Newborn Screening Program for Mucopolysaccharidosis Type II and Long-Term Follow-Up of the Screen-Positive Subjects in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MS-Based Assay Used for the Screening on DBS
2.3. Leukocyte IDS Enzyme Activity by Fluorometric Assay
2.4. Total GAG Quantification (Dimethylene Blue/Creatinine Ratio; DMB/Cre Ratio)
2.5. GAG-Derived Disaccharide Quantification by Tandem Mass Spectrometry Assay
2.6. Nucleotide Variation Detected by Sanger Sequencing
2.7. The IDS Activity in Extracts of COS-7 Cells Expressing IDS for Mutant cDNAs
2.8. Data and Statistical Analysis
3. Results
3.1. Group 1: Confirmed MPS II
3.2. Variation Allele c.254C > T [p.A85V]
3.3. Variation Allele c.311A > T [p.D104V]
3.4. Variation Allele c.817C > T [p.R273W]
3.5. Variation Allele c.1025A > G [p.H342R]
3.6. Variation Allele c.1400C > T [p.P467L]
3.7. Variation Allele c.1007–1666_c.1180 + 2113 delinsTT
3.8. Variation Allele IDS Inversion
3.9. Group 2: Suspected MPS II or Pseudodeficiency
3.10. Variation Allele c.589C > T [p.P197S]
3.11. Variation Allele c.659T > C [p.F220S]
3.12. Variation Allele c.778C > T [p.P260S]
3.13. Variation Allele c.851C > T [p.P284L]
3.14. Variation Allele c.890G > A [p.R297H]
3.15. Variation Allele c.1513T > C [p.F505L]
3.16. Variation Alleles c.851C > T [p.P284L]; c.1180 + 184T > C
3.17. Variation Alleles c.103 + 34_56dup; c.684A > G [p.Pro228 =]; c.851C > T [p.P284L]; c.1180 + 184T > C
3.18. Group 3: Non-MPS II
3.19. Variation Allele c.142C > T [p.R48C]
3.20. Variation Allele c.301C > T [p.R101C]
3.21. Variation Allele c.805G > A [p.D269N]
3.22. Variation Allele c.1478G > A [p.R493H]
3.23. Variation Allele c.1499C > T [p.T500I]
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPS | mucopolysaccharidosis |
IDS | iduronate-2-sulfatase |
GAGs | glycosaminoglycans |
DS | dermatan sulfate |
HS | heparan sulfate |
HSCT | hematopoietic stem cell transplantation |
ERT | enzyme replacement therapy |
KS | keratan sulfate |
CS | chondroitin sulfate |
LC-MS/MS | liquid chromatography/tandem mass spectrometry |
GVHD | graft-versus-host disease |
References
- Neufeld, E.F.; Muenzer, J. The mucoplysaccharidoses. In The Metabolic and Molecular Bases of Inherited Disease, 8th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Childs, B., Kinzler, K.W., Vogelstein, B., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 3421–3452. [Google Scholar]
- Wraith, J.E.; Scarpa, M.; Beck, M.; Bodamer, O.A.; De Meirleir, L.; Guffon, N.; Meldgaard Lund, A.; Malm, G.; Van der Ploeg, A.T.; Zeman, J. Mucopolysaccharidosis type II (Hunter syndrome): A clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur. J. Pediatr. 2008, 167, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muenzer, J. The mucopolysaccharidoses: A heterogeneous group of disorders with variable pediatric presentations. J. Pediatr. 2004, 144, S27–S34. [Google Scholar] [CrossRef]
- Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology 2011, 50 (Suppl. 5), v4–v12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.Y.; Chuang, C.K.; Huang, Y.H.; Tu, R.Y.; Lin, F.J.; Lin, S.J.; Chiu, P.C.; Niu, D.M.; Tsai, F.J.; Hwu, W.L.; et al. Causes of death and clinical characteristics of 34 patients with Mucopolysaccharidosis II in Taiwan from 1995–2012. Orphanet J. Rare Dis. 2016, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Chuang, C.K.; Chen, M.R.; Lin, S.J.; Chiu, P.C.; Niu, D.M.; Tsai, F.J.; Hwu, W.L.; Chien, Y.H.; Lin, J.L.; et al. Clinical characteristics and surgical history of Taiwanese patients with mucopolysaccharidosis type II: Data from the Hunter Outcome Survey (HOS). Orphanet J. Rare Dis. 2018, 13, 89. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lee, C.L.; Chiu, P.C.; Niu, D.M.; Tsai, F.J.; Hwu, W.L.; Lin, S.J.; Lin, J.L.; Chang, T.M.; Chuang, C.K.; et al. Relationships among Height, Weight, Body Mass Index, and Age in Taiwanese Children with Different Types of Mucopolysaccharidoses. Diagnostics 2019, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.L.; Lin, H.Y.; Chuang, C.K.; Chiu, H.C.; Tu, R.Y.; Huang, Y.H.; Hwu, W.L.; Tsai, F.J.; Chiu, P.C.; Niu, D.M.; et al. Functional independence of Taiwanese patients with mucopolysaccharidoses. Mol. Genet. Genomic Med. 2019, 7, e790. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.P.; Shih, S.C.; Chuang, C.K.; Lee, K.S.; Chen, M.R.; Niu, D.M.; Chiu, P.C.; Lin, S.J.; Lin, H.Y. Characterization of Pulmonary Function Impairments in Patients with Mucopolysaccharidoses—Changes with Age and Treatment. Pediatr. Pulmonol. 2014, 49, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Peracha, H.; Ballhausen, D.; Wiesbauer, A.; Rohrbach, M.; Gautschi, M.; Mason, R.W.; Giugliani, R.; Suzuki, Y.; Orii, K.E.; et al. Epidemiology of mucopolysaccharidoses. Mol. Genet. Metab. 2017, 121, 227–240. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lin, S.P.; Chuang, C.K.; Niu, D.M.; Chen, M.R.; Tsai, F.J.; Chao, M.C.; Chiu, P.C.; Lin, S.J.; Tsai, L.P.; et al. Incidence of the mucopolysaccharidoses in Taiwan, 1984–2004. Am. J. Med. Genet. A 2009, 149A, 960–964. [Google Scholar] [CrossRef]
- Tanaka, A.; Okuyama, T.; Suzuki, Y.; Sakai, N.; Takakura, H.; Sawada, T.; Tanaka, T.; Otomo, T.; Ohashi, T.; Ishige-Wada, M.; et al. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: A nationwide survey in Japan. Mol. Genet. Metab. 2012, 107, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Boelens, J.J.; Orchard, P.J.; Wynn, R.F. Transplantation in inborn errors of metabolism: Current considerations and future perspectives. Br. J. Haematol. 2014, 167, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Aldenhoven, M.; Jones, S.A.; Bonney, D.; Borrill, R.E.; Coussons, M.; Mercer, J.; Bierings, M.B.; Versluys, B.; van Hasselt, P.M.; Wijburg, F.A.; et al. Hematopoietic cell transplantation for mucopolysaccharidosis patients is safe and effective: Results after implementation of international guidelines. Biol. Blood Marrow Transplant. 2015, 21, 1106–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muenzer, J.; Wraith, J.E.; Beck, M.; Giugliani, R.; Harmatz, P.; Eng, C.M.; Vellodi, A.; Martin, R.; Ramaswami, U.; Gucsavas-Calikoglu, M.; et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet. Med. 2006, 8, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawamoto, K.; Stapleton, M.; Alméciga-Díaz, C.J.; Espejo-Mojica, A.J.; Losada, J.C.; Suarez, D.A.; Tomatsu, S. Therapeutic Options for Mucopolysaccharidoses: Current and Emerging Treatments. Drugs 2019, 79, 1103–1134. [Google Scholar] [CrossRef]
- Grant, N.; Sohn, Y.B.; Ellinwood, N.M.; Okenfuss, E.; Mendelsohn, B.A.; Lynch, L.E.; Braunlin, E.A.; Harmatz, P.R.; Eisengart, J.B. Timing is everything: Clinical courses of Hunter syndrome associated with age at initiation of therapy in a sibling pair. Mol. Genet. Metab. Rep. 2022, 30, 100845. [Google Scholar] [CrossRef]
- Tajima, G.; Sakura, N.; Kosuga, M.; Okuyama, T.; Kobayashi, M. Effects of idursulfase enzyme replacement therapy for Mucopolysaccharidosis type II when started in early infancy: Comparison in two siblings. Mol. Genet. Metab. 2013, 108, 172–177. [Google Scholar] [CrossRef]
- Chuang, C.K.; Lee, C.L.; Tu, R.Y.; Lo, Y.T.; Sisca, F.; Chang, Y.H.; Liu, M.Y.; Liu, H.Y.; Chen, H.J.; Kao, S.M.; et al. Nationwide newborn screening program for mucopolysaccharidoses in Taiwan and an update of the “gold standard” criteria required to make a confirmatory diagnosis. Diagnostics 2021, 11, 1583. [Google Scholar] [CrossRef]
- Burton, B.K.; Hickey, R.; Hitchins, L. Newborn Screening for Mucopolysaccharidosis Type II in Illinois: An Update. Int. J. Neonatal Screen. 2020, 6, 73. [Google Scholar] [CrossRef]
- Bilyeu, H.; Washburn, J.; Vermette, L.; Klug, T. Validation and Implementation of a Highly Sensitive and Efficient Newborn Screening Assay for Mucopolysaccharidosis Type II. Int. J. Neonatal Screen. 2020, 6, 79. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lee, C.L.; Chang, C.Y.; Chiu, P.C.; Chien, Y.H.; Niu, D.M.; Tsai, F.J.; Hwu, W.L.; Lin, S.J.; Lin, J.L.; et al. Survival and diagnostic age of 175 Taiwanese patients with mucopolysaccharidoses (1985–2019). Orphanet J. Rare Dis. 2020, 15, 314. [Google Scholar] [CrossRef]
- Chan, M.J.; Liao, H.C.; Gelb, M.H.; Chuang, C.K.; Liu, M.Y.; Chen, H.J.; Kao, S.M.; Lin, H.Y.; Huang, Y.H.; Kumar, A.B.; et al. Taiwan National Newborn Screening Program by Tandem Mass Spectrometry for Mucopolysaccharidoses Types I, II, and VI. J. Pediatr. 2019, 205, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.K.; Lin, H.Y.; Wang, T.J.; Huang, Y.H.; Chan, M.J.; Liao, H.C.; Lo, Y.T.; Wang, L.Y.; Tu, R.Y.; Fang, Y.Y.; et al. Status of newborn screening and follow up investigations for Mucopolysaccharidoses I and II in Taiwan. Orphanet J. Rare Dis. 2018, 13, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, C.K.; Lin, S.P.; Lee, S.J.; Wang, T.J. MPS screening methods, the berry spot and acid turbidity tests, cause a high incidence of false negative results in sanflippo and morquio syndromes. J. Clin. Lab. Anal. 2002, 16, 253–258. [Google Scholar]
- Chuang, C.K.; Lin, H.Y.; Wang, T.J.; Tsai, C.C.; Liu, H.L.; Lin, S.P. A modifed liquid chromatography/tandem mass spectrometry method for predominant disaccharide units of urinary glycosaminoglycans in patients with mucopolysaccharidoses. Orphanet J. Rare Dis. 2014, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Lo, Y.T.; Wang, T.J.; Huang, S.F.; Tu, R.Y.; Chen, T.L.; Lin, S.P.; Chuang, C.K. Normalization of glycosaminoglycan-derived disaccharides detected by tandem mass spectrometry assay for the diagnosis of mucopolysaccharidosis. Sci. Rep. 2019, 9, 10755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.Y.; Tu, R.Y.; Chern, S.R.; Lo, Y.T.; Fran, S.; Wei, F.J.; Huang, S.F.; Tsai, S.Y.; Chang, Y.H.; Lee, C.L.; et al. Identification and functional characterization of IDS gene mutations underlying Taiwanese Hunter Syndrome (mucopolysaccharidosis type II). Int. J. Mol. Sci. 2019, 21, 114. [Google Scholar] [CrossRef] [Green Version]
- Voznyi, Y.V.; Keulemans, J.L.; van Diggelen, O.P. A fluorimetric enzyme assay for the diagnosis of MPS II (Hunter disease). J. Inherit. Metab. Dis. 2001, 24, 675–680. [Google Scholar] [CrossRef]
- Chuang, C.K.; Lin, S.P.; Chung, S.F. Diagnostic screening for mucopolysaccharidoses by the dimethylmethylene blue method and two dimensional electrophoresis. Zhonghua Yi Xue Za Zhi 2001, 64, 15–22. [Google Scholar]
- Auray-Blais, C.; Bhérer, P.; Gagnon, R.; Young, S.P.; Zhang, H.H.; An, Y.; Clarke, J.T.; Millington, D.S. Efficient analysis of urinary glycosaminoglycans by LC-MS/MS in mucopolysaccharidoses type I, II and VI. Mol. Genet. Metab. 2011, 102, 49–56. [Google Scholar] [CrossRef]
- Froissart, R.; Maire, I.; Millat, G.; Cudry, S.; Birot, A.M.; Bonnet, V.; Bouton, O.; Bozon, D. Identification of iduronate sulfatase gene alterations in 70 unrelated Hunter patients. Clin. Genet. 1998, 53, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, A.; D’Avanzo, F.; Rigon, L.; Rampazzo, A.; Concolino, D.; Barone, R.; Volpi, N.; Santoro, L.; Lualdi, S.; Bertola, F.; et al. Molecular diagnosis of patients affected by mucopolysaccharidosis: A multicenter study. Eur. J. Pediatr. 2019, 178, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Uttarilli, A.; Ranganath, P.; Matta, D.; Md Nurul Jain, J.; Prasad, K.; Babu, A.S.; Girisha, K.M.; Verma, I.C.; Phadke, S.R.; Mandal, K.; et al. Identification and characterization of 20 novel pathogenic variants in 60 unrelated Indian patients with mucopolysaccharidoses type I and type II. Clin. Genet. 2016, 90, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; Zhang, X.; Wang, Y.; Qiu, W.; Ye, J.; Han, L.; Gao, X.; Gu, X. Analysis of the IDS gene in 38 patients with Hunter syndrome: The c.879G>A (p.Gln293Gln) synonymous variation in a female create exonic splicing. PLoS ONE 2011, 6, e22951. [Google Scholar] [CrossRef] [Green Version]
- Lagerstedt, K.; Karsten, S.L.; Carlberg, B.M.; Kleijer, W.J.; Tönnesen, T.; Pettersson, U.; Bondeson, M.L. Double-strand breaks may initiate the inversion mutation causing the Hunter syndrome. Hum. Mol. Genet. 1997, 6, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Kosuga, M.; Mashima, R.; Hirakiyama, A.; Fuji, N.; Kumagai, T.; Seo, J.H.; Nikaido, M.; Saito, S.; Ohno, K.; Sakuraba, H.; et al. Molecular diagnosis of 65 families with mucopolysaccharidosis type II (Hunter syndrome) characterized by 16 novel mutations in the IDS gene: Genetic, pathological, and structural studies on iduronate-2-sulfatase. Mol. Genet. Metab. 2016, 118, 190–197. [Google Scholar] [CrossRef]
- Keeratichamroen, S.; Cairns, J.R.; Wattanasirichaigoon, D.; Wasant, P.; Ngiwsara, L.; Suwannarat, P.; Pangkanon, S.; Kuptanon, J.; Tanpaiboon, P.; Rujirawat, T.; et al. Molecular analysis of the iduronate-2-sulfatase gene in Thai patients with Hunter syndrome. J. Inherit. Metab. Dis. 2008, 31, S303–S311. [Google Scholar] [CrossRef]
- Charoenwattanasatien, R.; Cairns, J.R.; Keeratichamroen, S.; Sawangareetrakul, P.; Tanpaiboon, P.; Wattanasirichaigoon, D.; Pangkanon, S.; Svasti, J.; Champattanachai, V. Decreasing activity and altered protein processing of human iduronate-2-sulfatase mutations demonstrated by expression in COS7 cells. Biochem. Genet. 2012, 50, 990–997. [Google Scholar] [CrossRef]
- Kubaski, F.; Osago, H.; Mason, R.W.; Yamaguchi, S.; Kobayashi, H.; Tsuchiya, M.; Orii, T.; Tomatsu, S. Glycosaminoglycans detection methods: Applications of mass spectrometry. Mol. Genet. Metab. 2017, 120, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Barth, A.L.; de Magalhães, T.S.P.C.; Reis, A.B.R.; de Oliveira, M.L.; Scalco, F.B.; Cavalcanti, N.C.; Silva, D.S.E.; Torres, D.A.; Costa, A.A.P.; Bonfim, C.; et al. Early hematopoietic stem cell transplantation in a patient with severe mucopolysaccharidosis II: A 7 years follow-up. Mol. Genet. Metab. Rep. 2017, 12, 62–68. [Google Scholar] [CrossRef]
- Wang, J.; Luan, Z.; Jiang, H.; Fang, J.; Qin, M.; Lee, V.; Chen, J. Allogeneic Hematopoietic Stem Cell Transplantation in Thirty-Four Pediatric Cases of Mucopolysaccharidosis-A Ten-Year Report from the China Children Transplant Group. Biol. Blood Marrow Transplant. 2016, 22, 2104–2108. [Google Scholar] [CrossRef] [PubMed]
- Muenzer, J.; Gucsavas-Calikoglu, M.; McCandless, S.E.; Schuetz, T.J.; Kimura, A. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol. Genet. Metab. 2007, 90, 329–337. [Google Scholar] [CrossRef]
- Grewal, S.S.; Wynn, R.; Abdenur, J.E.; Burton, B.K.; Gharib, M.; Haase, C.; Hayashi, R.J.; Shenoy, S.; Sillence, D.; Tiller, G.E.; et al. Safety and efficacy of enzyme replacement therapy in combination with hematopoietic stem cell transplantation in Hurler syndrome. Genet. Med. 2005, 7, 143–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomatsu, S.; Shimada, T.; Mason, R.W.; Montaño, A.M.; Kelly, J.; LaMarr, W.A.; Kubaski, F.; Giugliani, R.; Guha, A.; Yasuda, E.; et al. Establishment of glycosaminoglycan assays for mucopolysaccharidoses. Metabolites 2014, 4, 655–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.Y.; Lee, C.L.; Lo, Y.T.; Wang, T.J.; Huang, S.F.; Chen, T.L.; Wang, Y.S.; Niu, D.M.; Chuang, C.K.; Lin, S.P. The Relationships between Urinary Glycosaminoglycan Levels and Phenotypes of Mucopolysaccharidoses. Mol. Genet. Genomic Med. 2018, 6, 982–992. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chuang, C.K.; Chiu, H.C.; Lin, S.P. Mucopolysaccharidosis type II—an unexpected “3 in 1” family. Pediatr. Neonatol. 2016, 57, 359–360. [Google Scholar] [CrossRef] [Green Version]
Diagnostic Group | Variation Allele of IDS Gene | Known/Novel | ACMG Classification | IDS Activity Expressed in Transfected COS-7 Cells (%) | N | % | Gender | IDS Enzyme Activity (µmol/g Protein/4 h) | Urinary DMB/Cre Ratio (mg/mmol Creatinine) | DS (µg/mL) | HS (µg/mL) | KS (µg/mL) | Management |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | c.254C > T, p.A85V | Novel | Pathogenic | 22.6% | 1 | 0.5% | M | 0.83 | 78.58 | 11.59 | 12.36 | 0.25 | Regular follow-up |
c.311A > T, p.D104V | Novel | Pathogenic | 2.2% | 1 | 0.5% | M | 0.32 | 113.95 | 15.62 | 103.44 | 1.42 | ERT + HSCT | |
c.817C > T, p.R273W | Novel | Uncertain Significance | 2.2% | 3 | 1.5% | M | 3.25 ± 2.64 | 69.71 ± 9.44 | 3.18 ± 3.65 | 20.0 ± 19.37 | 2.92 ± 2.92 | Regular follow-up | |
c.1025A > G, p.H342R | Novel | Pathogenic | 41.8% | 2 | 1.0% | M | 1.26/0.40 | 59.46/70.9 | 1.18/21.21 | 8.22/12.06 | 1.49/6.47 | Regular follow-up | |
c.1400C > T, p.P467L | Known [32,33] | Pathogenic | 0 | 1 | 0.5% | M | 0.27 | 153.16 | 21.4 | 30.01 | 0.11 | ERT | |
c.1007–1666_c.1180 + 2113 delinsTT | Known [34,35] | Pathogenic | 1 | 0.5% | M | 0.99 | 177.96 | 30.77 | 203.35 | 0.31 | ERT + HSCT | ||
IDS inversion | Known [18,36] | 1 | 0.5% | M | 0.13 | 104.84 | 11.93 | 175.36 | 0.15 | ERT + HSCT | |||
Group 2 | c.589C > T, p.P197S | Novel | Likely Pathogenic | 74.9% | 1 | 0.5% | M | 7.8 | 63.82 | 0.38 | 1.46 | 6.35 | Regular follow-up |
c.659T > C, p.F220S | Novel | Likely Pathogenic | 0 | 2 | 1.0% | M | 10.36/7.99 | 73.2/89.81 | 0.21/0.19 | 3.69/5.89 | 4.03/5.05 | Regular follow-up | |
c.778C > T, p.P260S | Novel | Likely Pathogenic | 84.5% | 1 | 0.5% | M | 6.47 | 12.29 | 0.12 | 0.1 | 1.24 | Regular follow-up | |
c.851C > T, p.P284L | Known | Uncertain Significance | 62.3% | 4 | 2.0% | M | 8.7 ± 8 | 27.9 ± 5.5 | 0.03 | 0.12 ± 0.05 | 0.22 ± 0.02 | Regular follow-up | |
c.890G > A, p.R297H | Novel | Pathogenic | 98.9% | 2 | 1.0% | M | 9.2/58.75 | 69.67/50.38 | 0.08/0.03 | 0.04/0.6 | 3.47/2.5 | Regular follow-up | |
c.1513T > C, p.F505L | Novel | Likely Pathogenic | 84.6% | 1 | 0.5% | M | 5.93 | 27.69 | 0.18 | 0.2 | 0.08 | Regular follow-up | |
c.851C > T, p.P284L; c.1180 + 184T > C | Known [37]; Novel | Uncertain Significance + (–) | 1 | 0.5% | M | 2.93 | 55.87 | 0.14 | 0.38 | 0.32 | Regular follow-up | ||
c.103 + 34_56dup; c.684A > G, p.Pro228 =; c.851C > T, p.P284L; c.1180 + 184T > C | Novel; Novel; Known [37]; Novel | Uncertain Significance + Likely Benign + Uncertain Significance + (–) | 139 | 68.8% | M | 6.1 ± 5.2 | 27.0 ± 7.8 | 0.16 ± 0.18 | 0.29 ± 0.22 | 1.22 ± 1.74 | Regular follow-up | ||
Group 3 | c.142C > T, p.R48C | Novel | Likely Pathogenic | 83.6% | 2 | 1.0% | M | 16.27/23.78 | 38.73/26.2 | 0.01/0.08 | 0.75/0.38 | 0.03/0.59 | Observation |
c.301C > T, p.R101C | Known [38] | Uncertain Significance | 97% | 6 | 3.0% | M | 26.1 ± 9.9 | 18.1 ± 6.4 | 0.06 ± 0.04 | 0.14 ± 0.04 | 4.92 ± 1.9 | Observation | |
c.805G > A, p.D269N | Novel | Pathogenic | 0 | 1 | 0.5% | M | 17.68 | 46.09 | 0.17 | 0.53 | 1.32 | Observation | |
c.1478G > A, p.R493H | Novel | Likely Pathogenic | 86.5% | 10 | 5.0% | M | 35.2 ± 34.9 | 34.6 ± 15.4 | 0.16 ± 0.16 | 0.18 ± 0.21 | 1.60 ± 2.78 | Observation | |
c.1499C > T, p.T500I | Novel | Likely Benign | 77.5% | 22 | 10.9% | M | 25 ± 10.8 | 30.3 ± 10.8 | 0.09 ± 0.06 | 0.1 ± 0.09 | 0.36 ± 0.26 | Observation |
No. | Gender | Variation Allele of IDS Gene | Age at HSCT (Years) | Age at Start of ERT (Years) | Baseline/Follow-Up | Age (Years) | IDS Enzyme Activity (µmol/g Protein/4 h) | Urinary DMB/Cre Ratio (mg/mmol Creatinine) | DS (µg/mL) | HS (µg/mL) | KS (µg/mL) | Hand X-ray | L-S Spine X-ray | Pelvis X-ray | Echocardiography | Abdominal ultrasonography |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I-1 | M | c.254C > T, p.A85V | — | — | Baseline | 0.4 | 0.83 | 78.58 | 11.59 | 12.36 | 0.25 | Normal | Normal | Normal | Normal | Normal |
Follow-up | 3.9 | 1.24 | 35.42 | 0.77 | 25.75 | 4.46 | Normal | Normal | Normal | Normal | Normal | |||||
I-2 | M | c.311A > T, p.D104V | 1.5 | 1.0 | Baseline | 0.1 | 0.32 | 113.95 | 15.62 | 103.44 | 1.42 | Normal | Normal | Normal | Normal | Normal |
Follow-up | 4.3 | 124.88 | 13.87 | 0.01 | 5.89 | 0.16 | Normal | Normal | Normal | Normal | Normal | |||||
I-3.1 | M | c.817C > T, p.R273W | — | — | Baseline | 0.1 | 0.2 | 77.3 | 7.39 | 1.83 | 6.13 | Normal | Normal | Normal | Normal | Normal |
Follow-up | 4.8 | 19.69 | 18.86 | 0.16 | 41.56 | 4.71 | Normal | Normal | Normal | Normal | Normal | |||||
I-3.2 | M | c.817C > T, p.R273W | — | — | Baseline | 4.2 | 0.41 | 16.73 | 5.48 | 24.9 | 0.58 | Normal | Normal | Normal | Normal | Normal |
Follow-up | 8.7 | 21.5 | 15.64 | 0.13 | 17.2 | 2.29 | Normal | Normal | Normal | Normal | Normal | |||||
I-4.1 | M | c.1025A > G; p.H342R | — | — | Baseline | 0.1 | 0.40 | 70.9 | 21.21 | 12.06 | 6.47 | Normal | Normal | Normal | Normal | Normal |
Follow-up | 3.6 | 11.2 | 21.69 | 0.64 | 17.72 | 0.49 | Normal | Normal | Normal | Normal | Normal | |||||
I-4.2 | M | c.1025A > G; p.H342R | — | — | Baseline | 2.8 | NA | 108.18 | 3.81 | 10.21 | 4.20 | Normal | Normal | Normal | Dysrhythmia | Normal |
Follow-up | 6.1 | 9.05 | 17.54 | 0.22 | 16.72 | 0.57 | Normal | Normal | Normal | Dysrhythmia | Normal | |||||
I-5 | M | c.1400C > T, p.P467L | — | 0.5 | Baseline | 0.2 | 0.27 | 153.16 | 21.4 | 30.01 | 0.11 | Proximal tapering of metacarpal bone with bullet-shaped phalanges. | Normal | Normal | Normal | Normal |
Follow-up | 3.5 | 7.51 | 18.01 | 0.42 | 3.28 | 2.39 | Suspicious of mild proximal tapering of metacarpal bone with bullet-shaped phalanges. | Multiplex dysostosis of the spine. L-spine vertebral bodies are round. The anterior beaking more at several vertebral bodies of L-spine. | Round iliac wings, inferior tapering of the ilea with not-well developed acetabulum. | Normal | Normal | |||||
I-6 | M | c.1007–1666_c.1180 + 2113 delinsTT | 0.9 | 0.4 | Baseline | 0.1 | 0.99 | 177.96 | 30.77 | 203.35 | 0.31 | Normal | Normal | Normal | ASD II | Normal |
Follow-up | 2.8 | 110.92 | 8.9 | 0.1 | 20.64 | 7.05 | Persistent proximal pointed metacarpal and bullet-shaped phalanges of both hands. | Anterior beaking of lower thoracic to lumbar vertebrae. Relative enlargement of sternal end of bilateral clavicles. | Shallow bilateral acetabuli and coxa valga of both femurs. | ASD II, MR, AR | Mild splenomegaly | |||||
I-7 | M | IDS inversion | 0.6 | 0.5 | Baseline | 0.1 | 0.13 | 104.84 | 11.93 | 175.36 | 0.15 | NA | NA | NA | NA | NA |
Follow-up | 0.6 | 1.93 | 44.05 | 8.72 | 37.3 | 0.2 | NA | NA | NA | NA | NA |
No. | Gender | Variation Allele of IDS Gene | Baseline/Follow-Up | Age (Years) | IDS Enzyme Activity (µmol/g Protein/4 h) | Urinary DMB/Cre Ratio (mg/mmol Creatinine) | DS (µg/mL) | HS (µg/mL) | KS (µg/mL) |
---|---|---|---|---|---|---|---|---|---|
II-1 | M | c.589C > T, p.P197S | Baseline | 0.2 | 7.80 | 63.82 | 0.38 | 1.46 | 6.35 |
Follow-up | 5.6 | 25.08 | 11.57 | 0.03 | 1.82 | 1.07 | |||
II-2 | M | c.659T > C, p.F220S | Baseline | 0.1 | 10.36 | 70.32 | 0.21 | 3.69 | 4.03 |
Follow-up | 0.3 | 4.57 | 49.65 | 0.16 | 2.02 | 0.37 | |||
II-3 | M | c.778C > T, p.P260S | Baseline | 0.1 | 6.47 | 12.29 | 0.12 | 0.1 | 1.24 |
Follow-up | 3.0 | 9.27 | 8.47 | 0.04 | 0.04 | 5.39 | |||
II-4 | M | c.851C > T, p.P284L | Baseline | 0.1 | 0.51 | 34.22 | 0.03 | 0.08 | 0.21 |
Follow-up | 3.4 | 20.79 | 12.13 | 0.04 | 0.02 | 2.63 | |||
II-5 | M | c.890G > A, p.R297H | Baseline | 0.2 | 58.75 | 50.38 | 0.08 | 0.04 | 3.47 |
Follow-up | — | — | — | — | — | — | |||
II-6 | M | c.1513T > C, p.F505L | Baseline | 0.1 | 5.93 | 32.15 | 0.08 | 0.11 | 7.21 |
Follow-up | 3.0 | 15.82 | 9.38 | 0.02 | 0.26 | 5.61 | |||
II-7 | M | c.851C > T, p.P284L; c.1180 + 184T > C | Baseline | 0.1 | 2.93 | 55.87 | 0.14 | 0.38 | 0.32 |
Follow-up | — | — | — | — | — | — | |||
II-8 | M | c.103 + 34_56dup; c.684A > G, p.Pro228 =; c.851C > T, p.P284L; c.1180 + 184T > C | Baseline | 0.2 | 4.20 | 41.70 | 0.30 | 0.02 | 2.41 |
Follow-up | 6.1 | 13.51 | 11.68 | 0.01 | 0.63 | 1.37 |
Diagnostic Group | Gender | Age (Years) | Variation Allele of IDS Gene | IDS Enzyme Activity (µmol/g Protein/4 h) | Urinary DMB/Cre Ratio (mg/mmol Creatinine) | DS (µg/mL) | HS (µg/mL) | KS (µg/mL) |
---|---|---|---|---|---|---|---|---|
Group 2 | M | 90 | c.103 + 34_56dup; c.684A > G, p.Pro228=; c.851C > T, p.P284L; c.1180 + 184T > C | 2.23 | 2.82 | 0.52 | 0.21 | 0.35 |
Group 2 | M | 56 | c.659T > C, p.F220S | 7.50 | 9.21 | 0.09 | 0.88 | 0.16 |
Group 3 | M | 63 | c.1478G > A, p.R493H | 27.99 | 1.39 | 0.11 | 0.40 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-Y.; Chang, Y.-H.; Lee, C.-L.; Tu, Y.-R.; Lo, Y.-T.; Hung, P.-W.; Niu, D.-M.; Liu, M.-Y.; Liu, H.-Y.; Chen, H.-J.; et al. Newborn Screening Program for Mucopolysaccharidosis Type II and Long-Term Follow-Up of the Screen-Positive Subjects in Taiwan. J. Pers. Med. 2022, 12, 1023. https://doi.org/10.3390/jpm12071023
Lin H-Y, Chang Y-H, Lee C-L, Tu Y-R, Lo Y-T, Hung P-W, Niu D-M, Liu M-Y, Liu H-Y, Chen H-J, et al. Newborn Screening Program for Mucopolysaccharidosis Type II and Long-Term Follow-Up of the Screen-Positive Subjects in Taiwan. Journal of Personalized Medicine. 2022; 12(7):1023. https://doi.org/10.3390/jpm12071023
Chicago/Turabian StyleLin, Hsiang-Yu, Ya-Hui Chang, Chung-Lin Lee, Yuan-Rong Tu, Yun-Ting Lo, Pei-Wen Hung, Dau-Ming Niu, Mei-Ying Liu, Hsin-Yun Liu, Hsiao-Jan Chen, and et al. 2022. "Newborn Screening Program for Mucopolysaccharidosis Type II and Long-Term Follow-Up of the Screen-Positive Subjects in Taiwan" Journal of Personalized Medicine 12, no. 7: 1023. https://doi.org/10.3390/jpm12071023