellare, Alessandro Bistolfi, and Saverio Affatato. 2017. "Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review" Materials 10, no. 7: 791. https://doi.org/10.3390/ma10070791