Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants
Abstract
:1. Introduction
2. Fungal Endophytes
3. Role of Fungal Endophytes in the Mitigation of Biotic Stress
3.1. Role of Fungal Endophytes against Fungal Pathogens
3.2. Role of Fungal Endophytes against Bacterial Pathogens
3.3. Role of Fungal Endophytes against Viral Pathogens
3.4. Role of Fungal Endophytes on Pests
3.5. Role of Fungal Endophytes in Plant-Parasitic Nematodes
4. Role of Fungal Endophytes in Mitigating Abiotic Stress
4.1. Drought Stress
4.2. Salt Stress
4.3. Heat Stress
4.4. Cold/Chilling Stress
4.5. Heavy Metal Stress
5. Adverse Effects of the Use of Fungal Endophytes on Host Plants
6. Interaction between Fungal Endophytes and Other Members of Plant Microbiome
7. Challenges and Future Aspects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murali, M.; Naziya, B.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Almatroudi, A.; Thriveni, M.C.; Gowtham, H.G.; Singh, S.B.; Aiyaz, M.; et al. Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture. J. Fungi 2021, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Shameem, N.; Jatav, H.S.; Sathyanarayana, E.; Parray, J.A.; Poczai, P.; Sayyed, R.Z. Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Front. Plant Sci. 2022, 13, 953836. [Google Scholar] [CrossRef] [PubMed]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Chaudhary, P.; Agri, U.; Chaudhary, A.; Kumar, A.; Kumar, G. Endophytes and their potential in biotic stress management and crop production. Front. Microbiol. 2022, 13, 933017. [Google Scholar] [CrossRef]
- Grabka, R.; d’Entremont, T.W.; Adams, S.J.; Walker, A.K.; Tanney, J.B.; Abbasi, P.A.; Ali, S. Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants 2022, 11, 384. [Google Scholar] [CrossRef]
- Verma, H.; Kumar, D.; Kumar, V.; Kumari, M.; Singh, S.K.; Sharma, V.K.; Droby, S.; Santoyo, G.; White, J.F.; Kumar, A. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms 2021, 9, 1729. [Google Scholar] [CrossRef]
- Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic fungi: An effective alternative source of plant-derived bioactive compounds for pharmacological studies. J. Fungi 2022, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Kaur, T.; Chhabra, I.; Panja, A.; Paul, S.; Kumar, V.; Malik, T. Endophytic fungi: Hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front. Microbiol. 2023, 14, 1227830. [Google Scholar] [CrossRef] [PubMed]
- Lugtenberg, B.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92, 194. [Google Scholar] [CrossRef]
- Mahadevamurthy, M.; Puttaswamy, H.; Channappa, T.M.; Sidappa, M.; Madegowda, P.; Chikkamanchegowda, J.S.; Nagaraj, A.K. Antibacterial potential of fungal endophytes isolated from Boerhaavia diffusa L. J. Appl. Pharm. Sci. 2016, 6, 216–221. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Qiao, X.G.; Miao, C.P.; Liu, K.; Chen, Y.W.; Xu, L.H.; Zhao, L.X. Diversity, distribution and biotechnological potential of endophytic fungi. Ann. Microbiol. 2016, 66, 529–542. [Google Scholar] [CrossRef]
- Hema, P.; Murali, M.; Thriveni, M.C.; Prathibha, M.; Jayaramu, S.C.; Amruthesh, K.N. Phytochemical analysis and antibacterial activity of endophytic fungi isolated from Basella rubra L.—A medicinal plant. J. Pure Appl. Microbiol. 2015, 9, 2971–2978. [Google Scholar]
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Murali, M.; Mahendra, C.; Hema, P.; Rajashekar, N.; Nataraju, A.; Sudarshana, M.; Amruthesh, K. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: A medicinal plant. Pharm. Biol. 2017, 55, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Selim, K.A.; Elkhateeb, W.A.; Tawila, A.M.; El-Beih, A.A.; Abdel-Rahman, T.M.; El-Diwany, A.I.; Ahmed, E.F. Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 2018, 4, 49. [Google Scholar] [CrossRef]
- Segaran, G.; Sathiavelu, M. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatal. Agric. Biotechnol. 2019, 21, 101284. [Google Scholar] [CrossRef]
- Sharma, I.; Raina, A.; Choudhary, M.; Apra; Kaul, S.; Dhar, M.K. Fungal endophyte bioinoculants as a green alternative towards sustainable agriculture. Heliyon 2023, 9, e19487. [Google Scholar] [CrossRef] [PubMed]
- De Silva, N.I.; Brooks, S.; Lumyong, S.; Hyde, K.D. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 2019, 33, 133–148. [Google Scholar] [CrossRef]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Rigobelo, E.C.; Baron, N.C. Endophytic fungi: A tool for plant growth promotion and sustainable agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Omomowo, I.O.; Amao, J.A.; Abubakar, A.; Ogundola, A.F.; Ezediuno, L.O.; Bamigboye, C.O. A review on the trends of endophytic fungi bioactivities. Sci. Afr. 2023, 20, e01594. [Google Scholar] [CrossRef]
- Latz, M.A.C.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J.L. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol. Divers. 2018, 11, 555–567. [Google Scholar] [CrossRef]
- Fouda, A.H.; Hassan, S.E.-D.; Eid, A.M.; Ewais, E.E.-D. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann. Agric. Sci. 2015, 60, 95–104. [Google Scholar] [CrossRef]
- Hassan, S.E.-D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 2017, 8, 687–695. [Google Scholar] [CrossRef]
- Khalil, A.M.A.; Hassan, S.E.-D.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.-D.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef]
- Sinno, M.; Ranesi, M.; Gioia, L.; d’Errico, G.; Woo, S.L. Endophytic fungi of Tomato and their potential applications for crop improvement. Agriculture 2020, 10, 587. [Google Scholar] [CrossRef]
- Fontana, D.C.; de Paula, S.; Torres, A.G.; de Souza, V.H.M.; Pascholati, S.F.; Schmidt, D.; Dourado Neto, D. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 2021, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Sinno, M.; Ranesi, M.; Di Lelio, I.; Iacomino, G.; Becchimanzi, A.; Barra, E.; Molisso, D.; Pennacchio, F.; Digilio, M.C.; Vitale, S.; et al. Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens 2021, 10, 1242. [Google Scholar] [CrossRef]
- Akram, S.; Ahmed, A.; He, P.; He, P.; Liu, Y.; Wu, Y.; Munir, S.; He, Y. Uniting the role of endophytic fungi against plant pathogens and their interaction. J. Fungi 2023, 9, 72. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The most important fungal diseases of cereals—Problems and possible solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef]
- Cheong, S.L.; Cheow, Y.L.; Ting, A.S.Y. Characterizing antagonistic activities and host compatibility (via simple endophyte-calli test) of endophytes as biocontrol agents of Ganoderma boninense. Biol. Control 2017, 105, 86–92. [Google Scholar] [CrossRef]
- Jaber, L.R.; Alananbeh, K.M. Fungal entomopathogens as endophytes reduce several species of Fusarium causing crown and root rot in sweet pepper (Capsicum annuum L.). Biol. Control 2018, 126, 117–126. [Google Scholar] [CrossRef]
- Cheng, C.; Li, D.; Qi, Q.; Sun, X.; Anue, M.R.; David, B.M.; Zhang, Y.; Hao, X.; Zhang, Z.; Lai, Z. The root endophytic fungus Serendipita indica improves resistance of Banana to Fusarium oxysporum f. sp. cubense tropical race 4. Eur. J. Plant Pathol. 2020, 156, 87–100. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Ayilara, M.S.; Akinola, S.A.; Babalola, O.O. Biocontrol mechanisms of endophytic fungi. Egypt. J. Biol. Pest Control 2022, 32, 46. [Google Scholar] [CrossRef]
- Gupta, S.; Choudhary, M.; Singh, B.; Singh, R.; Dhar, M.K.; Kaul, S. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot. Biocatal. Agric. Biotechnol. 2022, 39, 102234. [Google Scholar] [CrossRef]
- Rondot, Y.; Reineke, A. Endophytic Beauveria bassiana activates expression of defence genes in grapevine and prevents infections by grapevine downy mildew Plasmopara viticola. Plant Pathol. 2019, 68, 1719–1731. [Google Scholar] [CrossRef]
- Halecker, S.; Wennrich, J.-P.; Rodrigo, S.; Andrée, N.; Rabsch, L.; Baschien, C.; Steinert, M.; Stadler, M.; Surup, F.; Schulz, B. Fungal endophytes for biocontrol of ash dieback: The antagonistic potential of Hypoxylon rubiginosum. Fungal Ecol. 2020, 45, 100918. [Google Scholar] [CrossRef]
- Karunasinghe, T.G.; Maharachchikumbura, S.S.N.; Velazhahan, R.; Al-Sadi, A.M. Antagonistic activity of endophytic and rhizosphere fungi isolated from Sea Purslane (Sesuvium portulacastrum) against Pythium damping off of Cucumber. Plant Dis. 2020, 104, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Sasan, R.K.; Bidochka, M.J. Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Can. J. Plant Pathol. 2013, 35, 288–293. [Google Scholar] [CrossRef]
- Yuan, Y.; Feng, H.; Wang, L.; Li, Z.; Shi, Y.; Zhao, L.; Feng, Z.; Zhu, H. Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS ONE 2017, 12, e0170557. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta 2018, 248, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, E.A.; Taher, M.A.; Elsebai, M.F. Activity of Purpureocillium lilacinum filtrates on biochemical characteristics of Sclerotinia sclerotiorum and induction of defense responses in common bean. Eur. J. Plant Pathol. 2019, 155, 39–52. [Google Scholar] [CrossRef]
- Miao, G.; Han, J.; Zhang, K.; Wang, S.; Wang, C. Protection of melon against Fusarium wilt-root knot nematode complex by endophytic fungi Penicillium brefeldianum HS-1. Symbiosis 2019, 77, 83–89. [Google Scholar] [CrossRef]
- Barra-Bucarei, L.; France Iglesias, A.; Gerding González, M.; Silva Aguayo, G.; Carrasco-Fernández, J.; Castro, J.F.; Ortiz Campos, J. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms 2020, 8, 65. [Google Scholar] [CrossRef]
- Limdolthamand, S.; Songkumarn, P.; Suwannarat, S.; Jantasorn, A.; Dethoup, T. Biocontrol efficacy of endophytic Trichoderma spp. in fresh and dry powder formulations in controlling northern corn leaf blight in sweet corn. Biol. Control 2023, 181, 105217. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Yang, S.; Li, Y.; Zhu, Z. Biocontrol potential of Trichoderma asperellum strain 576 against Exserohilum turcicum in Zea mays. J. Fungi 2023, 9, 936. [Google Scholar] [CrossRef]
- Poveda, J.; Zabalgogeazcoa, I.; Soengas, P.; Rodríguez, V.M.; Cartea, M.E.; Abilleira, R.; Velasco, P. Brassica oleracea var. acephala (kale) improvement by biological activity of root endophytic fungi. Sci. Rep. 2020, 10, 20224. [Google Scholar] [CrossRef]
- Lin, H.-F.; Xiong, J.; Zhou, H.-M.; Chen, C.-M.; Lin, F.-Z.; Xu, X.-M.; Oelmüller, R.; Xu, W.-F.; Yeh, K.-W. Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biol. 2019, 19, 40. [Google Scholar] [CrossRef]
- Irawati, C.; Mutaqin, H.; Suhartnon, T.; Widodo, W. The effect of application endophytic fungus Trichoderma spp. and Fusarium spp. to control bacterial wilt in chilli pepper. Walailak J. Sci. Technol. 2020, 17, 559–569. [Google Scholar] [CrossRef]
- Huang, J.; He, Z.; Wang, J.; Zha, X.; Xiao, Q.; Liu, G.; Li, Y.; Kang, J. A novel effector FlSp1 inhibits the colonization of endophytic Fusarium lateritium and increases the resistance to Ralstonia solanacearum in Tobacco. J. Fungi 2023, 9, 519. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R.; Salem, N.M. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Sci. Technol. 2014, 24, 1096–1109. [Google Scholar] [CrossRef]
- Muvea, A.M.; Subramanian, S.; Maniania, N.K.; Poehling, H.-M.; Ekesi, S.; Meyhöfer, R. Endophytic colonization of onions induces resistance against viruliferous thrips and virus replication. Front. Plant Sci. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Kiarie, S.; Nyasani, J.O.; Gohole, L.S.; Maniania, N.K.; Subramanian, S. Impact of fungal endophyte colonization of Maize (Zea mays L.) on induced resistance to thrips- and aphid-transmitted viruses. Plants 2020, 9, 416. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, A.; Wang, Q.; Song, Y.; Zhang, M.; Ding, X.; Li, Y.; Geng, Q.; Zhu, C. Ultrahigh-activity immune inducer from endophytic fungi induces Tobacco resistance to virus by SA pathway and RNA silencing. BMC Plant Biol. 2020, 20, 169. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N. Multifaceted interactions between endophytes and plant: Developments and prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef]
- Sundin, G.W.; Castiblanco, L.F.; Yuan, X.; Zeng, Q.; Yang, C.H. Bacterial disease management: Challenges, experience, innovation and future prospects in molecular and plant pathology. Mol. Plant. Pathol. 2016, 17, 1506–1518. [Google Scholar] [CrossRef]
- Sharma, A.; Abrahamian, P.; Carvalho, R.; Choudhary, M.; Paret, M.L.; Vallad, G.E.; Jones, J.B. Future of bacterial disease management in crop production. Annu. Rev. Phytopathol. 2022, 60, 259–282. [Google Scholar] [CrossRef]
- Dey, P.; Barman, M.; Mitra, A.; Maiti, M.K. Lipid-rich endo-metabolites from a vertically transmitted fungal endophyte Penicillium sp. PM031 attenuate virulence factors of phytopathogenic Ralstonia solanacearum. Microbiol. Res. 2022, 261, 127058. [Google Scholar] [CrossRef]
- Jones, R.A.C. Global plant virus disease pandemics and epidemics. Plants 2021, 10, 233. [Google Scholar] [CrossRef]
- Tatineni, S.; Hein, G.L. Plant viruses of agricultural importance: Current and future perspectives of virus disease management strategies. Phytopathology 2023, 113, 117–141. [Google Scholar] [CrossRef]
- Lacerda, Í.C.D.S.; Polonio, J.C.; Golias, H.C. Endophytic fungi as a source of antiviral compounds—A review. Chem. Biodivers. 2022, 19, e202100971. [Google Scholar] [CrossRef]
- Douglas, A.E. Strategies for enhanced crop resistance to insect pests. Ann. Rev. Plant Biol. 2017, 69, 637–660. [Google Scholar] [CrossRef]
- Deguine, J.P.; Aubertot, J.N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Akello, J.; Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control. 2012, 61, 215–221. [Google Scholar] [CrossRef]
- Rondot, Y.; Reineke, A. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biol. Control 2018, 116, 82–89. [Google Scholar] [CrossRef]
- Mahmood, Z.; Steenberg, T.; Mahmood, K.; Labouriau, R.; Kristensen, M. Endophytic Beauveria bassiana in maize affects survival and fecundity of the aphid Sitobion avenae. Biol. Control 2019, 137, 104017. [Google Scholar] [CrossRef]
- Ramakuwela, T.; Hatting, J.; Bock, C.; Vega, F.E.; Wells, L.; Mbata, G.N.; Shapiro-Ilan, D. Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biol. Control 2020, 140, 104102. [Google Scholar] [CrossRef]
- Wang, X.; Yan, G.; Liu, W.; Chen, H.; Yuan, Q.; Wang, Z.; Liu, H. Endophytic Beauveria bassiana of Tomato resisted the damage from Whitefly Bemisia tabaci by mediating the accumulation of plant-specialized metabolites. J. Agric. Food Chem. 2023, 71, 13244–13254. [Google Scholar] [CrossRef]
- González-Mas, N.; Gutiérrez-Sánchez, F.; Sánchez-Ortiz, A.; Grandi, L.; Turlings, T.C.J.; Manuel Muñoz-Redondo, J.; Moreno-Rojas, J.M.; Quesada-Moraga, E. Endophytic colonization by the entomopathogenic fungus Beauveria bassiana affects plant volatile emissions in the presence or absence of chewing and sap-sucking insects. Front. Plant Sci. 2021, 12, 660460. [Google Scholar] [CrossRef]
- Lana, M.; Simón, O.; Velasco, P.; Rodríguez, V.M.; Caballero, P.; Poveda, J. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm (Spodoptera littoralis). Microbiol. Res. 2023, 270, 127334. [Google Scholar] [CrossRef]
- Darsouei, R.; Karimi, J.; Stelinski, L.L. Endophytic colonization of sugar beet by Beauveria varroae and Beauveria bassiana reduces performance and host preference in army worm, Spodoptera littoralis. Crop Prot. 2024, 175, 106441. [Google Scholar] [CrossRef]
- Batta, Y.A. Efficacy of endophytic and applied Metarhizium anisopliae (Metch.) Sorokin (Ascomycota: Hypocreales) against larvae of Plutella xylostella L. (Yponomeutidae: Lepidoptera) infesting Brassica napus plants. Crop Prot. 2013, 44, 128–134. [Google Scholar] [CrossRef]
- Biswas, C.; Dey, P.; Satpathy, S.; Satya, P.; Mahapatra, B.S. Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica 2013, 41, 17–21. [Google Scholar] [CrossRef]
- Castillo Lopez, D.; Zhu-Salzman, K.; Ek-Ramos, M.J.; Sword, G.A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 2014, 9, e103891. [Google Scholar] [CrossRef]
- Muvea, A.M.; Meyhöfer, R.; Subramanian, S.; Poehling, H.M.; Ekesi, S.; Maniania, N.K. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 2014, 9, e108242. [Google Scholar] [CrossRef] [PubMed]
- Lopez, D.C.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Chondrogiannis, C.; Grammatikopoulos, G. Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomol. Exp. Appl. 2015, 154, 78–87. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Wakil, W.; Arif, M.J.; Sahi, S.T.; Dunlap, C.A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 2015, 90, 200–207. [Google Scholar] [CrossRef]
- Gathage, J.W.; Lagat, Z.O.; Fiaboe, K.K.M.; Akutse, K.S.; Ekesi, S.; Maniania, N.K. Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. BioControl 2016, 61, 741–753. [Google Scholar] [CrossRef]
- Mutune, B.; Ekesi, S.; Niassy, S.; Matiru, V.; Bii, C.; Maniania, N.K. Fungal endophytes as promising tools for the management of Bean Stem Maggot Ophiomyia phaseoli on beans Phaseolus vulgaris. J. Pest Sci. 2016, 89, 993–1001. [Google Scholar] [CrossRef]
- Resquín-Romero, G.; Garrido-Jurado, I.; Delso, C.; Ríos-Moreno, A.; Quesada-Moraga, E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 2016, 136, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Starr, J.L.; Krumm, J.L.; Sword, G.A. The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiol. Ecol. 2016, 92, fiw158. [Google Scholar] [CrossRef] [PubMed]
- Dash, C.K.; Bamisile, B.S.; Keppanan, R.; Qasim, M.; Lin, Y.; Islam, S.U.I.; Hussain, M.; Wang, L. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 2018, 125, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R.; Araj, S.-E. Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol. Control. 2018, 116, 53–61. [Google Scholar] [CrossRef]
- Russo, M.L.; Scorsetti, A.C.; Vianna, M.F.; Allegrucci, N.; Ferreri, N.A.; Cabello, M.N.; Pelizza, S.A. Effects of endophytic Beauveria bassiana (Ascomycota: Hypocreales) on biological, reproductive parameters and food preference of the soybean pest Helicoverpa gelotopoeon. J. King Saud Univ. Sci. 2018, 31, 1077–1082. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Raya-Díaz, S.; Zamarreño, Á.M.; García-Mina, J.M.; del Campillo, M.C.; Quesada-Moraga, E. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol. Control. 2018, 116, 90–102. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Qasim, M.; Ramos Aguila, L.C.; Wang, F.; Keppanan, R.; Wang, L. Endophytic Beauveria bassiana in Foliar-Treated Citrus limon Plants Acting as a Growth Suppressor to Three Successive Generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects 2019, 10, 176. [Google Scholar] [CrossRef]
- González-Mas, N.; Sánchez-Ortiz, A.; Valverde-García, P.; Quesada-Moraga, E. Effects of endophytic entomopathogenic Ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 2019, 10, 165. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Lagogiannis, I. Endophytic colonization of Pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer). Appl. Sci. 2019, 9, 2239. [Google Scholar] [CrossRef]
- Russo, M.L.; Scorsetti, A.C.; Vianna, M.F.; Cabello, M.; Ferreri, N.; Pelizza, S. Endophytic effects of Beauveria bassiana on Corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 2019, 10, 110. [Google Scholar] [CrossRef]
- Mantzoukas, S.; Grammatikopoulos, G. The effect of three entomopathogenic endophytes of the sweet sorghum on the growth and feeding performance of its pest, Sesamia nonagrioides larvae, and their efficacy under field conditions. Crop. Prot. 2020, 127, 104952. [Google Scholar] [CrossRef]
- Wei, Q.Y.; Li, Y.Y.; Xu, C.; Wu, Y.X.; Zhang, Y.R.; Liu, H. Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod-Plant Interact. 2020, 14, 289–300. [Google Scholar] [CrossRef]
- Yogananda, T.; Ramanagouda, S.H.; Venkateshalu, B.; Jamunarani, G.S.; Rashmi, S.H.; Awati, M.; Hadimani, H.P. Colonization and endophytic effect of Beauveria bassiana (Bals.-Criv.) Vuill. UHSB-END1 against Myzus persicae (Sulzer) and Plutella xylostella (L.) in cabbage. Egypt. J. Biol. Pest Control 2023, 33, 47. [Google Scholar] [CrossRef]
- Sikora, R.A.; Claudius-Cole, B.; Coyne, E.J. Nematode parasites of food legumes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd ed.; Sikora, R.A., Coyne, D., Hallmann, J., Timper, P., Eds.; CABI Publishing: Wallingford, UK, 2018; pp. 290–345. [Google Scholar] [CrossRef]
- Phani, V.; Khan, M.R.; Dutta, T.K. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Zhou, W.; Wheeler, T.A.; Starr, J.L.; Valencia, C.U.; Sword, G.A. A Fungal endophyte defensive symbiosis affects plant-nematode interactions in cotton. Plant Soil 2018, 422, 251–266. [Google Scholar] [CrossRef]
- Poveda, J.; Abril-Urias, P.; Escobar, C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-N.; Sikora, R.A.; Zheng, J.-W. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J. Zhejiang Univ.-Sci. B Biomed. Biotechnol. 2011, 12, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yao, Y.; Chen, G.; Mao, Z.; Wang, X.; Xie, B. Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int. J. Pest Manag. 2014, 60, 239–245. [Google Scholar] [CrossRef]
- Bogner, C.W.; Kariuki, G.M.; Elashry, A.; Sichtermann, G.; Buch, A.K.; Mishra, B.; Thines, M.; Grundler, F.M.W.; Schouten, A. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Progress 2016, 15, 30. [Google Scholar] [CrossRef]
- Le, H.T.T.; Padgham, J.L.; Hagemann, M.H.; Sikora, R.A.; Schouten, A. Developmental and behavioural effects of the endophytic Fusarium moniliforme Fe14 towards Meloidogyne graminicola in rice. Ann. Appl. Biol. 2016, 169, 134–143. [Google Scholar] [CrossRef]
- Dutta, S.; Mondal, S.; Hazra, A.; Ghosh, S.; Panja, B.; Chakrabarti, M.; Mukherjee, A. Evaluation of root-gall associated fungal endophytes for the control of Meloidogyne graminicola infecting rice. Biol. Control 2023, 186, 105341. [Google Scholar] [CrossRef]
- Menjivar, R.D.; Hagemann, M.H.; Kranz, J.; Cabrera, J.A.; Dababat, A.A.; Sikora, R.A. Biological control of Meloidogyne incognita on cucurbitaceous crops by the non-pathogenic endophytic fungus Fusarium oxysporum strain 162. Int. J. Pest Manag. 2011, 57, 249–253. [Google Scholar] [CrossRef]
- Daneshkhah, R.; Cabello, S.; Rozanska, E.; Sobczak, M.; Grundler, F.M.W.; Wieczorek, K.; Hofmann, J. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. J. Exp. Bot. 2013, 64, 3763–3774. [Google Scholar] [CrossRef] [PubMed]
- Martinuz, A.; Schouten, A.; Sikora, R.A. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 2013, 58, 95–104. [Google Scholar] [CrossRef]
- Bajaj, R.; Hu, W.; Huang, Y.; Chen, S.; Prasad, R.; Varma, A.; Bushley, K.E. The beneficial root endophyte Piriformospora indica reduces egg density of the Soybean cyst nematode. Biol. Control 2015, 90, 193–199. [Google Scholar] [CrossRef]
- Martinuz, A.; Zewdu, G.; Ludwig, N.; Grundler, F.; Sikora, R.A.; Schouten, A. The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta 2015, 241, 1015–1025. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Brijesh Singh, S.; Murali, M.; Shilpa, N.; Prasad, M.; Aiyaz, M.; Amruthesh, K.N.; Niranjana, S.R. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol. Res. 2020, 234, 126422. [Google Scholar] [CrossRef]
- Murali, M.; Gowtham, H.G.; Brijesh Singh, S.; Shilpa, N.; Aiyaz, M.; Niranjana, S.R.; Amruthesh, K.N. Bio-prospecting of ACC deaminase producing rhizobacteria towards sustainable agriculture: A special emphasis on abiotic stress in plants. Appl. Soil Ecol. 2021, 168, 104142. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Duraivadivel, P.; Ayusman, S.; Sayani, D.; Gholap, S.L.; Niranjana, S.R.; Hariprasad, P. ABA analogue produced by Bacillus marisflavi modulates the physiological response of Brassica juncea L. under drought stress. Appl. Soil Ecol. 2021, 159, 103845. [Google Scholar] [CrossRef]
- Al-Turki, A.; Murali, M.; Omar, A.F.; Rehan, M.; Sayyed, R.Z. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Front. Microbiol. 2023, 14, 1214845. [Google Scholar] [CrossRef]
- Murali, M.; Brijesh Singh, S.; Gowtham, H.G.; Shilpa, N.; Prasad, M.; Aiyaz, M.; Amruthesh, K.N. Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR-Bacillus amyloliquefaciens through antioxidant defense system. Microbiol. Res. 2021, 253, 126891. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Nataraj, K.; Udayashankar, A.C.; Amruthesh, K.N.; Murali, M.; Poczai, P.; Gafur, A.; et al. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- González-Teuber, M.; Urzúa, A.; Plaza, P.; Bascuñán-Godoy, L. Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress. Plant Ecol. 2018, 219, 231–240. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Hou, L.; Ren, Y.; Wang, S.; Su, F. Dark Septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci. Rep. 2018, 8, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, X.-L.; Zhou, Y.; Hou, Y.-T.; Zuo, Y.-L. Effects of dark septate endophytes on the performance of Hedysarum scoparium under water deficit stress. Front. Plant Sci. 2019, 10, 903. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, X. Dark septate endophyte improves the drought-stress resistance of Ormosia hosiei seedlings by altering leaf morphology and photosynthetic characteristics. Plant Ecol. 2021, 222, 761–771. [Google Scholar] [CrossRef]
- Ghabooli, M.; Khatabi, B.; Ahmadi, F.S.; Sepehri, M.; Mirzaei, M.; Amirkhani, A.; Jorrin-Novo, J.V.; Salekdeh, G.H. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J. Proteom. 2013, 94, 289–301. [Google Scholar] [CrossRef]
- Ghaffari, M.R.; Mirzaei, M.; Ghabooli, M.; Khatabi, B.; Wu, Y.; Zabet-Moghaddam, M.; Mohammadi-Nejad, G.; Haynes, P.A.; Hajirezaei, M.R.; Sepehri, M.; et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ. Exp. Bot. 2019, 157, 197–210. [Google Scholar] [CrossRef]
- Miranda, V.; Silva-Castro, G.A.; Ruiz-Lozano, J.M.; Fracchia, S.; García-Romera, I. Fungal endophytes enhance wheat and tomato drought tolerance in terms of plant growth and biochemical parameters. J. Fungi 2023, 9, 384. [Google Scholar] [CrossRef]
- Nagabhyru, P.; Dinkins, R.D.; Wood, C.L.; Bacon, C.W.; Schardl, C.L. Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol. 2013, 13, 127. [Google Scholar] [CrossRef]
- Dastogeer, K.M.G.; Li, H.; Sivasithamparam, K.; Jones, M.G.K.; Wylie, S.J. Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environ. Exp. Bot. 2018, 149, 95–108. [Google Scholar] [CrossRef]
- Prema Sundara Valli, P.; Muthukumar, T. Dark septate root endophytic fungus Nectria haematococca improves tomato growth under water limiting conditions. Indian J. Microbiol. 2018, 58, 489–495. [Google Scholar] [CrossRef]
- He, C.; Wang, W.; Hou, J. Plant growth and soil microbial impacts of enhancing licorice with inoculating dark septate endophytes under drought stress. Front. Microbiol. 2019, 10, 2277. [Google Scholar] [CrossRef]
- He, C.; Wang, W.; Hou, J.; Li, X. Dark septate endophytes isolated from wild licorice roots grown in the desert regions of northwest China enhance the growth of host plants under water deficit stress. Front. Microbiol. 2021, 12, 522449. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.S.H.; Safaie, N.; Soltani, J.; Hagh-Doust, N. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol. Biochem. 2021, 160, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Javed, J.; Rauf, M.; Arif, M.; Hamayun, M.; Gul, H.; Ud-Din, A.; Ud-Din, J.; Sohail, M.; Rahman, M.M.; Lee, I.-J. Endophytic fungal consortia enhance basal drought-tolerance in Moringa oleifera by upregulating the antioxidant enzyme (APX) through Heat Shock Factors. Antioxidants 2022, 11, 1669. [Google Scholar] [CrossRef] [PubMed]
- Jan, G.F.; Hamayun, M.; Hussain, A.; Jan, G.; Iqbal, A.; Khan, A.; Lee, I.-J. An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol. 2019, 19, 3. [Google Scholar] [CrossRef]
- Lubna; Khan, M.A.; Asaf, S.; Jan, R.; Waqas, M.; Kim, K.-M.; Lee, I.-J. Endophytic fungus Bipolaris sp. CSL-1 induces salt tolerance in Glycine max L. via modulating its endogenous hormones, antioxidative system and gene expression. J. Plant Interact. 2022, 17, 319–332. [Google Scholar] [CrossRef]
- Siddiqui, Z.S.; Wei, X.; Umar, M.; Abideen, Z.; Zulfiqar, F.; Chen, J.; Hanif, A.; Dawar, S.; Dias, D.A.; Yasmeen, R. Scrutinizing the application of saline endophyte to enhance salt tolerance in rice and maize plants. Front. Plant Sci. 2022, 12, 770084. [Google Scholar] [CrossRef]
- Khan, A.L.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Jung, H.-Y.; Lee, J.-H.; Lee, I.-J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol. 2012, 12, 3. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Khan, A.L.; Lee, I.-J. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J. Microbiol. 2013, 51, 850–857. [Google Scholar] [CrossRef]
- Ali, R.; Gul, H.; Rauf, M.; Arif, M.; Hamayun, M.; Husna; Khilji, S.A.; Ud-Din, A.; Sajid, Z.A.; Lee, I.-J. Growth-promoting endophytic fungus (Stemphylium lycopersici) ameliorates salt stress tolerance in maize by balancing ionic and metabolic status. Front. Plant Sci. 2022, 13, 890565. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, M.; Khatabi, B.; Sepehri, M.; Nekouei, M.K.; Mardi, M.; Salekdeh, G.H. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol. BioSyst. 2013, 9, 1498. [Google Scholar] [CrossRef]
- Ghaffari, M.R.; Ghabooli, M.; Khatabi, B.; Hajirezaei, M.R.; Schweizer, P.; Salekdeh, G.H. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol. 2016, 90, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Tomilova, O.G.; Kryukova, N.A.; Efimova, M.V.; Kolomeichuk, L.V.; Kovtun, I.S.; Glupov, V.V. The endophytic entomopathogenic fungus Beauveria bassiana alleviates adverse effects of salt stress in potato plants. Horticulturae 2023, 9, 1140. [Google Scholar] [CrossRef]
- Farias, G.C.; Nunes, K.G.; Soares, M.A.; de Siqueira, K.A.; Lima, W.C.; Neves, A.L.R.; de Lacerda, C.F.; Filho, E.G. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Braz. J. Microbiol. 2020, 51, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Molina-Montenegro, M.A.; Acuña-Rodríguez, I.S.; Torres-Díaz, C.; Gundel, P.E.; Dreyer, I. Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration. Sci. Rep. 2020, 10, 5819. [Google Scholar] [CrossRef] [PubMed]
- Bouzouina, M.; Kouadria, R.; Lotmani, B. Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. J. Appl. Microbiol. 2021, 130, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, N.; Manjunatha, N.; Li, H.; Sivasithamparam, K.; Jones, M.G.K.; Edwards, I.; Wylie, S.J.; Agarrwal, R. Fungal endophytes from salt-adapted plants confer salt tolerance and promote growth in wheat (Triticum aestivum L.) at early seedling stage. Microbiology 2022, 168, 001225. [Google Scholar] [CrossRef]
- Meshram, V.; Elazar, M.; Maymon, M.; Sharma, G.; Shawahna, R.; Charuvi, D.; Freeman, S. Endophytic Fusarium clavum confers growth and salt tolerance in Cucumis melo. Environ. Exp. Bot. 2023, 206, 105–153. [Google Scholar] [CrossRef]
- Ismail; Hamayun, M.; Hussain, A.; Afzal Khan, S.; Iqbal, A.; Lee, I.J. Aspergillus flavus promoted the growth of soybean and sunflower seedlings at elevated temperature. BioMed Res. Int. 2019, 2019, 1295457. [Google Scholar] [CrossRef]
- Ali, A.H.; Abdelrahman, M.; Radwan, U.; El-Zayat, S.; El-Sayed, M.A. Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl. Soil Ecol. 2018, 124, 155–162. [Google Scholar] [CrossRef]
- Ali, A.H.; Radwan, U.; El-Zayat, S.; El Sayed, M.A. The role of the endophytic fungus, Thermomyces lanuginosus, on mitigation of heat stress to its host desert plant Cullen plicata. Biol. Futura 2019, 70, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ismail; Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Lee, I.-J. Aspergillus niger boosted heat stress tolerance in sunflower and soybean via regulating their metabolic and antioxidant system. J. Plant Interact. 2020, 15, 223–232. [Google Scholar] [CrossRef]
- Ismail; Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Lee, I.-J. Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Res. Int. 2018, 2018, 7696831. [Google Scholar] [CrossRef]
- Jiang, W.; Pan, R.; Buitrago, S.; Wu, C.; Abdelaziz, M.E.; Oelmüller, R.; Zhang, W. Transcriptome analysis of Arabidopsis reveals freezing-tolerance related genes induced by root endophytic fungus Piriformospora indica. Physiol. Mol. Biol. Plants 2021, 27, 189–201. [Google Scholar] [CrossRef]
- Li, D.; Bodjrenou, D.M.; Zhang, S.; Wang, B.; Pan, H.; Yeh, K.-W.; Lai, Z.; Cheng, C. The Endophytic Fungus Piriformospora indica Reprograms Banana to Cold Resistance. Int. J. Mol. Sci. 2021, 22, 4973. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Li, T.; Liu, G.-Y.; Smith, J.M.; Zhao, Z.-W. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological and genic aspects. Sci. Rep. 2016, 6, 22028. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Xu, Z.; Yang, Y.; Zhang, H.; Chen, H.; Tang, M. Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere 2017, 27, 283–292. [Google Scholar] [CrossRef]
- Zhu, L.; Li, T.; Wang, C.; Zhang, X.; Xu, L.; Xu, R.; Zhao, Z. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd Stress. Environ. Sci. Pollut. Res. 2018, 25, 35232–35241. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zeng, Y.; Li, X.; Perumal, A.B.; Zhu, J.; Lu, X.; Dai, M.; Liu, X.; Lin, F. The endophytic fungus Piriformospora indica-assisted alleviation of cadmium in Tobacco. J. Fungi 2021, 7, 675. [Google Scholar] [CrossRef]
- Musa, M.; Jan, F.G.; Hamayun, M.; Jan, G.; Khan, S.A.; Rehman, G.; Ali, S.; Lee, I.-J. An endophytic fungal isolate Paecilomyces lilacinus produces bioactive secondary metabolites and promotes growth of Solanum lycopersicum under heavy metal stress. Agronomy 2023, 13, 883. [Google Scholar] [CrossRef]
- Yamaji, K.; Watanabe, Y.; Masuya, H.; Shigeto, A.; Yui, H.; Haruma, T. Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS ONE 2016, 11, e0169089. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Liu, G.; Liao, R.; Song, J.; Zhang, H. Endophytic fungus Purpureocillium sp. A5 protect mangrove plant Kandelia candel under copper stress. Braz. J. Microbiol. 2017, 48, 530–536. [Google Scholar] [CrossRef]
- Ikram, M.; Ali, N.; Jan, G.; Jan, F.G.; Rahman, I.U.; Iqbal, A.; Hamayun, M. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS ONE 2018, 13, e0208150. [Google Scholar] [CrossRef]
- Malik, A.; Butt, T.A.; Naqvi, S.T.A.; Yousaf, S.; Qureshi, M.K.; Zafar, M.I.; Farooq, G.; Nawaz, I.; Iqbal, M. Lead tolerant endophyte Trametes hirsuta improved the growth and lead accumulation in the vegetative parts of Triticum aestivum L. Heliyon 2020, 6, e04188. [Google Scholar] [CrossRef]
- Xiao, Y.; Dai, M.-X.; Zhang, G.-Q.; Yang, Z.-X.; He, Y.-M.; Zhan, F.-D. Effects of the dark septate endophyte (DSE) Exophiala pisciphila on the growth of root cell wall polysaccharides and the cadmium content of Zea mays L. under cadmium stress. J. Fungi 2021, 7, 1035. [Google Scholar] [CrossRef]
- Brijesh Singh, S.; Gowtham, H.G.; Murali, M.; Hariprasad, P.; Lakshmeesha, T.R.; Narasimha Murthy, K.; Amruthesh, K.N.; Niranjana, S.R. Plant growth promoting ability of ACC deaminase producing rhizobacteria native to Sunflower (Helianthus annuus L.). Biocatal. Agric. Biotechnol. 2019, 18, 101089. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Plant responses and tolerance to salt stress: Physiological and molecular interventions. Int. J. Mol. Sci. 2022, 23, 4810. [Google Scholar] [CrossRef]
- Bomle, D.V.; Kiran, A.; Kumar, J.K.; Nagaraj, L.S.; Pradeep, C.K.; Ansari, M.A.; Alghamdi, S.; Kabrah, A.; Assaggaf, H.; Dablool, A.S.; et al. Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. Int. J. Mol. Sci. 2021, 22, 11461. [Google Scholar] [CrossRef]
- Valizadeh-Kamran, R.; Toorchi, M.; Mogadam, M.; Mohammadi, H.; Pessarakli, M. Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. J. Plant Nutr. 2018, 41, 102–111. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Bioresour. Technol. 2021, 339, 125589. [Google Scholar] [CrossRef]
- Zheng, J.; Xie, X.; Li, C.; Wang, H.; Yu, Y.; Huang, B. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Int. J. Phytoremediation 2023, 25, 1596–1613. [Google Scholar] [CrossRef]
- Sarsaiya, S.; Jain, A.; Jia, Q.; Fan, X.; Shu, F.; Chen, Z.; Zhou, Q.; Shi, J.; Chen, J. Molecular identification of endophytic fungi and their pathogenicity evaluation against Dendrobium nobile and Dendrobium officinale. Int. J. Mol. Sci. 2020, 21, 316. [Google Scholar] [CrossRef] [PubMed]
- Azuddin, N.F.; Mohd, M.H.; Nik Rosely, N.F.; Mansor, A.; Zakaria, L. Evaluation of the pathogenicity of endophytic fungi isolated from spines of rattan (Calamus castaneus) against other plant hosts. J. Appl. Microbiol. 2022, 133, 3228–3238. [Google Scholar] [CrossRef] [PubMed]
- Azuddin, N.F.; Mohamad Noor Azmy, M.S.; Zakaria, L. Molecular identification of endophytic fungi in lawn grass (Axonopus compressus) and their pathogenic ability. Sci. Rep. 2023, 13, 4239. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Batista, B.D.; Bazany, K.E.; Singh, B.K. Plant-microbiome interactions under a changing world: Responses, consequences and perspectives. New Phytol. 2022, 234, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Eugui, D. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol. Control 2022, 176, 105100. [Google Scholar] [CrossRef]
- Xie, L.; Bi, Y.; Ma, S.; Shang, J.; Hu, Q.; Christie, P. Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: Synergistic or competitive growth effects on maize? BMC Plant Biol. 2021, 21, 498. [Google Scholar] [CrossRef] [PubMed]
Endophytic Fungi | Host | Role in Pathogen Control | Role in Host Plant | Reference |
---|---|---|---|---|
Fungal pathogens | ||||
B. bassiana | S. lycopersicum | Biocontrol of A. alternata and B. cinerea | Colonized the plants, improved plant growth, and inhibited disease development | [31] |
Aspergillus calidoustous, Diaporthe phaseolorum, P. citrinum and T. asperellum | Elaeisguineensis | Antagonistic nature towards Ganoderma boninense | Showed the most rapid colonization and compatibility, produced volatiles and non-volatiles along with competitive exclusion | [35] |
M. brunneum and Beauveria bassiana | Capsicum annuum | Biocontrol of F. culmorum, F. moniliforme, and F. oxysporum | Inhibited Fusarium spp. growth, showed competition for resources or niche, antibiosis, colonized plants, reduced crown and root rot disease severity and incidence with improved plant growth | [36] |
Serendipita indica | Musa acuminata | Biocontrol of F. oxysporum | Improved the plant resistance to F. oxysporum and increased the activities of ascorbate, CAT, GR, SOD, and POD enzymes | [37] |
A. terreus | Zingiber officinale | Biocontrol of Colletotrichum gloeosporioides | Colonized the same ecological niche and produced a bioactive metabolite, terrein, against C. gloeosporioides | [39] |
B. bassiana | Vitis vinifera | Protective potential against Plasmoparaviticola | Achieved the highest plant colonization percentage, significantly reduced downy mildew disease severity, and upregulated diverse defense-related genes in plants | [40] |
H. rubiginosum | F. excelsior | Biological control of H. fraxineus | Inhibited H. fraxineus, reduced dieback disease symptoms in seedlings, produced antifungal metabolites such as phomopsidin and 10-hydroxyphomopsidin | [41] |
A. insulicola and A. melleus | C. sativus | Antagonistic activity against P. aphanidermatum | Suppressed P. aphanidermatum growth through damage of hyphal wall, increased electrolyte leakage, produced cellulase and β-glucanase enzymes, increased plant shoot length and dry mass | [42] |
Metarhiziumrobertsii | Phaseolus vulgaris | Biocontrol of F. solani | Colonized the plants, showed antagonism, inhibited conidial germination and growth, produced heat-stable inhibitory metabolite, showed lower disease indices and better plant growth | [43] |
Acremonium sp., Leptosphaeria sp., P. simplicissimum and Talaromyces flavus | Gossypium hirsutum | Biocontrol of against Verticillium dahliae | Decreased Verticillium wilt disease index and incidence, improved cotton bolls and cotton yield, increased transcript levels for POD, PPO, and PAL | [44] |
M. brunneum and B. bassiana | Triticum aestivum | Control of F. culmorum infection | Systemically colonized plant roots and shoots, promoted plant growth parameters, significantly reduced crown and root rot disease severity and incidence | [45] |
Purpureocillium lilacinum | P. vulgaris | Biocontrol of Sclerotinia sclerotiorum | Significantly reduced S. sclerotiorum disease severity through prevention of sclerotia formation, mycelial growth, and myceliogenic and carpogenic germination; increased cell membrane permeability and lipid peroxidation of S. sclerotiorum mycelia; decreased oxalic acid; and improved POD, PPO, and PAL activity in plants | [46] |
P. brefeldianum | Cucumis melo | Biocontrol of F. oxysporum | Showed antifungal effects and reduced Fusarium wilt disease severity, produced major bioactive compound brefeldin A, and dramatically increased the population of P. brefeldianum in plants | [47] |
B. bassiana | C. annuum and Solanum lycopersicum | Antagonistic activity against Botrytis cinerea | Internally colonized different plant parts and showed antagonism | [48] |
T. asperellum, T. hamatum, and T. harzianum | Sweet corn | Biocontrol of Exserohilum turcicum | Controlled northern corn leaf blight disease by showing potent competitive and effective antifungal activity | [49] |
T. asperellum | Z. mays | Biocontrol of E. turcicum | Encircled E. turcicum hyphae effectively, reinforced antagonistic behavior, enhanced seed germination, improved plant growth, and suppressed E. turcicum infection | [50] |
Bacterial pathogens | ||||
Acrocalymma sp., Fusarium sp., Curvularia sp., Phialocephala, Setophoma/Edenia and Trichoderma sp. | Brassica oleracea | Powerful defensive capacity against Xanthomonas campestris | Decreased the damage caused by pathogenic bacteria, reduced the disease incidence, and activated plant systemic resistance against X. campestris | [51] |
P. indica | A. andraeanum | Strong potential against R. solanacearum | Extensively colonized the plant roots, shortened Anthurium recovery period, promoted plant growth, conferred disease resistance, induced faster elongation of Anthurium roots, exhibited higher photosynthesis rate, and increased phosphate absorption, activities of antioxidative enzymes, and relative expressions of ERF, LOX, VSP, NPR1, PR1, and PR5 | [52] |
F. solani and T. asperellum | C. annuum | Biocontrol of R. solanacearum | Reduced bacterial wilt development, increased crop yield, and enhanced enzyme activities (POD, β-1,3-glucanase, PAL and PPO) and total phenols | [53] |
F. lateritium | N. benthamiana | Conferred resistance to R. solanacearum | Secreted novel protein [Fusarium-lateritium-Secreted-Protein (FlSp1)], reduced the fungal colonization, enhanced plant resistance, and regulated plant ROS burst and immune system | [54] |
Viral pathogens | ||||
B. bassiana | Cucurbita pepo | Conferred protection against Zucchini yellow mosaic virus | Successfully colonized plants, significantly lowered disease incidence and severity | [55] |
Hypocrea lixii | Allium cepa | Biocontrol of Iris yellow spot virus | Endophytically colonized plants, significantly lowered disease level, reduced replication of Iris yellow spot virus | [56] |
M. anisopliae and T. harzianum | Z. mays | Protective role against Sugarcane mosaic virus | Colonized plant tissues, reduced Sugarcane mosaic virus disease severity and virus titer levels | [57] |
P. variotii | N. benthamiana | Resistance to Potato X virus | Exhibited the antiviral activity of plant immune inducers like ZhiNengCong on plant, induced ROS accumulation, increased salicylic acid content, upregulated PAL gene expression, activated salicylic acid signaling pathway, and promoted RNA silencing | [58] |
Fungal Endophyte | Host Plant | Role in Pest Control | Role in Host Plant | Reference |
---|---|---|---|---|
B. bassiana | S. lycopersicum | Control of Macrosiphum euphorbiae | Colonized the plants, promoted plant growth, and significantly reduced survival and fertility of M. euphorbiae | [31] |
Fusarium sp., Setophoma/Edenia and Curvularia sp. | B. oleracea | Conferred resistance towards Mamestrabrassicae larvae | Activated plants’ systemic resistance against M. brassicae through decrease in damage index as noted through decreased leaf area consumption by the larvae | [51] |
Hypocrea lixi | A. cepa | Control of T. tabaci | Colonized the plants and significantly lowered the number of feeding punctures | [56] |
B. bassiana, Gibberella moniliformis, H. lixi, M. anisioplaie and T. asperellum | Vicia faba | Control of Aphis fabae and Acyrthosiphonpisum | Significantly lowered nymph number in A. fabae and A. pisum, exhibited detrimental effect on offspring fitness, fecundity, and development along with enhanced seedling survivorship | [68] |
B. bassiana | V. vinifera | Control of Empoascavitis and Planococcusficus | Reduced infestation rate and growth of E. vitis and P. ficus | [69] |
B. bassiana | Z. mays | Control of Sitobion avenae population | Colonized the plant significantly and reduced the survival and fecundity of S. avenae | [70] |
B. bassiana | Carya illinoinensis | Control of Galleria mellonella, Tenebrio molitor, Curculio caryae, Melanocallis caryaefoliae, and Monellia caryella | Colonized seedlings, established in different plant parts, retained pathogenicity against G. mellonella, T. molitor, and C. caryae and significantly reduced the population of both M. caryaefoliae and M. caryella | [71] |
B. bassiana | S. lycopersicum | Conferred resistance against B. tabaci | Inhibited the reproduction of B. tabaci, stimulated plant defenses and induced systemic resistance, and activated metabolic pathways (viz., tryptophan, flavonoids, and alkaloids) in plants | [72] |
B. bassiana and B. varroae | B. vulgaris | Control of S. littoralis | Colonization rate increased over the time, which helped in the enhancement of plant growth and reduced S. littoralis larval weight gain, decreased lipase and protease activity in S. littoralis gut, and reduced survival of S. littoralis pupae and eggs laid by female moths | [75] |
M. anisopliae | Brassica napus | Control of Plutella xylostella larvae | Colonized the internal tissues of plants and showed significant differences in the mean % P. xylostella larval mortality | [76] |
B. bassiana | Corchorus capsularis | Control of Apioncorchori | Colonized plant leaves showed the highest colonization frequency and reduced A. corchori infestation | [77] |
P. lilacinum and B. bassiana | G. hirsutum | Control of A. gossypii | Colonized the plant, negatively affected the reproduction of A. gossypii, and significantly lowered the number of A. gossypii on plants | [78] |
H. lixii, Clonostachys rosea, Fusarium sp., T. asperellum, T. harzianum and T. atroviride | A. cepa | Effects on Thrips tabaci | Colonized the plants effectively with higher mean percentage recovery, significantly lowered the number of feeding punctures and eggs laid by adult T. tabaci | [79] |
B. bassiana and P. lilacinum | G. hirsutum | Control of Helicoverpa zea larvae | Colonized plants, enhanced plant growth, and reduced the survival and development of H. zea larvae | [80] |
B. bassiana, Isaria fumosorosea, and M. robertsii | Sorghum bicolor | Control of of Sesamia nonagrioides larvae | Prevented S. nonagrioides larvae from entering stalks, reduced larval mortality and tunnel lengths, and protected plants from damage | [81] |
B. bassiana | S. lycopersicum | Control of Helicoverpa armigera | Colonized the seedlings and achieved the highest larval mortality of H. armigera and reduced the effect of H. armigera | [82] |
B. bassiana and H. lixii | P. vulgaris | Control of Liriomyza leafminer flies (like L. huidobrensis, L. trifolii, and L. sativae) | Colonized different parts of the plant and showed lower leafminer infestation, varied mean pupae number from infested leaves, and higher seed yield | [83] |
M. anisopliae | Control of Ophiomyia phaseoli | Colonized different plant parts, significantly reduced the feeding and oviposition and number of pupae and adult emergence of O. phaseoli | [84] | |
B. bassiana and M. brunneum | C. melo, Lycopersicon esculentum and Medicago sativa | Control of S. littoralis larvae | Colonized the plant and offered a high S. littoralis larval mortality rate | [85] |
Chaetomium globosum | G. hirsutum | Control of A. gossypii and S. exigua | Negatively affected the reproduction, development, and fecundity of both cotton A. gossypii and S. exigua | [86] |
Lecanicillium lecanii, I. fumosorosea and B. bassiana | P. vulgaris | Control of Tetranychus urticae | Colonized the plant; increased plant height and fresh weight; and reduced larval survivorship, development, adult longevity, female fecundity, and reproduction of T. urticae | [87] |
M. brunneum and B. bassiana | Capsicum annum | Control of Aphidius colemani and Myzus persicae | Colonized different plant parts, enhanced several plant growth parameters, and controlled development, fecundity, and reproduction of A. colemani and M. persicae | [88] |
B. bassiana | Glycine max | Control of Helicoverpa gelotopoeon | Protected plants against H. gelotopoeon; significantly reduced mean duration of larval stages, adult stages, and total life cycle duration; reduced oviposition period, fertility, and fecundity of H. gelotopoeon; and reduced leaf consumption by H. gelotopoeon | [89] |
T. aestivum and T. durum | Control of S. littoralis larvae | Successfully established within and colonized the plants, boosted spike production in plants, and increased grain yield and plant root length with significant higher mortality in S. littoralis larvae | [90] | |
Citrus limon | Control of Diaphorina citri | Successfully colonized the seedlings; improved plant height and flush production; caused adult mortality and egg production; and reduced D. citri adult emergence | [91] | |
M. brunneum and B. bassiana | C. melo | Control of A. gossypii | Colonized the plants, offered higher mortality and fecundity on A. gossypii | [92] |
M. anisopliae, I. fumosorosea, and B. bassiana | C. annum | Control of M. persicae | Affected mortality and population of M. persicae in planta, caused feeding disorders and disrupted reproduction cycle | [93] |
B. bassiana | Z. mays | Control of Rachiplusia nu | Colonized plants; increased percentages of seed germination, plant height, leaf number, grain weight, and yield; and significantly affected leaf area consumed by R. nu larvae | [94] |
M. robertsii, I. fumosorosea, and B. bassiana | S. bicolor | Control of S. nonagrioides larvae | Induced S. nonagrioides larval mortality and decreased their relative growth rate, infestation, and tunneling length; showed relatively higher virulence; decreased food consumption and feces produced by S. nonagrioides larvae; and slightly changed the digestibility | [95] |
B. bassiana | S. lycopersicum | Conferred resistance against Bemisia tabaci | Effectively colonized plants, uniformly distributed among plant parts, and promoted plant growth | [96] |
B. bassiana | B. oleracea | Control of P. xylostella and M. persicae | Highly colonized sites of fungal exposure inside plants, showed maximum mortality of P. xylostella and M. persicae | [97] |
Fungal Endophyte | Host Plant | Nematode Control | Role in Host Plant | Reference |
---|---|---|---|---|
P. brefeldianum | C. melo | Biocontrol of M. incognita | Showed anti-nematodal activity, significantly reduced the gall numbers, produced the major bioactive compound brefeldin A, dramatically increased the population of P. brefeldianum on plants, and caused higher accumulation of brefeldin A in plant roots | [47] |
C. globosum | G. hirsutum | Biocontrol of M. incognita | Inhibited M. incognita infection and reduced female reproduction | [86] |
Phialemonium inflatum | Biocontrol of M. incognita | Reduced root penetration by juvenile M. incognita, significantly suppressed M. incognita galling of roots and egg production and improved plant growth | [100] | |
Fusarium spp., Chaetomium sp., Acremonium sp., Trichoderma sp., Phyllosticta sp., and Paecilomyces sp. | C. sativus | Biocontrol of M. incognita | Decreased gall number, produced nematodes and compounds to affect the motility of second stage of M. incognita juveniles, highly colonized roots and aboveground parts of seedlings | [102] |
Acremonium implicatum | Lycopersicon eseulentum | Biocontrol potential of M. incognita | Inhibited second stage of M. incognita juveniles, suppressed egg hatching, inhibited root gall formation, reduced M. incognita population in soil, and showed lower root gall index of plants | [103] |
T. asperellum, F. solani and F. oxysporum | S. lycopersicum | Biocontrol of M. incognita | Reduced penetration, galling, and reproduction of M. incognita and decreased egg density of M. incognita | [104] |
F. moniliforme | O. sativa | Antagonistic activity against M. graminicola | Decreased M. graminicola penetration into plant roots and enhanced male-to-female ratio, reduced M. graminicola invasion, and showed repellent effect on nematode movement | [105] |
A. niger | O. sativa | Biocontrol of M. graminicola | Exhibited 100% juvenile mortality of M. graminicola; showed ovicidal property; reduced egg hatching; significantly showed lower number of M. graminicola juveniles; decreased root galling index, number of juveniles penetrating the root, and reproduction; triggered plant defense responses; and indirectly provided protection against M. graminicola infection | [106] |
F. oxysporum | C. pepo and C. melo | Biocontrol of Meloidogyne incognita | Decreased early plant root penetration of M. incognita | [107] |
P. indica | Arabidopsis thaliana | Antagonistic potential against Heterodera schachtii | Colonized plant roots and significantly affected the vitality, infectivity, reproduction and development of H. schachtii | [108] |
F. oxysporum and Rhizobium etli | S. lycopersicum | Biocontrol of M. incognita | Enhanced plant resistance toward M. incognita, decreased number of eggs and juveniles of M. incognita, and reduced root penetration, reproduction, and development of M. incognita | [109] |
P. indica | G. max | Biocontrol oft H. glycines | Significantly decreased egg population density of H. glycines, showed strong growth- and yield-promoting effects on G. max, increased shoot biomass, accelerated plant development, and increased flowering | [110] |
F. oxysporum | A. thaliana | Biocontrol of M. incognita | Colonized plant roots without causing disease symptoms, systemically reduced M. incognita infection development and fecundity, promoted plant growth, and significantly decreased number of M. incognita juveniles and galls produced | [111] |
Endophytic Fungi | Host | Role in Host Plant | Reference |
---|---|---|---|
Drought stress | |||
P. minioluteum | Chenopodium quinoa | Colonized plants, affected growth of radicles, improved the formation of roots, and increased plant resistance and positive nature of plant–symbiont interaction | [118] |
Darksidea strain, Knufia sp., and Leptosphaeria sp. | Ammopiptanthus mongolicus | The endophyte formed a strain-dependent symbiotic relationship with plants and increased the total plant biomass | [119] |
Embellisia chlamydospora, Knufia sp., Leptosphaeria sp., and Phialophora sp. | Hedysarum scoparium | Successfully colonized plant roots, established a positive symbiosis with host plants, and increased total plant biomass, antioxidant enzyme activities, and nutrient content | [120] |
Acrocalymma vagum | Ormosia hosiei | Enhanced leaf morphology and anatomical structure, stomatal conductance, transpiration rate, net photosynthetic rate, and pigment content; lowered the intracellular CO2 concentration; and preserved mitochondria, chloroplasts, and cell membrane | [121] |
P. indica | H. vulgare | Colonized and increased the plant biomass and accumulated proteins involved in ROS scavenging, photosynthesis, plant defense responses, and signal transduction | [122] |
P. indica | H. vulgare | Colonized plant roots; increased activity of electron transfer chain and photosystem; accumulated proteins responsible for primary metabolism, energy modulation, photorespiration, autophagy, and transporters; and altered host’s amino acid metabolism | [123] |
Z. erostrata | S. lycopersicum and T. aestivum | Profusely formed melanized mycelium in rhizosphere, exhibited higher tolerance to drought, improved nutrient mineralization and water uptake, enhanced plant biomass production, induced accumulation of proline, and decreased lipid peroxide accumulation | [124] |
Neotyphodium coenophialum | Lolium arundinaceum | Caused significantly greater tillering and survival of re-watered plants, higher levels of free fructose, glucose, trehalose, glutamic acid, proline, and sugar alcohols in plants and increased fungal metabolites such as alkaloids, mannitol, and loline | [125] |
Ascomycota sp. and Cladosporium cladosporioides | N. benthamiana | Colonized and enhanced plant tolerance; delayed wilting of shoot tips; increased relative water content, plant biomass, proline, soluble protein, soluble sugar, and activity of antioxidant enzymes (such as PPO, POD, and CAT); reduced ROS production and electrical conductivity; and upregulated drought-defense-related genes | [126] |
Nectria haematococca | S. lycopersicum | Significantly improved plant growth parameters, induced drought stress tolerance, and significantly enhanced proline accumulation in shoots | [127] |
A. vagum, F. acuminatum and Paraboeremia putaminum | Glycyrrhiza uralensis | Colonized and formed strain-dependent symbiosis with plants; increased plant biomass and glycyrrhizin content; improved plant root development, nutrient absorption, photosynthetic and antioxidant parameters; and altered the soil microbiota | [128] |
A. chlamydospora and Preussia terricola | G. uralensis | Colonized the plant roots, increased the total plant biomass and root biomass; and caused higher available nitrogen, soil organic matter, and glycyrrhizic acid contents | [129] |
Neocamarosporium sp. and Periconia macrospinosa | C. sativus and S. lycopersicum | Improved plant growth, chlorophyll, proline content, and antioxidant enzymatic activities | [130] |
A. aculeatus, Meyerozyma guilliermondi and Microdochium majus | Moringa oleifera | Improved plant growth attributes, total chlorophyll, carotenoids, and primary and secondary metabolites; decreased abscisic acid level; increased activity of antioxidant enzymes, viz., CAT, APX, and total antioxidant capacity; reduced ROS production; caused larger stomatal aperture and lesser decrease in water potential; and upregulated MolAPX, MolHSF3, and MolHSF19 gene expression | [131] |
Salt stress | |||
Neocamarosporium sp. and P. macrospinosa | C. sativus and S. lycopersicum | Enhanced plant growth, chlorophyll, proline, and antioxidant enzymatic activity | [130] |
Y. lipolytica | Z. mays | Significantly promoted plant growth attributes, like higher chlorophyll and carotenoid contents, reduced electrolyte leakage, higher relative water content of seedlings, lower endogenous abscisic acid, and higher endogenous indole acetic acid, and significantly controlled production of proline, CAT, and POD | [132] |
Bipolaris sp. | G. max | Produced organic acids, like indole acetic acid and gibberellins; showed salt stress resistance; enhanced plant length, weight, and chlorophyll; increased salicylic acid; decreased endogenous abscisic acid; caused higher level of antioxidants and oxidative stress markers, viz., PPO, POD, superoxide anion, and malondialdehyde; improved plant resistance to NaCl stress; and decreased GmFDL19, GmNARK, and GmSIN1 expression levels | [133] |
A. terreus | O. sativa and Z. mays | Substantially increased plant biomass, relative water content, photochemical efficiency, and oxidative balance; enhanced gibberellic acid concentration; upregulated photosynthesis and antioxidant defense cascade; downregulated oxidative damage markers, like hydrogen peroxide and malondialdehyde; and displayed positive plant–microbe interaction | [134] |
Paecilomyces formosus | C. sativus | Produced indole acetic acid and gibberellins, enhanced plant shoot length and allied growth characteristics, counteracted negative impacts of salt stress, accumulated antioxidants and proline, maintained water potential, reduced membrane damage and electrolytic leakage, and lowered the levels of endogenous abscisic acid content | [135] |
F. verticillioides | G. max | Caused higher germination of seeds and plant growth; produced gibberellins; significantly enhanced plant length and fresh weight; effectively lessened negative effects of salt stress; decreased lipid peroxidation; enhanced protein content and activity of antioxidant enzymes, viz., POD, CAT, and SOD; and showed lower abscisic acid and elevated salicylic acid contents | [136] |
Stemphylium lycopersici | Z. mays | Promoted activity of antioxidant enzymes (viz., APX and CAT), indole acetic acid content, phenolics and flavonoids, decreased malondialdehyde content, Na+ and Cl− ion content, Na+/K+ and Na+/Ca2+ ratios, and increased Mg2+, K+, Ca2+, P, and N contents | [137] |
P. indica | H. vulgare | Significantly enhanced plant growth and shoot biomass, modulated ion accumulation, increased foliar potassium/sodium ratio, and accumulated proteins associated with signal transduction, energy production, protein translation and degradation, photosynthesis, cell wall arrangement, and antioxidant defense | [138] |
P. indica | H. vulgare | Helped in the identification of differentially regulated genes, metabolites, and ions to infer stress tolerance | [139] |
B. bassiana | S. tuberosum | Improved plant growth, diminished adverse impact of salt stress, enhanced activity of antioxidant enzymes (such as SOD and POD), accumulated free proline, and increased stolon number | [140] |
Sordariomycetes sp. and Melanconiella elegans | Vigna unguiculata | Improved colonization rate, plant growth attributes, stomatal conductance, photosynthesis, transpiration, and mineral nutrition | [141] |
P. chrysogenum and P. brevicompactum | Lactuca sativa and S. lycopersicum | Greater biomass production, developed survival rate, diminished salt stress effects, maintained ionic homeostasis, enhanced NHX1 gene expression, provoked increased photosynthetic energy generation efficiency, increased Na+ sequestration in vacuoles, and upregulated vacuolar NHX1 Na+/H+ antiporter expression | [142] |
A. chlamydospora, Chaetomium coarctatum and F. equiseti | T. aestivum | Improved plant seedling emergence and root growth, and exhibited the highest leaf sugar and proline contents | [143] |
C. globosum and Microsphaeropsis arundinis | T. aestivum | Successfully colonized plant, promoted plant growth, and caused higher seed germination rate and biomass | [144] |
F. clavum | C. melo | Exhibited plant-growth-promoting activities, viz., production of indole acetic acid and hydrolytic enzymes and phosphate solubilization; penetrated plant root tissues; improved plant height, weight, leaf number, stomatal conductance, photosynthesis, transpiration, membrane stability, and electrical conductivity; improved K+ absorption; reduced Na+ and Cl– ion absorption; improved CAT, SOD, GPX, phenolic content, and chlorophyll content; decreased lipid peroxidation; increased proline accumulation; reduced superoxide ion production, hydrogen peroxide level, and cell mortality; and enhanced lignin deposition | [145] |
Heat stress | |||
A. flavus | H. annuus and G. max | Produced secondary metabolites; caused higher salicylic acid, indole acetic acid, phenolic, and flavonoid contents; higher levels of plant abscisic acid and proline; and lower levels of flavonoids, phenols, AAO, and CAT in plants | [146] |
Thermomyces sp. | C. sativus | Eliminated the negative effect of heat stress; maintained maximum photosystem II quantum efficiency, water use efficiency, and photosynthesis; enhanced root length; and accumulated saponins, flavonoids, total sugars, soluble proteins, and antioxidant enzyme activity | [147] |
Thermomyces lanuginosus | Cullen plicata | Showed effective plant-growth-promoting activity, enhanced plant survival capacity, and increased total carbohydrate, flavonoid, and ascorbic acid contents and level of antioxidant enzymes (viz., PAL, POD, and CAT) | [148] |
A. niger | G. max and H. annuus | Boosted plant biomass, height, and chlorophyll; curtailed ROS concentration and lipid peroxidation; augmented ROS scavenging activity, such as GR, CAT, AAO, POD, and SOD; enhanced phenolics and proline; and reduced abscisic acid concentration | [149] |
A. japonicus | G. max and H. annuus | Displayed higher concentrations of indole acetic acid, salicylic acid, phenolics, and flavonoids; improved plant biomass; mitigated heat stress effects; negotiated activities of CAT, AAO, and abscisic acid; and improved nutritional quality (viz., phenolics, flavonoids, lipids, proteins, and soluble sugars) of seedlings | [150] |
Cold stress | |||
Fusarium sp. and Pyrenophora sp. | B. oleracea | Promoted plant growth and increased cold tolerance | [51] |
P. indica | A. thaliana | Upregulated cold stress response genes, viz., WRKY, ERF, bHLH, HSF, MYB, and NAC transcription factors | [151] |
P. indica | M. acuminata | Reduced content of malondialdehyde and hydrogen peroxide; increased activities of SOD and CAT and contents of soluble sugar and proline; declined maximum photochemistry efficiency of photosystem II (Fv/Fm), photochemical quenching coefficient, efficient quantum yield, and photosynthetic electron transport rate; and significantly induced the expressions of cold response genes (viz., CSD1C, Why 1, HOS1, and CBF7-1) | [152] |
Heavy metal stress | |||
Exophiala pisciphila | Z. mays | More tolerant to cadmium stress; colonized plant root; significantly enhanced plant growth, antioxidants, and antioxidant enzyme activities; altered metal chemical form into an inactive form; repartitioned subcellular cadmium into the cell wall; and bioaugmented cadmium tolerance | [153] |
Gaeumannomyces cylindrosporus | Z. mays | More tolerant to lead stress; colonized plant roots; enhanced plant biomass, height, and basal diameter; improved photosynthesis efficiency; and modified translocation and accumulation of lead in plants | [154] |
Phialophora mustea | L. esculentum | More tolerant to cadmium and zinc stress, colonized plant roots, improved plant growth, enhanced cadmium and zinc stress tolerance, decreased metal uptake accumulation, increased activity of antioxidant enzymes (viz., SOD and POD), relieved membrane lipid peroxidation damage, and reduced leaf malondialdehyde concentration | [155] |
P. indica | N. tabacum | Improved plant cadmium stress tolerance, increased cadmium accumulation in roots, decreased cadmium accumulation in leaves, increased POD activity and glutathione concentration, and significantly upregulated expression of photosynthesis-related proteins, GS and POD | [156] |
Paecilomyces lilacinus | S. lycopersicum | Improved plant cobalt and lead stress tolerance; increased plant growth, weight, sugar, flavonoids, phenols, indole acetic acid, proline, protein, and relative water content in plants; and alleviated damages caused by cobalt and lead stress | [157] |
Rhizoscyphus sp., Rhizodermea veluwensis, and Phialocephala fortinii | Clethra barbinervis | More tolerant to heavy metal stress; increased seedling growth and K uptake in shoots; and decreased concentration of heavy metals (such as zinc, nickel, lead, copper, and cadmium) in roots | [158] |
Purpureocillium sp. | Kandelia candel | More tolerant to copper stress; protected the plant growth; increased chlorophyll, water saturation deficit, and relative water content in leaves; reduced plant uptake of copper; increased concentration of copper complexes in soil; and reduced copper ion | [159] |
P. roqueforti | T. aestivum | More tolerant to heavy metal stress, secreted indole acetic acid, restricted heavy metal transfer from soil to plants, caused higher plant growth and nutrient uptake, and caused lower level of heavy metals (such as cadmium, copper, lead, nickel, and zinc) in plants | [160] |
Trametes hirsuta | T. aestivum | More tolerant to high lead concentration and increased plant cumulative growth, total chlorophyll content, and lead accumulation in plants | [161] |
E. pisciphila | Z. mays | Improved plant cadmium stress tolerance, colonized plant roots, increased plant biomass and height, induced higher cadmium holding capacity in the root cell wall, and modulated root cell wall with polysaccharide components | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gowtham, H.G.; Hema, P.; Murali, M.; Shilpa, N.; Nataraj, K.; Basavaraj, G.L.; Singh, S.B.; Aiyaz, M.; Udayashankar, A.C.; Amruthesh, K.N. Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants. J. Fungi 2024, 10, 116. https://doi.org/10.3390/jof10020116
Gowtham HG, Hema P, Murali M, Shilpa N, Nataraj K, Basavaraj GL, Singh SB, Aiyaz M, Udayashankar AC, Amruthesh KN. Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants. Journal of Fungi. 2024; 10(2):116. https://doi.org/10.3390/jof10020116
Chicago/Turabian StyleGowtham, H. G., P. Hema, Mahadevamurthy Murali, N. Shilpa, K. Nataraj, G. L. Basavaraj, Sudarshana Brijesh Singh, Mohammed Aiyaz, A. C. Udayashankar, and Kestur Nagaraj Amruthesh. 2024. "Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants" Journal of Fungi 10, no. 2: 116. https://doi.org/10.3390/jof10020116