CT Perfusion as a Predictor of the Final Infarct Volume in Patients with Tandem Occlusion
Abstract
:1. Introduction
2. Methods
2.1. Clinical Data and Procedural Times
2.2. Radiological Measures
2.3. Procedural Details and Measures
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkhemer, O.A.; Fransen, P.S.; Beumer, D.; Van Den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turc, G.; Bhogal, P.; Fischer, U.; Khatri, P.; Lobotesis, K.; Mazighi, M.; Schellinger, P.D.; Toni, D.; de Vries, J.; White, P.; et al. European Stroke Organisation (ESO)—European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke. J. Neurointerv. Surg. 2019. [Google Scholar] [CrossRef] [Green Version]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.C.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Albers, G.W.; Lansberg, M.G.; Kemp, S.; Tsai, J.P.; Lavori, P.; Christensen, S.; Mlynash, M.; Kim, S.; Hamilton, S.; Yeatts, S.D.; et al. A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3). Int. J. Stroke 2017, 12, 896–905. [Google Scholar] [CrossRef] [Green Version]
- Albers, G.W.; Goyal, M.; Jahan, R.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann. Neurol. 2016, 79, 76–89. [Google Scholar] [CrossRef]
- Campbell, B.C.; Yassi, N.; Ma, H.; Sharma, G.; Salinas, S.; Churilov, L.; Meretoja, A.; Parsons, M.W.; Desmond, P.M.; Lansberg, M.G.; et al. Imaging selection in ischemic stroke: Feasibility of automated CT-perfusion analysis. Int. J. Stroke. 2015, 10, 51–54. [Google Scholar] [CrossRef]
- Bivard, A.; Levi, C.; Krishnamurthy, V.; Hislop-Jambrich, J.; Salazar, P.; Jackson, B.; Davis, S.; Parsons, M. Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion. J. Neuroradiol. 2014, 41, 307–315. [Google Scholar] [CrossRef]
- Biesbroek, J.; Niesten, J.; Dankbaar, J.; Biessels, G.; Velthuis, B.; Reitsma, J.; van der Schaaf, I. Diagnostic accuracy of CT perfusion imaging for detecting acute ischemic stroke: A systematic review and meta-analysis. Cerebrovasc. Dis. 2013, 35, 493–501. [Google Scholar] [CrossRef]
- Xin, Y.; Han, F.-G. Diagnostic accuracy of computed tomography perfusion in patients with acute stroke: A meta-analysis. J. Neurol. Sci. 2016, 360, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Lim, N.E.; Chia, B.; Bulsara, M.K.; Parsons, M.; Hankey, G.J.; Bivard, A. Automated CT Perfusion Detection of the Acute Infarct Core in Ischemic Stroke: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2022, 52, 97–109. [Google Scholar] [CrossRef]
- Di Giuliano, F.; Picchi, E.; Sallustio, F.; Ferrazzoli, V.; Alemseged, F.; Greco, L.; Minosse, S.; Da Ros, V.; Diomedi, M.; Garaci, F.; et al. Accuracy of advanced CT imaging in prediction of functional outcome after endovascular treatment in patients with large-vessel occlusion. Neuroradiol. J. 2019, 32, 62–70. [Google Scholar] [CrossRef]
- Mokin, M.; Levy, E.I.; Saver, J.L.; Siddiqui, A.H.; Goyal, M.; Bonafé, A.; Cognard, C.; Jahan, R.; Albers, G.W. Predictive Value of RAPID Assessed Perfusion Thresholds on Final Infarct Volume in SWIFT PRIME (Solitaire with the Intention for Thrombectomy as Primary Endovascular Treatment). Stroke 2017, 48, 932–938. [Google Scholar] [CrossRef]
- Vagal, A.; Wintermark, M.; Nael, K.; Bivard, A.; Parsons, M.; Grossman, A.W.; Khatri, P. Automated CT perfusion imaging for acute ischemic stroke: Pearls and pitfalls for real-world use. Neurology 2019, 93, 888–898. [Google Scholar] [CrossRef]
- Laughlin, B.S.; Chan, A.; Tai, W.A.; Moftakhar, P. RAPID Automated CT Perfusion in Clinical Practice. 2019. Available online: https://practicalneurology.com/articles/2019-nov-dec/rapid-automated-ct-perfusion-in-clinical-practice?c4src=top5 (accessed on 7 February 2023).
- Jadhav, A.P.; Zaidat, O.O.; Liebeskind, D.S.; Yavagal, D.R.; Haussen, D.C.; HellingerJr, F.R.; Jahan, R.; Jumaa, M.A.; Szeder, V.; Nogueira, R.G.; et al. Emergent management of tandem lesions in acute ischemic stroke. Stroke 2019, 50, 428–433. [Google Scholar] [CrossRef]
- Anadani, M.; Marnat, G.; Consoli, A.; Papanagiotou, P.; Nogueira, R.G.; Siddiqui, A.; Ribo, M.; Spiotta, A.M.; Bourcier, R.; Kyheng, M.; et al. Endovascular Therapy of Anterior Circulation Tandem Occlusions: Pooled Analysis from the TITAN and ETIS Registries. Stroke 2021, 52, 3097–3105. [Google Scholar] [CrossRef]
- Marko, M.; Cimflova, P.; Poppe, A.Y.; Kashani, N.; Singh, N.; Ospel, J.; Mayank, A.; van Adel, B.; McTaggart, R.A.; Nogueira, R.G.; et al. Management and outcome of patients with acute ischemic stroke and tandem carotid occlusion in the ESCAPE-NA1 trial. J. Neurointerv. Surg. 2022, 14. [Google Scholar] [CrossRef]
- Feil, K.; Herzberg, M.; Dorn, F.; Tiedt, S.; Küpper, C.; Thunstedt, D.C.; Papanagiotou, P.; Meyer, L.; Kastrup, A.; Dimitriadis, K.; et al. Tandem Lesions in Anterior Circulation Stroke. Stroke 2021, 52, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B. 2018 Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef] [PubMed]
- Haussen, D.C.; Dehkharghani, S.; Grigoryan, M.; Bowen, M.; Rebello, L.C.; Nogueira, R.G. Automated CT Perfusion for Ischemic Core Volume Prediction in Tandem Anterior Circulation Occlusions. Interv. Neurol. 2016, 5, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.; Parthasarathy, R.; Goel, G.; Singhal, V.; Sehgal, J.; Garg, A.; Singh, S. Acute ischemic stroke with tandem/terminal ICA occlusion-CT perfusion based case selection for mechanical recanalization. Neurol. India 2015, 63, 369–377. [Google Scholar] [CrossRef]
- Calamante, F.; Christensen, S.; Desmond, P.M.; Østergaard, L.; Davis, S.M.; Connelly, A. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 2010, 41, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Kudo, K.; Ogasawara, K.; Fujiwara, S. Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease: Comparison with quantitative single-photon emission CT. Am. J. Neuroradiol. 2009, 30, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Kudo, K.; Christensen, S.; Sasaki, M.; Østergaard, L.; Shirato, H.; Ogasawara, K.; Wintermark, M.; Warach, S. Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 2013, 267, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Kudo, K.; Sasaki, M.; Østergaard, L.; Christensen, S.; Uwano, I.; Suzuki, M.; Ogasawara, K.; Shirato, H.; Ogawa, A. Susceptibility of T max to tracer delay on perfusion analysis: Quantitative evaluation of various deconvolution algorithms using digital phantoms. J. Cereb. Blood Flow Metab. 2011, 31, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R.M.; Lev, M.H.; Goldmakher, G.V.; Kamalian, S.; Schaefer, P.W.; Furie, K.L.; Gonzalez, R.G.; Sanelli, P.C. Arterial input function placement for accurate CT perfusion map construction in acute stroke. Am. J. Roentgenol. 2010, 194, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zou, J.; Bao, L.; Hu, J.; Ye, G. Computed Tomography Perfusion Imaging Quality Affected by different Input Arteries in Patients of Internal Carotid Artery Stenosis. Med. Sci. Monit. 2019, 25, 9067–9072. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Zaidat, O.O.; Yoo, A.J.; Khatri, P.; Tomsick, T.A.; von Kummer, R.; Saver, J.L.; Marks, M.P.; Prabhakaran, S.; Kallmes, D.F.; Fitzsimmons, B.-F.M.; et al. Cerebral Angiographic Revascularization Grading (CARG) Collaborators; STIR Revascularization Working Group; STIR Thrombolysis in Cerebral Infarction (TICI) Task Force: Recommendations on angiographic revascularization grading standards for acute ischemic stroke: A consensus statement. Stroke 2013, 44, 2650–2663. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reason. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- TTan, I.; Demchuk, A.; Hopyan, J.; Zhang, L.; Gladstone, D.; Wong, K.; Martin, M.; Symons, S.; Fox, A.; Aviv, R. CT angiography clot burden score and collateral score: Correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct. Am. J. Neuroradiol. 2009, 30, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Ford, G.; Freemantle, N. ECASS-II: Intravenous alteplase in acute ischaemic stroke. European Co-operative Acute Stroke Study-II. Lancet 1999, 353, 65, 67–68. [Google Scholar] [CrossRef]
- Goyal, M.; Ospel, J.M.; Menon, B.; Almekhlafi, M.; Jayaraman, M.; Fiehler, J.; Psychogios, M.; Chapot, R.; Van Der Lugt, A.; Liu, J.; et al. Challenging the Ischemic Core Concept in Acute Ischemic Stroke Imaging. Stroke 2020, 51, 3147–3155, Erratum in Stroke 2021, 52, e49. [Google Scholar] [CrossRef]
- Parsons, M.W. Automated measurement of computed tomography acute ischemic core in stroke: Does the emperor have no clothes? Stroke 2021, 52, 642–644. [Google Scholar] [CrossRef]
- Bouslama, M.; Ravindran, K.; Harston, G.; Rodrigues, G.M.; Pisani, L.; Haussen, D.C.; Frankel, M.R.; Nogueira, R.G. Noncontrast computed tomography e-stroke infarct volume is similar to RAPID computed tomography perfusion in estimating postreperfusion infarct volumes. Stroke 2021, 52, 634–641. [Google Scholar] [CrossRef]
- Borst, J.; Marquering, H.A.; Beenen, L.F.M.; Berkhemer, O.A.; Dankbaar, J.W.; Riordan, A.J.; Majoie, C.B.L.M. Effect of extended CT perfusion acquisition time on ischemic core and penumbra volume estimation in patients with acute ischemic stroke due to a large vessel occlusion. PLoS ONE 2015, 10, e0119409. [Google Scholar] [CrossRef] [Green Version]
- Laredo, C.; Renú, A.; Tudela, R.; Lopez-Rueda, A.; Urra, X.; Llull, L.; Macías, N.G.; Rudilosso, S.; Obach, V.; Amaro, S.; et al. The accuracy of ischemic core perfusion thresholds varies according to time to recanalization in stroke patients treated with mechanical thrombectomy: A comprehensive whole-brain computed tomography perfusion study. J. Cereb. Blood Flow Metab. 2020, 40, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Hoving, J.W.; Marquering, H.; Majoie, C.B.; Yassi, N.; Sharma, G.; Liebeskind, D.S.; van der Lugt, A.; Roos, Y.B.; van Zwam, W.; van Oostenbrugge, R.J.; et al. Volumetric and Spatial Accuracy of Computed Tomography Perfusion Estimated Ischemic Core Volume in Patients with Acute Ischemic Stroke. Stroke 2018, 49, 2368–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.; Aires, A.; Mendez, B.; Boned, S.; Rubiera, M.; Tomasello, A.; Coscojuela, P.; Hernandez, D.; Muchada, M.; Rodriguez-Luna, D.; et al. Ghost Infarct Core and Admission Computed Tomography Perfusion: Redefining the Role of Neuroimaging in Acute Ischemic Stroke. Interv. Neurol. 2018, 7, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Koopman, M.S.; Berkhemer, O.A.; Geuskens, R.R.E.G.; Emmer, B.J.; van Walderveen, M.A.A.; Jenniskens, S.F.M.; van Zwam, W.H.; van Oostenbrugge, R.J.; van der Lugt, A.; Dippel, D.W.J.; et al. Comparison of three commonly used CT perfusion software packages in patients with acute ischemic stroke. J. Neurointerv. Surg. 2019, 11, 1249–1256. [Google Scholar] [CrossRef]
- Bivard, A.; McElduff, P.; Spratt, N.; Levi, C.; Parsons, M. Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc. Dis. 2011, 31, 238–245. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, C.C.; Fisher, M.; Hackney, D.B.; Bhadelia, R.A.; Selim, M.H. Comparison of automated CT perfusion softwares in evaluation of acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 104392. [Google Scholar] [CrossRef]
- Lu, S.-S.; Zhang, X.; Xu, X.-Q.; Cao, Y.-Z.; Zhao, L.B.; Liu, Q.-H.; Wu, F.-Y.; Liu, S.; Shi, H.-B. Comparison of CT angiography collaterals for predicting target perfusion profile and clinical outcome in patients with acute ischemic stroke. Eur. Radiol. 2019, 29, 4922–4929. [Google Scholar] [CrossRef]
- Saber, H.; Liebeskind, D.S. Infarct Progression in the Early and Late Phases of Acute Ischemic Stroke. Neurology 2021, 97 (Suppl. S2), S60–S67. [Google Scholar] [CrossRef]
- Csecsei, P.; Tarkanyi, G.; Bosnyak, E.; Szapary, L.; Lenzser, G.; Szolics, A.; Buki, A.; Hegyi, P.; Abada, A.; Molnar, T. Risk analysis of post-procedural intracranial hemorrhage based on STAY ALIVE Acute Stroke Registry. J. Stroke Cerebrovasc. Dis. 2020, 29, 104851. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, Z.; Zhang, H.; Xu, L.; Ye, Z.; Dai, Q.; Liu, X.; Xu, G. Risk of Intracranial Hemorrhage after Endovascular Treatment for Acute Ischemic Stroke: Systematic Review and Meta-Analysis. Interv. Neurol. 2017, 6, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Labreuche, J.; Haussen, D.C.; Piotin, M.; Steglich-Arnholm, H.; Taschner, C.; Papanagiotou, P.; Lapergue, B.; Dorn, F.; Cognard, C.; et al. Hemorrhagic Transformation After Thrombectomy for Tandem Occlusions. Stroke 2019, 50, 516–519. [Google Scholar] [CrossRef] [Green Version]
Tandem Group (22) | Control Group (37) | p | |
---|---|---|---|
Gender, n (%) | |||
Male | 10 (45.5) | 13 (34.5) | 0.268 |
Female | 12 (54.5) | 24 (65.5) | 0.268 |
Age, median (IQR a) | 69.5 (15) | 76 (16) | 0.242 |
Pre-stroke mRS b, median (IQR) | 0 (0) | 0 (0) | >0.05 |
Arterial hypertension, n (%) * | 18 (81.8) | 25 (69.4) | 1.00 |
Atrial fibrillation, n (%) * | 9 (37.8) | 14 (40.9) | 0.852 |
Hypercholesterolemia (%) * | 4 (18.2) | 13 (36.1) | 0.234 |
Diabetes, n (%) * | 2 (9.1) | 7 (19.4) | 0.459 |
Smoking, n (%) * | 3 (13.6) | 4 (11.1) | 0.775 |
Alcohol (%) * | 2 (9.1%) | 0 | 0.066 |
Etiology-TOAST (%) | 0.055° | ||
Undetermined | 3 (13.6) | 13 (35.1) | |
Large artery | 11 (45.5) | 7 (18.9) | |
Cardioembolic | 7 (31.8) | 16 (43.2) | |
Other | 2 (9.1) | 1 (2.7) | |
ASPECTS c, median (IQR) | 9 (2) | 9 (3) | 0.704 |
Good Collateral Score, n (%) | 13 (72.2) | 26 (59.1) | 0.301 |
NIHSS d, median (IQR) | 19 (6) | 15 (8) | 0.031 |
Clot Burden Score, median (IQR) | 3 (3) | 6 (2) | 0.000 |
Occlusion site, n (%) | 0.247 | ||
M1 e proximal | 18 (81.8) | 24 (64.9) | |
M1 distal | 0 | 3 (8.1) | |
M2 f | 4 (18.2) | 10 (27) | |
Occlusion side, n (%) | 0.712 | ||
left | 10 (45.5) | 15 (40.5) | |
right | 12 (54.5) | 22 (59.5) | |
Systolic blood pressure ** | 139.4 (28.38) | 134.71 (22.43) | 0.591 |
Diastolic blood pressure ** | 86.35 (22.91) | 76.34 (12.9) | 0.024 |
Glycaemia * | 138. 14 (44.15) | 130.36 (62.63) | 0.265 |
Tandem Group (22) | Control Group (37) | p | |
---|---|---|---|
Onset to groin (SD a) ** | 269.56 (185.56) | 277.04 (119.03) | 0.228 |
Onset to CTP b (SD) ** | 212.38 (196.72) | 214.19 (112.71) | 0.157 |
CTP to recanalization (SD) | 135.74 (48.51) | 107.49 (37.93) | 0.046 |
Onset to reperfusion, mean *** (SD) | 337.31 (195.41) | 321.13 (117.12) | 0.662 |
Procedural time, mean (SD) | 67.68 (47.09) | 40.14 (26.95) | 0.013 |
rTPA c, n (%) | 7 (31.8) | 7 (18.9) | 0.345 |
General anesthesia | 0 | 2 (5.4) | 0.267 |
Passages: | |||
Median (IQR d) | 2 (2) | 1 (1) | 0.004 |
Technique: | 0.02 | ||
Direct aspiration (%) | 14 (63.6) | 35 (94.6) | X2 = 9.394 |
Stent retriever (%) | 0 | 0 | |
Solumbra (%) | 8 (36.4) * | 2 (5.4) | |
Successful recanalization (mTICI e 2b − 3) | 14 (63.6) | 25 (67.6) | 0.758 |
Functional independence, n (%) * | 9 (47.4) | 16 (45.7) | 0.907 |
Hemorrhages (%) | 0.924 | ||
Total | 11 (50) | 20 (54.9) | |
HI1 f | 2 (9.1) | 2 (5.4) | |
HI2 | 3 (13.1) | 4 (10.8) | |
PH1 g | 2 (9.1) | 5 (13.5) | |
PH2 | 4 (18.2) | 9 (24.3) | |
sICH h (%) | 3 (13.6) | 4 (10.8) | 0.746 |
Unfavorable outcome, n (%) | 8 (40) | 15 (42.9) | 0.836 |
(a) | |||
Tandem Group (n = 22) | Control Group (n = 37) | p | |
PIC a (SD b) | 29.50 (32.33) | 15.76 (20.93) | 0.180 |
FIV c * (SD) | 54.67 (65.73) | 55.14 (64.64) | 0.875 |
Mean difference PIC-FIV (SD) | 25.27 (46.23) | 39.38 (60.29) | 0.615 |
Core> 50 cm3 (%) | 5 (22.7) | 3 (8.1) | 0.234 |
Tmax d 6 sec (SD) | 131.45 (44.66) | 121.70 (73.40) | 0.100 |
Tmax 10 sec (SD) | 69.27 (40.91) | 57.57 (44.47) | 0.252 |
Tmax > 10 > 100 cm3 (%) | 6 (16.2) | 6 (27.3) | 0.308 |
Hypoperfusion Index | 0.48 (0.22) | 0.44 (0.22) | 0.359 |
(b) | |||
mTICI e 2b (n = 20) | mTICI 3 (n = 39) | p | |
Mean absolute core difference FIV—PIC | 32.30 (41.11) | 35.50 (30.67) | 0.328 |
(a) | |||
Tandem Group (18) | Control Group (28) | p | |
PIC a (SD b) | 20.39 (25.51) | 12.79 (19.72) | 0.383 |
FIV c * (SD) | 29.72 (32.65) | 28.89 (31.71) | 0.973 |
Mean difference FIV-PIC (SD) | 9.33 (16.06) | 16.11 (27.84) | 0.821 |
Core > 50 cm3 (%) | 4 (11.1) | 0 | 0.145 |
Tmax d 6 s (SD) | 126.67 (47.18) | 127.00 (77.08) | 0.380 |
Tmax 10 s (SD) | 62.44 (41.73) | 57.29 (46.01) | 0.599 |
Tmax > 10 s > 100 cm3 (%) | 4 (22.2) | 4 (14.3) | 0.693 |
Hypoperfusion Index | 0.44 (0.21) | 0.41 (0.22) | 0.558 |
(b) | |||
mTICI e 2b (n = 15) | mTICI 3 (n = 31) | p | |
Mean absolute core difference FIV—PIC | 23.22 (32.68) | 8.74 (17.42) | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacidogna, G.; Pitocchi, F.; Mascolo, A.P.; Marrama, F.; D’Agostino, F.; Rocco, A.; Mori, F.; Maestrini, I.; Sabuzi, F.; Cavallo, A.; et al. CT Perfusion as a Predictor of the Final Infarct Volume in Patients with Tandem Occlusion. J. Pers. Med. 2023, 13, 342. https://doi.org/10.3390/jpm13020342
Lacidogna G, Pitocchi F, Mascolo AP, Marrama F, D’Agostino F, Rocco A, Mori F, Maestrini I, Sabuzi F, Cavallo A, et al. CT Perfusion as a Predictor of the Final Infarct Volume in Patients with Tandem Occlusion. Journal of Personalized Medicine. 2023; 13(2):342. https://doi.org/10.3390/jpm13020342
Chicago/Turabian StyleLacidogna, Giordano, Francesca Pitocchi, Alfredo Paolo Mascolo, Federico Marrama, Federica D’Agostino, Alessandro Rocco, Francesco Mori, Ilaria Maestrini, Federico Sabuzi, Armando Cavallo, and et al. 2023. "CT Perfusion as a Predictor of the Final Infarct Volume in Patients with Tandem Occlusion" Journal of Personalized Medicine 13, no. 2: 342. https://doi.org/10.3390/jpm13020342