Exploring the Association of Biochemical Characterization and Genetic Determinants of TNF-α, CXCR2, and CCR5 Delta 32 Mutation with Predisposition to Polycystic Ovary Syndrome
Abstract
:1. Introduction
1.1. Tumor Necrosis Factor-Alpha (TNF-α)
1.2. The CC Chemokine Receptor 2 (CXCR2 Gene) + 785C/T (rs2230054)
1.3. Deletion of CCR5Δ32 in CC Chemokine Receptor 2 (CXCR2 Gene)
2. Methodology
2.1. Study Participants and Criteria
2.2. Biochemical Serum Profile
2.3. Extracting and Evaluating Genomic DNA Qualitatively
2.4. Genotyping of TNF-α G>A (rs1800629), CXCR2-rs2230054-C>T CCR5-Delta32 rs333 Mutation
2.5. Preparation of PCR Mix
2.6. PCR Thermocycling Conditions
2.7. Gel Electrophoresis and PCR Product Visualization
- Mutation-specific PCR for CCR5 Δ32 bp:
- TNF-α rs1800629 G>A genotyping:
- CXCR2+785C>T (rs2230054) genotyping:
2.8. Statistical Analysis:
3. Results
3.1. Demographic Characteristics of the Study Population
Hardy–Weinberg Equilibrium (HWE)
3.2. Allele and Genotype Frequency of TNF-α rs1800629 G>A and CXCR2 rs2230054 C>T Gene Polymorphism in Cases and Controls
3.2.1. Logistic Regression Analysis of TNF-α rs1800629 G>A Genotypes to Predict the Risk of PCOS Susceptibility
3.2.2. Logistic Regression Analysis of CXCR2+785 C>T (rs2230054 C>A) Genotypes to Predict the Risk of PCOS Susceptibility
3.2.3. CCR5Δ32 Allele Frequency (rs333) in PCOS Cases and Healthy Controls
3.2.4. Logistic Regression Analysis of CCR5 Δ32 bp (rs333) Genotypes to Predict the Risk of PCOS Susceptibility
4. Discussion
4.1. Comparative Association of TNF-α rs1800629 G>A Gene Polymorphism
4.2. Comparative Association of CXCR2 rs2230054 C>A Gene Polymorphism
4.3. Comparative Association of CCR5 Δ32 bp (rs333) Gene Mutation
Populations | N= | CCR5 Wild | CCR5 (Δ32+Δ32*) | CCR5Δ32* | Allele Frequency (%) | Ref. |
---|---|---|---|---|---|---|
Brazilian population | 120 | 112 (93.33%) | 8 (6.66%) | 0 | 6.7 | [57] |
Australian Ashkenazi Jewish background | 937 | 697 (74.38%) | 219 (23.37%) | 21 | 0.14 | [58] |
Australian non-Jewish population | 442 | 372 (84.16%) | 67 (15.15%) | 3 | 0.08 | [58] |
Alia, Sicily | 19 | 18 (94.73%) | 1 (5.26%) | 0 | 2.6 | [59] |
Lübeck, northern Germany | 20 | 15 (75%) | 5 (25%) | 0 | 12.5 | [59] |
Göttingen, central Germany | 346 | 287 (82.94%) | 54 (15.6%) | 5 | 9.2 | [59] |
Goslar, central Germany | 19 | 12 (63.15) | 7 (36.84%) | 0 | 18.4 | [59] |
Inuit (Canada) | 40 | 40 (100%) | 0 (0) | 0 | 0.0 | [60] |
Central Asian native populations | 107 | 106 (99.06%) | 1 (0.93%) | 0 | 0.5 | [60] |
Russian | 53 | 43 (81.13%) | 9 (16.98%) | 1 | 10.4 | [60] |
Asian West Siberian native populations | 104 | 86 (82.69%) | 13 (12.5%) | 5 | 11.1 | [60] |
India | 396 | 384 (96.96%) | 12 (3.4%) | 0 (0%) | 3.0 | [60] |
Greece | 375 | 362 (96.53%) | 13 (3.46%) | 0 (0%) | 3.5 | [61] |
Saudi Arabia | 110 | 109 (99.09%) | 1 (1%) | 0 (0%) | 0.90 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Prim. 2016, 2, 16057. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E. Role of obesity and adiposity in polycystic ovary syndrome. Int. J. Obes. 2007, 31, S8–S13. [Google Scholar] [CrossRef]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef]
- Li, L.; Gu, Z.-P.; Bo, Q.-M.; Wang, D.; Yang, X.-S.; Cai, G.-H. Association of CYP17A1gene -34T/C polymorphism with polycystic ovary syndrome in Han Chinese population. Gynecol. Endocrinol. 2015, 31, 40–43. [Google Scholar] [CrossRef]
- Cai, L.; Yang, Y.-H.; He, L.; Chou, K.-C. Modulation of cytokine network in the comorbidity of schizophrenia and tuberculosis. Curr. Top. Med. Chem. 2016, 16, 655–665. [Google Scholar] [CrossRef]
- Li, S.; Zhao, L.; Wan, X.-H. A Missense Variant rs4645843 in TNF-α Gene Is a Risk Factor of Polycystic Ovary Syndrome in the Uygur Population. Tohoku J. Exp. Med. 2017, 243, 95–100. [Google Scholar] [CrossRef]
- Deepika, M.L.N.; Reddy, K.R.; Yashwanth, A.; Rani, V.U.; Latha, K.P.; Jahan, P. TNF-α haplotype association with polycystic ovary syndrome–a South Indian study. J. Assist. Reprod. Genet. 2013, 30, 1493–1503. [Google Scholar] [CrossRef]
- Raguema, N.; Ben Ali Gannoun, M.; Zitouni, H.; Ben Letaifa, D.; Seda, O.; Mahjoub, T. Lavoie Contribution of -1031T/C and 76G/A tumor necrosis factor alpha polymorphisms and haplotypes to preeclampsia risk in Tunisia (North Africa). J. Reprod. Immunol. 2022, 149, 103461. [Google Scholar] [CrossRef]
- Kume, T.; Calan, M.; Yilmaz, O.; Kocabas, G.U.; Yesil, P.; Temur, M.; Bicer, M.; Calan, O.G. A possible connection between tumor necrosis factor alpha and adropin levels in polycystic ovary syndrome. J. Endocrinol. Investig. 2016, 39, 747–754. [Google Scholar] [CrossRef]
- Wilson, A.G.; Symons, J.A.; McDowell, T.L.; McDevitt, H.O.; Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA 1997, 94, 3195–3199. [Google Scholar] [CrossRef]
- Wu, H.; Yu, K.; Yang, Z.J. Associations between TNF-alpha and interleukin gene polymorphisms with polycystic ovary syn-drome risk: A systematic review and meta-analysis. Assist. Reprod. Genet. 2015, 32, 625–634. [Google Scholar] [CrossRef]
- Khajouei, A.; Hosseini, E.; Abdizadeh, T.; Kian, M.; Ghasemi, S. Beneficial effects of minocycline on the ovary of polycystic ovary syndrome mouse model: Molecular docking analysis and evaluation of TNF-α, TNFR2, TLR-4 gene expression. J. Reprod. Immunol. 2021, 144, 103289. [Google Scholar] [CrossRef]
- Caldwell, A.S.L.; Middleton, L.J.; Jimenez, M.; Desai, R.; McMahon, A.C.; Allan, C.M.; Handelsman, D.J.; Walters, K.A. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 2014, 155, 3146–3159. [Google Scholar] [CrossRef]
- Peral, B.; San Millán, J.L.; Castello, R.; Moghetti, P.; Escobar-Morreale, H.F. Comment: The methionine 196 arginine polymorphism in exon 6 of the TNF receptor 2 gene (TNFRSF1B) is associated with the polycystic ovary syndrome and hyperandrogenism. J. Clin. Endocrinol. Metab. 2002, 87, 3977–3983. [Google Scholar] [CrossRef]
- Arıkan, S.; Atalay, A.; Öztürk, O.; Duygulu, Ş.; Atalay, E.Ö. Association of single nucleotide polymorphisms in CXCR1, CXCR2 and CXCL5 with Behçet disease: A study in the Denizli province of Turkey. Clin. Exp. Dermatol. 2021, 46, 1462–1470. [Google Scholar] [CrossRef]
- Ni, X.B.; Jia, C.; Yu, H.D.; Li, Y.Q.; Zeng, X.T.; Leng, W.D. Comprehensive analysis of interleukin-8 gene polymorphisms and periodontitis susceptibility. Oncotarget 2017, 8, 48996–49004. [Google Scholar] [CrossRef]
- Wu, H.H.; Lee, T.H.; Tee, Y.T.; Chen, S.C.; Yang, S.F.; Lee, S.K.; Ko, J.L.; Wang, P.H. Relationships of single nucleotide polymorphisms of monocyte chemoattractant protein 1 and chemokine receptor 2 with susceptibility and clinicopathologic characteristics of neoplasia of uterine cervix in Taiwan women. Reprod. Sci. 2013, 20, 1175–1183. [Google Scholar] [CrossRef]
- Kavrikova, D.; Borilova Linhartova, P.; Lucanova, S.; Poskerova, H.; Fassmann, A.; Izakovicova Holla, L. Chemokine receptor 2 (CXCR2) gene variants and their association with periodontal bacteria in patients with chronic periodontitis. Mediat. Inflamm 2019, 2019, 2061868. [Google Scholar] [CrossRef]
- Stokkeland, L.M.T.; Giskeødegård, G.F.; Ryssdal, M.; Jarmund, A.H.; Steinkjer, B.; Madssen, T.S.; Stafne, S.N.; Stridsklev, S.; Løvvik, T.S.; Iversen, A.-C.; et al. Changes in Serum Cytokines Throughout Pregnancy in Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, 39–52. [Google Scholar] [CrossRef]
- Hatziagelaki, E.; Pergialiotis, V.; Kannenberg, J.M.; Trakakis, E.; Tsiavou, A.; Markgraf, D.F.; Carstensen-Kirberg, M.; Pacini, G.; Roden, M.; Dimitriadis, G.; et al. Association between Biomarkers of Low-grade Inflammation and Sex Hormones in Women with Polycystic Ovary Syndrome. Exp. Clin. Endocrinol. Diabetes 2020, 128, 723–730. [Google Scholar] [CrossRef]
- Huang, X.; Hao, C.; Shen, X.; Liu, X.; Shan, Y.; Zhang, Y.; Chen, L. Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome. Reproduction 2013, 145, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Wang, F.; Chen, D.; Zhou, J.; Xu, J.; Qu, F. Immune dysfunction mediated by the competitive endogenous RNA network in fetal side placental tissue of polycystic ovary syndrome. PLoS ONE 2024, 19, e0300461. [Google Scholar] [CrossRef] [PubMed]
- Ota, T. CCR5: A novel player in the adipose tissue inflammation and insulin resistance? Adipocyte 2013, 2, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.S.; Nguyen, H.T.; Salmanida, F.P.; Chang, K.T. MERTK(+/hi) M2c Macrophages Induced by Baicalin Alleviate Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2021, 22, 10604. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.C.; Chen, K.H.; Chen, C.W.; Ho, C.H.; Wang, P.H.; Chen, H.S.; Hwang, J.L.; Lin, Y.H.; Seow, K.M. Increased regulated on activation, normal T-cell expressed and secreted levels and cysteine-cysteine chemokine receptor 5 upregulation in omental adipose tissue and peripheral blood mononuclear cells are associated with testosterone level and insulin resistance in pol-ycystic ovary syndrome. Fertil. Steril. 2021, 116, 1139–1146. [Google Scholar] [PubMed]
- Ni, J.; Wang, D.; Wang, S. The CCR5-Delta32 genetic polymorphism and HIV-1 infection susceptibility: A meta-analysis. Open Med. 2018, 13, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Paxton, W.A.; Choe, S.; Ceradini, D.; Martin, S.R.; Horuk, R.; MacDonald, M.E.; Stuhlmann, H.; Koup, R.A.; Landau, N.R. Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection. Cell 1996, 86, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.W.; Leboute, A.P.; Oliveira, S.F.; Sousa, S.M.; Klautau-Guimarães, M.d.N.; Simões, A.L. CCR5D32 mutation in three Brazilian populations of predominantly Sub-Saharan African ancestry. Genet. Mol. Biol. 2004, 27, 321–325. [Google Scholar] [CrossRef]
- Vargas, A.; Marrero, A.; Salzano, F.; Bortolini, M.; Chies, J. Frequency of CCR5Delta32 in Brazilian populations. Braz. J. Med. Biol. Res. 2006, 39, 321–325. [Google Scholar] [CrossRef]
- Sabeti, P.C.; Walsh, E.; Schaffner, S.F.; Varilly, P.; Fry, B.; Hutcheson, H.B.; Cullen, M.; Mikkelsen, T.S.; Roy, J.; Patterson, N.; et al. The Case for Selection at CCR5-Delta32. PLoS Biol. 2005, 3, e378. [Google Scholar] [CrossRef]
- Stephens, J.C.; Reich, D.E.; Goldstein, D.B.; Shin, H.D.; Smith, M.W.; Carrington, M.; Winkler, C.; Huttley, G.A.; Allikmets, R.; Schriml, L.; et al. Dating the Origin of the CCR5-Delta32 AIDS-Resistance Allele by the Coalescence of Haplotypes. Am. J. Hum. Genet. 1998, 62, 1507–1515. [Google Scholar] [CrossRef]
- Solloch, U.V.; Lang, K.; Lange, V.; Böhme, I.; Schmidt, A.H.; Sauter, J. Frequencies of Gene Variant CCR5-Δ32 in 87 Countries Based on Next-Generation Sequencing of 1.3 Million Individuals Sampled From 3 National DKMS Donor Centers. Hum. Immunol. 2017, 78, 710–717. [Google Scholar] [CrossRef]
- Kohlmeier, J.E.; Miller, S.C.; Smith, J.; Lu, B.; Gerard, C.; Cookenham, T.; Roberts, A.D.; Woodland, D.L. The Chemokine Receptor CCR5 Plays a Key Role in the Early Memory CD8+ T Cell Response to Respiratory Virus Infections. Immunity 2008, 29, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Keynan, Y.; Juno, J.; Meyers, A.; Ball, T.B.; Kumar, A.; Rubinstein, E.; Fowke, K.R. Chemokine Receptor 5 Δ32 Allele in Patients with Severe Pandemic (H1N1) 2009. Emerg. Infect. Dis. 2010, 16, 1621–1622. [Google Scholar] [CrossRef] [PubMed]
- Almassabi, R.F.; Mir, R.; Javid, J.; AbuDuhier, F.M.; Almotairi, R.; Alhelali, M.H.; Algehainy, N.; Alsaedi, B.S.O.; Albalawi, S.O.; Elfaki, I. Differential Expression of Serum Proinflammatory Cytokine TNF-α and Genetic Determinants of TNF-α, CYP2C19*17, miR-423 Genes and Their Effect on Coronary Artery Disease Predisposition and Progression. Life 2023, 13, 2142. [Google Scholar] [CrossRef]
- Alsayed, B.A.; Mir, R.; Mir, M.M.; Alnour, T.M.; Fawzy, S.; Ahmed, M.M.; Amle, D. Molecular Determination of Tumor Necrosis Factor-alpha, Interleukin-8, Interleukin-10, and C-X-C Chemokine Receptor-2 Genetic Variations and their Association with Disease Susceptibility and Mortality in COVID-19 Patients. Curr. Genom. 2024, 25, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Moawadh, M.S.; Mir, R.; Tayeb, F.J.; Asim, O.; Ullah, M.F. Molecular Evaluation of the Impact of Polymorphic Variants in Apoptotic (Bcl-2/Bax) and Proinflammatory Cytokine (TNF-α/IL-8) Genes on the Susceptibility and Progression of Myeloproliferative Neoplasms: A Case-Control Biomarker Study. Curr. Issues Mol. Biol. 2023, 45, 3933–3952. [Google Scholar] [CrossRef]
- Mir, R.; Altayar, M.A.; Hamadi, A.; Tayeb, F.J.; Saeedi, N.H.; Jalal, M.M.; Barnawi, J.; Alshammari, S.E.; Mtiraoui, N.; Ali, M.E.M.; et al. Molecular determination of progesterone receptor’s PROGINS allele (Alu insertion) and its association with the predisposition and susceptibility to polycystic ovary syndrome (PCOS). Mamm. Genome 2022, 33, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Orisaka, M.; Mizutani, T.; Miyazaki, Y.; Shirafuji, A.; Tamamura, C.; Fujita, M.; Tsuyoshi, H.; Yoshida, Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front. Endocrinol. 2023, 14, 1324429. [Google Scholar] [CrossRef]
- Cuenca, J.; Cuchacovich, M.; Perez, C.; Ferreira, L.; Aguirre, A.; Schiattino, I.; Soto, L.; Cruzat, A.; Salazar-Onfray, F.; Aguillon, J.C. The −308 polymorphism in the tumor necrosis factor (TNF) gene promoter region and ex vivo lipopolysaccharide—Induced TNF expression and cytotoxic activity in Chilean patients with rheumatoid arthritis. Rheumatology 2003, 42, 308–313. [Google Scholar] [CrossRef]
- Mac, E.D. TNF receptor subtype signaling: Differences and cellular consequences. Cell Signal 2002, 14, 472–477. [Google Scholar]
- Ovalle, F.; Azziz, R. Insulin resistance, polycystic ovary syndrome and type 2 diabetes mellitus. Fertil. Steril. 2002, 77, 1095–1105. [Google Scholar] [CrossRef]
- Rice, V.M.; Limback, S.D.; Roby, K.F. Differential responses of granulosa cells from small and large follicles to follicular stimulating hormone (FSH) during menstrual cycle and acyclicity: Effects of tumour necrosis factor-a. Hum. Reprod. 1998, 13, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Calvo, R.M.; Sancho, J.; San Millán, J.L. TNF-alpha and hyperandrogenism: A clinical, biochemical, and molecular genetic study. J. Clin. Endocrinol. Metab. 2001, 86, 3761–3767. [Google Scholar]
- Ye, H.Y.; Song, Y.L.; Ye, W.T.; Xiong, C.X.; Li, J.M.; Miao, J.H.; Shen, W.W.; Li, X.L.; Zhou, L.L. Serum granulosa cell-derived TNF-alpha promotes inflammation and apoptosis of renal tubular cells and PCOS-related kidney injury through NF-kappaB signaling. Acta Pharmacol. Sin. 2023, 44, 2432–2444. [Google Scholar] [CrossRef]
- Yun, J.-H.; Choi, J.-W.; Lee, K.-J.; Shin, J.-S.; Baek, K.-H. The promoter −1031(T/C) polymorphism in tumor necrosis factor-alpha associated with polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2011, 9, 131. [Google Scholar] [CrossRef]
- Gupta, R.; Bhagat, N.; Agrawal, M.; Luthra, K.; Vikram, N.K.; Misra, A. Evaluation of single nucleotide polymorphisms of Pro12Ala in peroxisome proliferator-activated receptor-γ and Gly308Ala in tumor necrosis factor-α genes in obese Asian Indians: A population-based study. Diabetes Metab. Syndr. Obes. Targets Ther. 2010, 3, 349–356. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hu, F.-J.; Chen, P.; Wu, Y.-R.; Wu, H.-C.; Chen, S.-T.; Lee-Chen, G.-J.; Chen, C.-M. Association of TNF-α gene with spontaneous deep intracerebral hemorrhage in the Taiwan population: A case control study. BMC Neurol. 2010, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Sun, Y.; Sun, Y.; Chen, P.; Meng, Z.; Xiao, M.; Yang, X. A Preliminary Report of the Relationship Between Gene Polymorphism of IL-8 and Its Receptors and Systemic Inflammatory Response Syndrome Caused by Wasp Stings. DNA Cell Biol. 2019, 38, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Li, C.; Du, Y.; Lin, J.; Li, N.; Yu, Y. Chemokine Receptor 2 (CXCR2) Gene Polymorphisms and Their Association with the Risk of Developing Peri-Implantitis in Chinese Han Population. J. Inflamm. Res. 2021, 14, 1625–1631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korytina, G.F.; Aznabaeva, Y.G.; Akhmadishina, L.Z.; Kochetova, O.V.; Nasibullin, T.R.; Zagidullin, N.S.; Zagidullin, S.Z.; Viktorova, T.V. The Relationship Between Chemokine and Chemokine Receptor Genes Polymorphisms and Chronic Obstructive Pulmonary Disease Susceptibility in Tatar Population from Russia: A Case Control Study. Biochem. Genet. 2021, 60, 54–79. [Google Scholar] [CrossRef]
- Mehrotra, S.; Fakiola, M.; Oommen, J.; Jamieson, S.E.; Mishra, A.; Sudarshan, M.; Tiwary, P.; Rani, D.S.; Thangaraj, K.; Rai, M.; et al. Genetic and functional evaluation of the role of CXCR1 and CXCR2 in susceptibility to visceral leishmaniasis in north-east India. BMC Med Genet. 2011, 12, 162. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Xing, Q.; Chu, N.; Shen, L.; Yu, X.; Wang, L. Genetic association of polymorphism rs2230054 in CXCR2 gene with gout in Chinese Han male population. Cent. Eur. J. Immunol. 2020, 45, 80–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deval, H.; Alagarasu, K.; Mittal, M.; Srivastava, N.; Bachal, R.; Gondhalekar, A.; Chaudhary, U.; Chowdhary, D.; Bondre, V.P. Association of single nucleotide polymorphisms in TNFA and CCR5 genes with Japanese Encephalitis: A study from an endemic region of North India. J. Neuroimmunol. 2019, 336, 577043. [Google Scholar] [CrossRef] [PubMed]
- Cavalla, F.; Biguetti, C.C.; Dionisio, T.J.; Azevedo, M.C.; Jr, W.M.; Santos, C.F.; Trombone, A.P.F.; Silva, R.M.; Letra, A.; Garlet, G.P. CCR5Δ32 (rs333) polymorphism is associated with decreased risk of chronic and aggressive periodontitis: A case-control analysis based in disease resistance and susceptibility phenotypes. Cytokine 2018, 103, 142–149. [Google Scholar] [CrossRef]
- Dieter, C.; Brondani, L.d.A.; Leitão, C.B.; Gerchman, F.; Lemos, N.E.; Crispim, D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0270627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muxel, S.M.; Borelli, S.D.; Amarante, M.K.; Voltarelli, J.C.; Aoki, M.N.; de Oliveira, C.E.C.; Watanabe, M.A.E. Association study of CCR5 Delta32 polymorphism among the HLA-DRB1 Caucasian population in Northern Paraná, Brazil. J. Clin. Lab. Anal. 2008, 22, 229–233. [Google Scholar] [CrossRef]
- Buhler, M.; Proos, A.; Howell, V.; Bennetts, B.; Burnett, L.; Stewart, G. Evidence from the Australian Ashkenazi Jewish popu-lation suggests an eastern European Ashkenazi origin of CCR5-A32 Delta32. Int. Conf. AIDS 1998, 12, 148. [Google Scholar]
- Hummel, S.; Schmidt, D.; Kremeyer, B.; Herrmann, B.; Oppermann, M. Detection of the CCR5-32 HIV resistance gene in Bronze Age skeletons. Genes. Immun. 2005, 6, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Yudin, N.S.; Vinogradov, S.V.; Potapova, T.A.; Naykova, T.M.; Sitnikova, V.V.; Kulikov, I.V.; Khasnulin, V.I.; Konchuk, C.; Vloschinskii, P.E.; Ivanov, S.V.; et al. Distribution of CCR5-Delta 32 gene deletion across the Russian part of Eurasia. Hum. Genet. 1998, 102, 695–698. [Google Scholar] [CrossRef]
- Sharda, S.; Gilmour, A.; Harris, V.; Singh, V.P.; Sinha, N.; Tewari, S.; Ramesh, V.; Agrawal, S.; Mastana, S. Chemokine receptor 5 (CCR5) deletion polymorphism in North Indian patients with coronary artery disease. Int. J. Cardiol. 2008, 124, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Petrkova, J.; Cermakova, Z.; Lukl, J.; Petrek, M. CC chemokine receptor 5 (CCR5) deletion polymorphism does not protect Czech males against early myocardial infarction. J. Intern. Med. 2005, 257, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Majumder, P.P.; Dey, B. Absence of the HIV-1 protective Delta CCR5 allele in most ethnic populations of India. Eur. J. Hum. Genet. 2001, 9, 794–796. [Google Scholar] [CrossRef] [PubMed]
ARMS PCR primers for TNF-α rs1800629 G>A genotyping | ||||
TNF-αF0 | 5′-ACCCAAACACAGGCCTCAGGACTCAACA-3′ | 62 °C | 323 bp | |
TNF-αR0 | 5′-TGGAGGCAATAGCTTTTGAGGGGCAGGA-3′ | |||
TNF-α FI A | A allele | 5′-AGTTGGGGACACGCAAGCATGAAGGATA-3′ | 154 bp | |
TNF-α RIG | G allele | 5′-TAGGACCCTGGAGGCTAGACCCCGTACC-3′ | 224 bp | |
ARMS PCR primers for CXCR2+785 C>T (rs2230054)genotyping | ||||
CXCR2-Fo | 5′-CTGCCTGTCTTACTTTTCCGAAGGACCG-3′ | 63 °C | 451 bp | |
CXCR2-Ro | 5′-TCTTGAGGAGTCCATGGCGAAACTTCTG-3′ | |||
CXCR2-FI | C allele | 5′-TCTTTGCTGTCGTCCTCATCTTCCTGATC-3′ | 226 bp | |
CXCR2-RI | T allele | 5′-AGGACCAGGTTGTAGGGCAGCCAGAAA-3′ | 281 bp | |
Chemokine receptor 5 Δ32 mutation-(CCR5 Δ32 bp ins/del) rs333 | ||||
F-CCR5 Δ32 | wild type | 5′-TGT TTG CGT CTC TCC CAG-3′ | 59.3 °C | 193 bp |
R-CCR5 Δ32 | Deletion | 5′-CAC AGC CCT GTG CCT CTT-3′ | 161 bp |
Characteristic | Controls X | Cases X | p Y |
---|---|---|---|
Age | |||
BMI (kg/m2) Z | 28.60 ± 3.59 | 26.90 ± 6.30 | <0.0023 |
Age Z | 25.80 ± 5.16 | 27.55 ± 5.60 | 0.345 |
Triglycerides (mmol/L) Z | 1.80 ± 0.69 | 3.33 ± 1.75 | 0.046 |
LDL (mmol/L) Z | 2.98 ± 0.60 | 5.55 ± 1.69 | <0.0014 |
Cholesterol (mmol/L) Z | 1.70 ± 0.55 | 1.78 ± 0.80 | <0.0018 |
HDL (mmol/L) Z | 1.90 ± 0.80 | 1.92 ± 0.89 | <0.0015 |
Progesterone (ng/mL) A | 15.80 (2.63–19.34) | 19.50 (1.75–35.80) | <0.0031 |
Luteinizing hormone (mIU/mL) A | 0.08 (0.07–1.60) | 3.60 (0.68–8.62) | <0.0024 |
Testosterone (ng/dL) A | 15.44 (7.90–14.25) | 62.56 (45.40–90.49) | <0.0031 |
Estradiol (pmol/L) A | 25.88 (141.32–520.10) | 236.40 (180.21–544.21) | 0.267 |
FSH (mIU/mL) A | 0.80 (0.61–4.40) | 5.80 (2.65–7.08) | <0.0032 |
Fasting blood sugar FBS (mmol/L) Z | 4.78 ± 0.79 | 8.70 ± 4.61 | <0.0030 |
HOMA-IR Z | 3.05 ± 0.80 | 5.12 ± 4.70 | <0.0024 |
Free Insulin (mU/mL) Z | 7.80 ± 2.90 | 14.19 ± 5.90 | <0.0031 |
Correlation Tumor Necrosis Factor-Alpha (TNF-α) rs1800629 G>A genotypes between cases and healthy controls | |||||||||
N= | GG | GA | AA | G | A | Df | X2 | p-value | |
PCOS | 110 | 54 (40.09%) | 46 (41.81%) | 10 (9.09%) | 0.41 | 0.59 | 2 | 13.07 | 0.001 |
Controls | 110 | 78 (70.90%) | 30 (27.27%) | 02 (1.81%) | 0.85 | 0.15 | |||
Association of CXCR2 rs2230054 C>T genotypes between cases and healthy controls | |||||||||
N= | CC | TC | TT | C | T | Df | X2 | p-value | |
PCOS | 110 | 41 (37.27%) | 54 (49.09%) | 15 (13.63%) | 0.62 | 0.38 | 2 | 9.65 | 0.008 |
Controls | 110 | 63 (57.27%) | 40 (36.36%) | 07 (6.36%) | 0.76 | 0.24 |
Genotypes | Healthy Controls | PCOS Cases | Odd Ratio OR (95% CI) | Risk Ratio RR (95% CI) | p-Value |
---|---|---|---|---|---|
(N = 110) | (N = 110) | ||||
Codominant inheritance model | |||||
TNF-α-(GG) | 78 | 54 | (ref.) | (ref.) | |
TNF-α-(GA) | 30 | 46 | 2.21 (1.2448 to 3.940) | 1.49 (1.0952 to 2.046) | 0.006 |
TNF-α-(AA) | 02 | 10 | 7.22 (1.5217 to 34.278) | 3.54 (0.9926 to 12.664) | 0.012 |
Dominant inheritance model | |||||
TNF-α-(GG) | 78 | 54 | (ref.) | (ref.) | |
TNF-α (GA+AA) | 32 | 56 | 5.54 (1.1549 to 25.248) | 1.62 (1.1910 to 2.217) | 0.032 |
Recessive inheritance model | |||||
TNF-α-(GA+GG) | 108 | 100 | |||
TNF-α-AA | 02 | 10 | 5.14 (1.0867 to 24.337) | 3.11 (0.8732 to 11.114) | 0.038 |
Additive inheritance model (alleles) | |||||
TNF-α-G | 186 | 154 | 1 (ref.) | 1 (ref.) | |
TNF-α-A | 34 | 66 | 2.34 (1.4718 to 3.734) | 1.60 (1.2043 to 2.149) | 0.0003 |
Overdominant inheritance model | |||||
TNF-α-(GG+AA) | 80 | 64 | (ref.) | (ref.) | |
TNF-α (GA) | 30 | 46 | 1.91 (1.0890 to 3.373) | 1.40 (1.0277 to 1.927) | 0.024 |
Genotypes | Healthy Controls | PCOS Cases | OR (95% CI) | RR (95% CI) | p-Value |
---|---|---|---|---|---|
(N = 110) | (N = 110) | ||||
Codominant inheritance model | |||||
CXCR2-CC | 63 | 41 | (ref.) | (ref.) | |
CXCR2-CA | 40 | 54 | 1.91 (1.0890 to 3.373) | 1.42 (1.0743 to 1.886) | 0.024 |
CXCR2-AA | 07 | 15 | 3.29 (1.2363 to 8.769) | 1.90 (1.0129 to 3.578) | 0.017 |
Dominant inheritance model | |||||
CXCR2-CC | 63 | 41 | (ref.) | (ref.) | |
CXCR2 (CA+AA) | 47 | 69 | 2.25 (1.3140 to 3.872) | 1.49 (1.1418 to 1.957) | 0.032 |
Recessive model | |||||
CXCR2-(CA+CC) | 103 | 95 | |||
CXCR2-AA | 07 | 15 | 2.32 (0.9080 to 5.944) | 1.63 (0.8741 to 3.058) | 0.078 |
Allele | |||||
CXCR2-C | 166 | 136 | 1(ref.) | 1(ref.) | |
CXCR2-A | 54 | 84 | 1.89 (1.2598 to 2.861) | 1.40 (1.1141 to 1.771) | 0.002 |
Overdominant inheritance model | |||||
CXCR2 | 70 | 56 | (ref.) | (ref.) | |
CXCR2-(CA) | 40 | 54 | 1.68 (0.9842 to 2.893) | 1.30 (0.9847 to 1.731) | 0.057 |
Subjects | N= | Wild Genotype CCR5 Wild | Heterozygous Mutant CCR5 (Δ32+Δ32*) | Mutant Genotype CCR5Δ32* | Df | CCR5 Δ32 | CCR5Δ32* | X2 | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 100 | 65 (59.09%) | 35 (31.81%) | 0 | 2 | 0.84 | 0.16 | 46.86 | 0.0001 |
Controls | 110 | 109 (99%) | 1 (1%) | 0 | 0.99 | 0.1 |
Genotype | Controls | PCOS | OR (95% CI) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Codominant inheritance model | |||||
CCR5(WT) | 109 | 65 | (ref.) | (ref.) | |
CCR5(WT+Δ32*) | 01 | 35 | 58.69 (7.85 to 438.65) | 22.25 (3.253 to 156.303) | 0.0001 |
CCR5Δ32*(mutant) | 0 | 0 | 0 | 0 | |
Dominant inheritance model | |||||
CCR5(WT) | 109 | 65 | (ref.) | (ref.) | |
CCR5(WT+Δ32*) + CCR5(Δ32*) | 01 | 35 | 58.69 (7.85 to 438.65) | 22.25 (3.253 to 156.303) | 0.0001 |
Recessive inheritance model | |||||
CCR5(WT) + CCR5(WT+Δ32*) | 110 | 98 | (ref.) | (ref.) | |
CCR5Δ32*(mutant) | 0 | 0 | 0 | 0 | 0 |
Allele | (ref.) | (ref.) | |||
CCR5(WT) | 219 | 163 | |||
CCR5Δ32*(mutant) | 1 | 35 | 47.02 (6.37 to 346.81) | 20.6 (2.982 to 142.83) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almasoudi, K.S.; Hussain, E.; Almotairi, R.; Bhat, T.; Mtiraoui, N.; Ezzidi, I.; Mir, R. Exploring the Association of Biochemical Characterization and Genetic Determinants of TNF-α, CXCR2, and CCR5 Delta 32 Mutation with Predisposition to Polycystic Ovary Syndrome. Life 2024, 14, 949. https://doi.org/10.3390/life14080949
Almasoudi KS, Hussain E, Almotairi R, Bhat T, Mtiraoui N, Ezzidi I, Mir R. Exploring the Association of Biochemical Characterization and Genetic Determinants of TNF-α, CXCR2, and CCR5 Delta 32 Mutation with Predisposition to Polycystic Ovary Syndrome. Life. 2024; 14(8):949. https://doi.org/10.3390/life14080949
Chicago/Turabian StyleAlmasoudi, Kholoud S., Eram Hussain, Reema Almotairi, Tanzeela Bhat, Nabil Mtiraoui, Intissar Ezzidi, and Rashid Mir. 2024. "Exploring the Association of Biochemical Characterization and Genetic Determinants of TNF-α, CXCR2, and CCR5 Delta 32 Mutation with Predisposition to Polycystic Ovary Syndrome" Life 14, no. 8: 949. https://doi.org/10.3390/life14080949