COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment
Abstract
:1. Introduction
2. Immunology
3. Risk Factors Implicated in CAPA Development
4. CAPA Prevalence
5. Diagnostic Workup for Accurate Identification of CAPA
6. CAPA Treatment—Current Paradigm
7. The Current Challenges and How to Tackle Them
8. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmidis, C.; Denning, D.W. The clinical spectrum of pulmonary aspergillosis. Thorax 2015, 70, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, E.; Knight, J.M.; Wu, Y.; Luong, A.; Rodriguez, A.; Kheradmand, F.; Corry, D.B. Airway mycosis in allergic airway disease. Adv. Immunol. 2019, 142, 85–140. [Google Scholar] [CrossRef]
- Schauwvlieghe, A.F.A.D.; Rijnders, B.J.; Philips, N.; Verwijs, R.; Vanderbeke, L.; Van Tienen, C.; Lagrou, K.; Verweij, P.E.; Van De Veerdonk, F.L.; Gommers, D.; et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir. Med. 2018, 6, 782–792. [Google Scholar] [CrossRef]
- Wauters, J.; Baar, I.; Meersseman, P.; Meersseman, W.; Dams, K.; De Paep, R.; Lagrou, K.; Wilmer, A.; Jorens, P.; Hermans, G. Invasive pulmonary aspergillosis is a frequent complication of critically ill H1N1 patients: A retrospective study. Intensiv. Care Med. 2012, 38, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, B.; Qu, Y.; Chen, Y.; Xiong, J.; Feng, Y.; Men, D.; Huang, Q.; Liu, Y.; Yang, B.; et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus. Res. 2020, 11, 198005. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A.H. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS- CoV-2 infection – a review of immune changes in patients with viral pneumonia. Emerg. Microbes. Infect. 2020, 9, 272–732. [Google Scholar] [CrossRef] [Green Version]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; et al. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J. Virol. 2011, 85, 4122–4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.P.; Webb, S.; Bellingan, G.J.; Montgomery, H.E.; Chaudhari, B.; McAnulty, R.J.; Humphries, S.E.; Hill, M.R.; Laurent, G.J. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2002, 166, 646–650. [Google Scholar] [CrossRef]
- Veerdonk, F.L.; Gresnigt, M.S.; Romani, L.; Netea, M.G.; Latge, J.P. Aspergillus fumigatus morphology and dynamic host interactions. Nat. Rev. Microbiol. 2017, 15, 661–674. [Google Scholar] [CrossRef]
- Tolle, L.B.; Standiford, T.J. Danger-associated molecular patterns (DAMPs) in acute lung injury. J. Pathol. 2013, 229, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Cunha, C.; Carvalho, A.; Esposito, A.; Esposito, F.; Bistoni, F.; Romani, L. DAMP signaling in fungal infections and diseases. Front. Immunol. 2012, 3, 286. [Google Scholar] [CrossRef] [Green Version]
- Sorci, G.; Giovannini, G.; Riuzzi, F.; Bonifazi, P.; Zelante, T.; Zagarella, S.; Bistoni, F.; Donato, R.; Romani, L. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS. Pathog. 2011, 7, e1001315. [Google Scholar] [CrossRef]
- Cunha, C.; Giovannini, G.; Pierini, A.; Bell, A.S.; Sorci, G.; Riuzzi, F.; Donato, R.; Rodrigues, F.; Velardi, A.; Aversa, F.; et al. Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE 2011, 6, e27962. [Google Scholar] [CrossRef] [Green Version]
- Totura, L.A.; Whitmore, A.; Agnihothram, S.; Schäfer, A.; Katze, M.G.; Heise, M.T.; Baric, R.S. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 2015, 6, e00638-15. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, T.; Morrison, T.E.; Funkhouser, W.; Uematsu, S.; Akira, S.; Baric, R.S.; Heise, M.T. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS. Pathog. 2008, 4, e1000240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millien, V.O.; Lu, W.; Shaw, J.; Yuan, X.; Mak, G.; Roberts, L.; Song, L.-Z.; Knight, J.M.; Creighton, C.J.; Luong, A.; et al. Cleavage of Fibrinogen by Proteinases Elicits Allergic Responses Through Toll-Like Receptor 4. Science 2013, 341, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.S.; Nabar, N.R.; Huang, N.N.; Kehrl, J.H. SARS-Coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell. Death. Discov. 2019, 5, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, E.Z.; Chan, Y.F.Z.; Leong, W.Y.; Lee, N.M.Y.; Kalimuddin, S.; Mohideen, S.M.H.; Chan, K.S.; Tan, A.T.; Bertoletti, A.; Ooi, E.E.; et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe 2020, 27, 879–882.e2. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; De Mast, Q.; Markou, N.; Theodorakopoulou, M.; Komnos, A.; Mouktaroudi, M.; Netea, M.G.; Spyridopoulos, T.; Verheggen, R.J.; Hoogerwerf, J.; et al. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe 2020. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Fox, T.A.; Halsey, R.; Carpenter, B.; Kottaridis, P.D. IL-1 blockade with anakinra in acute leukaemia patients with severe COVID-19 pneumonia appears safe and may result in clinical improvement. Br. J. Haematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Smeekens, S.P.; Casagrande, A.; Iannitti, R.; Conway, K.L.; Gresnigt, M.; Begun, J.; Plantinga, T.; Joosten, L.A.B.; Van Der Meer, J.W.M.; et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 3526–3531. [Google Scholar] [CrossRef] [Green Version]
- Iannitti, R.G.; Napolioni, V.; Oikonomou, V.; De Luca, A.; Galosi, C.; Pariano, M.; Massi-Benedetti, C.; Borghi, M.; Puccetti, M.; Lucidi, V.; et al. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. Nat. Commun. 2016, 7, 10791. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Y.; Ling, Y.; Lu, G.; Liu, F.; Yi, Z.; Jia, X.; Wu, M.; Shi, B.; Xu, S.; et al. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020, 1–7. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, J.; Yang, Y.; Ma, H.; Li, Z.; Zhang, J.; Cheng, J.; Zhang, X.; Zhao, Y.; Xia, Z.; et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol. Med. 2020, e12421. [Google Scholar] [CrossRef]
- Mazzoni, A.; Salvati, L.; Maggi, L.; Capone, M.; Vanni, A.; Spinicci, M.; Mencarini, J.; Caporale, R.; Peruzzi, B.; Antonelli, A.; et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Investig. 2020. [Google Scholar] [CrossRef]
- Borger, P.; Koeter, G.H.; Timmerman, A.J.; Vellenga, A.; Tomee, J.F.; Kauffman, H.F. Protease from Aspergillus fumigatus induce interleukin (IL)-6 and IL-8 producin in airway epithelial cell lines by transcriptional mechanisms. J. Infect. Dis. 1999, 180, 1267–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toniati, P.; Piva, S.; Cattalini, M.; Garrafa, E.; Regola, F.; Castelli, F.; Franceschini, F.; Airo, P.; Bazzani, C.; Research, B.I.; et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in brescia, Italy. Autoimmun. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cenci, E.; Mencacci, A.; Casagrande, A.; Mosci, P.; Bistoni, F.; Romani, L. Impaired antifungal effector activity but not inflammatory cell recruitment in interleukin-6-deficient mice with invasive pulmonary aspergillosis. J. Infect. Dis. 2001, 184, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Cheng, Z.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- Stanzani, M.; Vianelli, N.; Cavo, M.; Kontoyiannis, D.P.; Lewis, R.E. Development and internal validation of a model for predicting 60-day risk of invasive mould disease in patients with haematological malignancies. J. Infect. 2019, 78, 484–490. [Google Scholar] [CrossRef]
- Netea, M.G.; Giamarellos-Bourboulis, E.J.; Dominguez-Andres, J.; Curtis, N.; Crevel, R.; Veerdonk, F.L.; Bonten, M. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell 2020, 181, 969–977. [Google Scholar] [CrossRef]
- Van De Veerdonk, F.L.; Kolwijck, E.; A Lestrade, P.P.; Hodiamont, C.J.; Rijnders, B.J.; Van Paassen, J.; Haas, P.-J.; Dos Santos, C.O.; Kampinga, G.; Bergmans, D.C.; et al. Influenza-associated Aspergillosis in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2017, 196, 524–527. [Google Scholar] [CrossRef]
- Jenks, J.D.; Mehta, S.R.; Taplitz, R.; Aslam, S.; Reed, S.L.; Hoenigl, M. Point-of-care diagnosis of invasive aspergillosis in non-neutropenic patients: Aspergillus Galactomannan Lateral Flow Assay versus Aspergillus -specific Lateral Flow Device test in bronchoalveolar lavage. Mycoses 2019, 62, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.D.; Salzer, H.J.F.; Hoenigl, M. Improving the rates of Aspergillus detection: An update on current diagnostic strategies. Expert Rev. Anti-infective Ther. 2018, 17, 39–50. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; A Kauffman, C.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blot, S.; Taccone, F.S.; Abeele, A.-M.V.D.; Bulpa, P.; Meersseman, W.; Brusselaers, N.; Dimopoulos, G.; Paiva, J.A.; Misset, B.; Rello, J.; et al. A Clinical Algorithm to Diagnose Invasive Pulmonary Aspergillosis in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2012, 186, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Giacobbe, D.R.; Grecchi, C.; Rebuffi, C.; Zuccaro, V.; Scudeller, L. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, adult patients: A systematic review with qualitative evidence synthesis. J. Infect. 2020, 81, 131–146. [Google Scholar] [CrossRef]
- Bassetti, M.; Scudeller, L.; Giacobbe, D.R.; Lamoth, F.; Righi, E.; Zuccaro, V.; Grecchi, C.; Rebuffi, C.; Akova, M.; Alastruey-Izquierdo, A.; et al. Developing definitions for invasive fungal diseases in critically ill adult patients in intensive care units. Protocol of the FUN gal infections Definitions in ICU patients (FUNDICU) project. Mycoses 2019, 62, 310–319. [Google Scholar] [CrossRef]
- Arkel, A.L.E.; Rijpstra, T.A.; Belderbos, H.N.A.; Wijngaarden, P.; Verweij, P.E.; Bentvelsen, R.G. COVID-19 Associated pulmonary aspergillosis. Am. J. Respir. Crit. Care Med. 2020. [Google Scholar] [CrossRef]
- Russel, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020, 395, 473–475. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.J.; Loman, N.; Bogaert, D.; Grady, J.O. Co-infections: Potentially lethal and unexplored in COVID-19. Lancet Microbe 2020. [Google Scholar] [CrossRef]
- Koehler, P.; Cornely, O.A.; Böttiger, B.W.; Dusse, F.; Eichenauer, D.A.; Fuchs, F.; Hallek, M.; Jung, N.; Klein, F.; Persigehl, T.; et al. COVID-19 associated pulmonary aspergillosis. Mycoses 2020, 63, 528–534. [Google Scholar] [CrossRef]
- Alanio, A.; Dellière, S.; Fodil, S.; Bretagne, S.; Megarbane, B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Rutsaert, L.; Steinfort, N.; Hunsel, T.V.; Bomans, P.; Mertes, H.; Dits, H.; Regenmortel, N.V. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care 2020, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, P.; Balestro, E.; Aliberti, S.; Cocconcelli, E.; Biondini, D.; Casa, G.D.; Sverzellati, N.; Maher, T.M. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019-Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. SSRN Electron. J. 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Du, Y.; Tu, L.; Zhu, P.; Mu, M.; Wang, R.; Yang, P.; Wang, X.; Hu, C.; Ping, R.; Li, T.; et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. Am J. Respir. Crit. Care Med. 2020, 201, 1372–1379. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061. [Google Scholar] [CrossRef]
- Blaize, M.; Mayaux, J.; Nabet, C.; Lampros, A.; Marcelin, A.G.; Thellier, M.; Piarroux, R.; Demoule, A.; Fekkar, A. Fatal invasive aspergillosis and coronavirus disease in an immunocompetent patient. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Lescure, F.X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Le Hingrat, Q.; et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet. Infect. Dis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Antinori, S.; Rech, R.; Galimberti, L.; Castelli, A.; Angeli, E.; Fossali, T.; Bernasconi, D.; Covizzi, A.; Bonazzetti, C.; Torre, A.; et al. Invasive pulmonary aspergillosis complicating SARS-CoV-2 pneumonia: A diagnostic challenge. Travel Med. Infect. Dis. 2020, 101752. [Google Scholar] [CrossRef]
- Prattes, J.; Valentin, T.; Hoenigl, M.; Talakic, E.; Alexander, C.R.; Eller, P. Invasive pulmonary aspergillosis complicating COVID-19 in the ICU—A case. Med. Mycol. Case Rep. 2020. [Google Scholar] [CrossRef]
- Lahmer, T.; Rasch, S.; Spinner, C.; Geisler, F.; Schmid, R.M.; Huber, W. Invasive pulmonary aspergillosis in severe COVID-19 pneumonia. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef]
- Meijer, E.F.J.; Dofferhoff, A.S.M.; Hoiting, O.; Buil, J.B.; Meis, J.F. Azole resistant COVID-19 associated pulmonary aspergillosis in an immunocompetent host: A case report. J. Fungi 2020, 2, 79. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Hofmeyr, A.; Bansal, A.; Thakkar, D.; Lam, L.; Harrington, Z.; Bhonagiri, D. COVID-19 associated pulmonary aspergillosis (CAPA): An Australian case report. Med Mycol. Case Rep. 2020. [Google Scholar] [CrossRef]
- Cornely, O.A.; Hoenigl, M.; Lass-Flörl, C.; Chen, S.; Kontoyiannis, D.P.; Morrissey, C.O.; Thmpson, G.R. Mycoses Study Group Education and Research Consortium (MSG-ERC) and the European Confederation of Medical Mycology (ECMM). Defining breakthrough invasive fungal infection-position paper of the mycoses study group education and research consortium and the european confederation of medical mycology. Mycoses 2019, 62, 716–729. [Google Scholar] [PubMed]
- Clark, C.; Drummond, R.A. The hidden cost of modern medical interventions: How medical advances have shaped the prevalence of human fungal disease. Pathogens 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanguinetti, M.; Posteraro, B.; Beigelman-aubry, C.; Lamoth, F.; Dunet, V.; Slavin, M.; Richardson, M.D. Diagnosis and treatment of invasive fungal infections: Looking ahead. J. Antimicrob. Chemother. 2019, 74, ii27–ii37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Critchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care 2018, 41, 2127–2135. [Google Scholar] [CrossRef] [Green Version]
- Danesh, J.; Collins, R.; Peto, R. Chronic infections and coronary heart disease: Is there a link? Lancet 1997, 350, 430–436. [Google Scholar] [CrossRef]
- Hotez, P.J. Linking tropical infections to hypertension: New comorbid disease. J. Am. Heart. Assoc. 2019, 8, e03984. [Google Scholar] [CrossRef]
- Ader, F.; Nseir, S.; Berre, R.L.; Leroy, S.; Tillie-Leblond, I.; Marquette, C.H.; Durocher, A. Invasive pulmonary aspergillosis in chronic obstructive pulmonary disease: An emerging fungal pathogen. Clin. Microbiol. Infect. 2005, 11, 427–429. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, Q.; Zhang, P.; Sheng, J.; Zhou, J.; Qu, T. Clinical characteristics of invasive pulmonary aspergillosis in patients with COVID-19 in Zhejiang, China: A retrospective case series. Crit Care 2020, 24, 299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hu, C.; Luo, L.; Fang, F.; Chen, Y.; Li, J.; Peng, Z.; Pan, H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J. Clin. Virol. 2020, 127, 104364. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Wickes, B.L.; Ilkit, M.; Pincus, D.H.; Daneshnia, F.; Pan, W.; Fang, W.; Boekhout, T. Identification of mycoses in developing countries. J. Fungi 2019, 5, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigl, S.; Spiess, B.; Heldt, S.; Rabensteiner, J.; Prüller, F.; Flick, H.; Boch, T.; Hoenigl, M.; Prattes, J.; Neumeister, P.; et al. Galactomannan testing and Aspergillus PCR in same-day bronchoalveolar lavage and blood samples for diagnosis of invasive aspergillosis. Med. Mycol. 2016, 55, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Chindamporn, A.; Chakrabarti, A.; Li, R.; Sun, P.-L.; Tan, B.-H.; Chua, M.; Wahyuningsih, R.; Patel, A.; Liu, Z.; Chen, Y.-C.; et al. Survey of laboratory practices for diagnosis of fungal infection in seven Asian countries: An Asia Fungal Working Group (AFWG) initiative. Med. Mycol. 2017, 56, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Thomas, P.G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 2019, 23, 258. [Google Scholar] [CrossRef] [Green Version]
- Lestrade, P.P.A.; Meis, J.F.; Melchers, W.J.G.; Verweij, P.E. Triazole resistance in Aspergillus fumigatus: Recent insights and challenges for patient management. Clin. Microbiol. Infect. 2019, 25, 799–806. [Google Scholar] [CrossRef]
- Wahidi, M.M.; Lamb, C.; Murgu, S.; Musani, A.; Shojaee, S.; Sachdeva, A.; Maldonado, F.; Mahmood, K.; Kinsey, M.; Sethi, S.; et al. American Association for Bronchology and Interventional Pulmonology (AABIP) Statement on the Use of Bronchoscopy and Respiratory Specimen Collection in Patients with Suspected or Confirmed COVID-19 Infection. J. Bronchol. Interv. Pulmonol. 2020. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., III; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Segal, B.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of america. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Ullmann, A.; Aguado, J.; Arikan-Akdagli, S.; Denning, D.; Groll, A.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.; Munoz, P.; E Verweij, P.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24, e1–e38. [Google Scholar] [CrossRef]
- Hoenigl, M.; Duettmann, W.; Raggam, R.B.; Seeber, K.; Troppan, K.; Fruhwald, S.; Prüller, F.; Wagner, J.; Valentin, T.; Zollner-Schwetz, I.; et al. Potential Factors for Inadequate Voriconazole Plasma Concentrations in Intensive Care Unit Patients and Patients with Hematological Malignancies. Antimicrob. Agents Chemother. 2013, 57, 3262–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenks, J.D.; Mehta, S.R.; Hoenigl, M. Broad spectrum triazoles for invasive mould infections in adults: Which drug and when? Med. Mycol. 2019, 57, S168–S178. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, S.; Farzanegan, B.; Alehashem, M. Important drug classes associated with potential drug – drug interactions in critically ill patients: Highlights for cardiothoracic intensivists. Ann. Intensive Care 2015, 5, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCreary, E.K.; Pogue, J.M. Coronavirus Disease 2019 Treatment: A Review of early and emerging options. Open. Forum. Infect Dis. 2020, 7, ofaa105. [Google Scholar] [CrossRef] [Green Version]
- Jenks, J.D.; Salzer, H.J.F.; Prattes, J.; Krause, R.; Buchheidt, D.; Hoenigl, M. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: Design, development, and place in therapy. Drug. Des. Devel. Ther. 2018, 12, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Hoenigl, M.; Prattes, J.; Neumeister, P.; Wölfler, A.; Krause, R. Real- world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses 2018, 61, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Takano, T.; Akiyama, M.; Doki, T.; Hohdatsu, T. Antiviral activity of itraconazole against type I feline coronavirus infection. Vet Res. 2019, 50, 5. [Google Scholar] [CrossRef] [Green Version]
- Nield, B.; Larsen, S.R.; van Hal, S.J. Clinical experience with new formulation SUBA(R)-itraconazole for prophylaxis in patients undergoing stem cell transplantation or treatment for haematological malignancies. J. Antimicrob. Chemother. 2019, 74, 3049–3055. [Google Scholar] [CrossRef]
- Aruanno, M.; Glampedakis, E.; Lamoth, F. Echinocandins for the Treatment of Invasive Aspergillosis: From Laboratory to Bedside. Antimicrob. Agents Chemother. 2019, 63, e00399-19. [Google Scholar] [CrossRef] [Green Version]
- Kupferschmidt, K. New drugs target growing threat of fatal fungi. Science 2019, 366, 407. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Locke, J.B.; Daruwala, P.; Bartizal, K. Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species. J. Antimicrob. Chemother. 2018, 73, 3063–3067. [Google Scholar] [CrossRef]
- Cevik, M.; Bamford, C.G.G.; Ho, A. COVID-19 pandemic-a focused review for clinicians. Clin. Microbiol. Infect. 2020. [Google Scholar] [CrossRef]
- Rijnders, B.L.; Schauwvlieghe, A.F.A.D.; Wauters, J. Influenza-Associated Pulmonary Aspergillosis: A Local or Global Lethal Combination? Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R., III; Cornely, O.A.; Pappas, P.G.; Patterson, T.F.; Hoenigl, M.; Jenks, J.D.; Clancy, C.J.; Nguyen, M.H.; Mycoses Study Group (MSG) and European Confederation of Medical Mycology (ECMM). Invasive Aspergillosis as an Underrecognized Superinfection in COVID-19. Open Forum Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Verweij, P.E.; Gangneux, J.-P.; Bassetti, M.; Brüggemann, R.J.M.; A Cornely, O.; Koehler, P.; Lass-Flörl, C.; Van De Veerdonk, F.L.; Chakrabarti, A.; Hoenigl, M. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe 2020, 1, e53–e55. [Google Scholar] [CrossRef]
Country (Prevalence) COHORT [Ref] | Age/Sex | Underlying Conditions | CAPA Classification | Local/Systemic Corticosteroid Use | GM (ODI)/Serum BDG (pg/mL)/qPCR | Species (Voriconazole Susceptibility Pattern) | Treatment # | Outcome |
---|---|---|---|---|---|---|---|---|
Germany (5/19; 26.3%)ARDS [50] | 62/F | Cholecystectomy for cholecystitis, arterial hypertension, obesity with sleep apnea, hypercholesterolemia, ex-smoker, COPD (GOLD 2) | Putative | Inhaled steroids for COPD | GM Serum negative GM BALF> 2.5 qPCR BALF = Positive | Aspergillus fumigatus (S) culture from BALF | VCZ | Died |
70/M | Vertebral disc prolapse left L4/5, flavectomy and nucleotomy, Ex-smoker | Putative | No | GM Serum = 0.7 GM BALF> 2.5 qPCR BALF = Positive | A. fumigatus by PCR; negative culture | ISA | Died | |
54/M | Arterial hypertension, diabetes mellitus, aneurysm coiling right A. vertebralis | Putative | Intravenous corticosteroid therapy 0.4 mg/kg/d, total of 13 days) | GM Serum negative GM BALF> 2.5 qPCR BALF = Positive | A. fumigatus (S) culture from tracheal aspirate | CASPO→ VCZ | Alive | |
73/M | Arterial hypertension, bullous emphysema, smoker, COPD (GOLD 3), Previous Hepatitis B | Putative | Inhaled steroids for COPD | GM Serum negative qPCR tracheal secretion = Positive | A. fumigatus (S) culture from tracheal aspirate | VCZ | Died | |
54/F | None | Putative | No | GM Serum = 1.3 and 2.7 qPCR tracheal secretion = Negative | Negative culture | CASPO→ VCZ | Alive | |
France (9/27; 33.3%)ARDS * [51] | 53/M | Hypertension, obesity, ischemic heart disease | Putative | Dexamethasone iv 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10 | GM Serum = 0.13 GM BALF = 0.89 BDG = 523 qPCR = Negative | Negative culture | None | Alive |
59/F | Hypertension, obesity, diabetes | Putative | No | GM Serum = 0.04 GM BALF = 0.03 qPCR = Negative | A. fumigatus, culture from BALF | None | Alive | |
69/F | Hypertension, obesity | Putative | Dexamethasone iv 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10 | GM Serum = 0.04 BDG = 7.8 qPCR BALF = 23.9 | A. fumigatus, culture from tracheal secretion | None | Alive | |
63/F | Hypertension, diabetes, ischemic heart disease | Putative | Dexamethasone iv 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10 | GM Serum = 0.51 GM BALF = 0.15 BDG = 63 | Negative culture | None | Died | |
43/M | Asthma with steroid use history | Putative | No | GM Serum = 0.04 GM BALF = 0.12 BDG = 7 qPCR = Negative | A. fumigatus, culture from BALF | None | Alive | |
79/M | Hypertension | Putative | Dexamethasone iv 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10 | GM Serum = 0.02 GM BALF = 0.05 BDG = 23 qPCR BALF = 34.5 | A. fumigatus, culture from BALF | None | Alive | |
77/M | Hypertension, asthma | Putative | Dexamethasone iv 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10 | GM Serum = 0.37 GM BALF = 3.91 BDG = 135 qPCR BALF = 29 | A. fumigatus, culture from BALF | VCZ | Died | |
75/F | Hypertension, diabetes | Putative | Dexamethasone iv 20 mg once daily from day 1 to day 5, followed by 10 mg once daily from day 6 to day 10 | GM Serum = 0.37 GM BALF = 0.36 BDG = 450 qPCR BALF = 31.7 | A. fumigatus, culture from BALF | CASPO | Died | |
47/M | Multiple myeloma with steroid therapy | Probable | No | GM Serum = 0.09 BDG = 14 | A. fumigatus, culture from tracheal secretion | None | Died | |
Netherlands (6/31; 19.4%)ARDS [47] | 83/M | Cardiomyopathy | Possible | Prednisolone 0ꞏ13 mg/kg/day for 28 days pre-admission | GM Serum = 0.4 | A. fumigatus, culture from tracheal aspirate | VCZ + ANID (5/6) L-AmB (1/6) | Died |
67/M | COPD (GOLD 3), Post RTx NSCLC 2014 | Possible | Prednisolone 0ꞏ37 mg/kg/day for 2 days pre-admission | NA | A. fumigatus, culture from tracheal aspirate | Died | ||
75/M | COPD (GOLD 2a) | Probable | No | GM BALF = 4.0 | A. fumigatus, culture from BALF | Died | ||
43/M | None | Probable | No | GM Serum = 0.1 GM BALF = 3.8 | NA | Alive | ||
57/M | Bronchial asthma | Probable | Fluticasone 1ꞏ94 mcg/kg/day for 1 month pre-admission | GM Serum = 0.1 GM BALF = 1.6 | A. fumigatus. culture from BALF | Died | ||
58/M | None | Possible | No | NA | Aspergillus spp. (S), culture from sputum | Alive | ||
Belgium (7/20; 35%)ARDS [52] | 86/M | Hypercholesterinemia | NA | No | GM serum = 0.1 | A. flavus culture from tracheal aspirate | None | Died |
38/M | Obesity, hypercholesterinemia | Proven | No | GM serum = 0.3 GM BALF > 2.8 | A. fumigatus culture from BALF | VCZ, ISA | Alive | |
62/M | Diabetes | Proven | No | GM serum = 0.2 GM BALF = 2 | A. fumigatus culture from BALF | VCZ | Died | |
73/M | Diabetes, obesity, hypertension, hypercholesterinemia | Proven | No | GM serum= 0.1 GM BALF > 2.8 | A. fumigatus culture from BALF | VCZ | Alive | |
77/M | Diabetes, chronic kidney disease, hypertension, pemphigus foliaceus | Proven | Yes, ND | GM serum = 0.1 GM BALF = 2.79 | A. fumigatus culture from BALF | VCZ | Alive | |
55/M | HIV, hypertension, hypercholesterinemia | NA | No | GM serum = 0.80 GM BALF = 0.69 | Negative culture | VCZ, ISA | Died | |
75/M | Acute myeloid leukemia | NA | No | GM BALF = 2.63 | A. fumigatus culture from BALF | VCZ | Died | |
France (1)ARDS [57] | 74/M | Myelodysplastic syndrome, CD8 + T-cell lymphocytosis, Hashimoto’s thyroiditis, hypertension, benign prostatic hypertrophy | Putative | No | First GM on tracheal secretion = Negative First qPCR = Positive Second GM tracheal secretion = NA Second qPCR = Positive Direct smear of the second sample = branched septate hyphae | A. fumigatus, culture of the second tracheal secretion | None | Died |
France (1/5; 20%)Mixed ICU [58] | 80/M | Thyroid cancer (patient presented with ARDS) | Putative | NA | No | A. flavus, culture from tracheal secretion | VCZ→ ISA | Died |
Italy (1)ARDS [59] | 73/M | Diabetes, hypertension, obesity, hyperthyroidism, atrial fibrillation | Proven | No | GM Serum = 8.6 qPCR from paraffin block tissue = Positive | A. fumigatus, culture from BALF | L-AmB → ISA | Died |
Austria (1)ARDS [60] | 70/M | COPD (GOLD 2), obstructive sleep apnea syndrome, insulin-dependent type 2 diabetes with end organ damage, arterial hypertension, coronary heart disease, and obesity | Putative | Inhaled Budesonide (400 mg per day) | GM Serum = Negative BDG = Negative LFD Positive from endotracheal aspiration | A. fumigatus, culture from endotracheal aspiration | VCZ | Died |
Germany (2)ARDS [61] | 80/M | Suspected pulmonary fibrosis | ND | No | GM Serum = 1.5 GM BALF = 6.3 | A. fumigatus, culture from BALF | L-AmB | Died |
70/M | None | ND | No | GM Serum = Negative GM BALF = 6.1 | A. fumigatus, culture from BALF | L-AmB | Died | |
Netherlands (1)ARDS [62] | 74/F | Polyarthritis, reflux, stopped smoking 20 years ago | Putative | No | GM serum = Persistently < 0.5 GM tracheal aspirate = >3 BDG serum = 1590 | A. fumigatus, culture from tracheal aspirate (R)TR34/L98HICZ = 16µg/mL, VCZ = 2µg/mL, and POSA = 0.5µg/ml | VCZ + CASPO→ Oral VCZ→ L-AmB | Died |
Australia (1) ARDS [63] | 66/F | Hypertension, osteopenia, ex-smoker (20 pack years) | Putative | No | N/A | A. fumigatus culture from tracheal aspirate (3x) | VCZ + Therapeutic Drug monitoring | Alive |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arastehfar, A.; Carvalho, A.; van de Veerdonk, F.L.; Jenks, J.D.; Koehler, P.; Krause, R.; Cornely, O.A.; S. Perlin, D.; Lass-Flörl, C.; Hoenigl, M., on behalf of the ECMM Working Group Immunologic Markers for Treatment Monitoring and Diagnosis in Invasive Mold Infection. COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment. J. Fungi 2020, 6, 91. https://doi.org/10.3390/jof6020091
Arastehfar A, Carvalho A, van de Veerdonk FL, Jenks JD, Koehler P, Krause R, Cornely OA, S. Perlin D, Lass-Flörl C, Hoenigl M on behalf of the ECMM Working Group Immunologic Markers for Treatment Monitoring and Diagnosis in Invasive Mold Infection. COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment. Journal of Fungi. 2020; 6(2):91. https://doi.org/10.3390/jof6020091
Chicago/Turabian StyleArastehfar, Amir, Agostinho Carvalho, Frank L. van de Veerdonk, Jeffrey D. Jenks, Philipp Koehler, Robert Krause, Oliver A. Cornely, David S. Perlin, Cornelia Lass-Flörl, and Martin Hoenigl on behalf of the ECMM Working Group Immunologic Markers for Treatment Monitoring and Diagnosis in Invasive Mold Infection. 2020. "COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From Immunology to Treatment" Journal of Fungi 6, no. 2: 91. https://doi.org/10.3390/jof6020091