Synthesis and Characterization of Thermosensitive Nanosupports with Core–Shell Structure (PSt-PNIPAM) and Their Application with Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method of Experimentation
2.3. Synthesis of the PS Core
2.4. Synthesis of Core–Shell Nanoparticles
2.5. Synthesis of Ag Nanoparticles
2.6. Characterization
3. Results
3.1. Morphology and Size
3.2. Thermosensitive Properties
3.3. Silver Nanoparticles
4. Discussion
4.1. Morphology and Size
4.2. Thermosensitive Properties
4.3. Silver Nanoparticles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pradhan, N.; Pal, A.; Pal, T. Silver nanoparticles catalized reduction of aromatic nitro compounds. Colloids Surf. A Eng. Asp. 2002, 196, 247–257. [Google Scholar] [CrossRef]
- Mo, F.; Zhou, Q.; He, Y. Nano–Ag: Environmental applications and perspectives. Sci. Total Environ. 2022, 829, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-Y.; Huang, K.-Y.; Chao, T.-L.; Kao, H.-C.; Pang, Y.-H.; Lu, L.; Yang, P.-C. Nanoparticle composite TPNT1 is effective against SARS-Cov-2 and influenza viruses. Nat. Sci. Rep. 2021, 11, 8692. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.B.R.; Marks, J.E.; Hausner, S.H. Colloidal Platinium–Polyacid Nanocatalyst System. Angew. Makromol. Chem. 1998, 259, 45–53. [Google Scholar] [CrossRef]
- Zhao, M.; Crooks, R.M. Homogeneous Hydrogenation Catalysis using Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles. Angew. Chem. Int. Ed. 1999, 38, 364–366. [Google Scholar] [CrossRef]
- Campbell, C.T.; Parker, S.C.; Starr, D.E. The effect of size—Depend Nanoparticle Energetics on Catalyst Sintering. Science 2002, 298, 811–814. [Google Scholar] [CrossRef]
- Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Termosensitive Core—Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by Transition in Networks. Angew. Chem. 2006, 45, 813–816. [Google Scholar] [CrossRef]
- Lu, Y.; Proch, S.; Schrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M. Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 2009, 19, 3955–3961. [Google Scholar] [CrossRef]
- Lu, Y.; Ballauff, M. Thermosensitive core–shell microgels: From colloidal model systems to nanoreactors. Prog. Polym. Sci. 2011, 36, 767–792. [Google Scholar] [CrossRef]
- Kawaguchi, B. Termosensitive hydrogel microspheres. In Microspheres, Microcapsules and Liposomes; Arshady, R., Ed.; Citus Books: London, UK, 1999; p. 237. [Google Scholar]
- Saunders, B.R.; Vincent, B. Microgel particles as model colloids: Theory, properties and applications. Adv. Colloid Interface Sci. 1999, 80, 1–25. [Google Scholar] [CrossRef]
- Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci. 2010, 35, 174–211. [Google Scholar] [CrossRef]
- Vretik, L.O.; Noskov, Y.V.; Ogurtsov, N.A.; Nikolaeva, O.A.; Shevchenko, A.V.; Marynin, A.I.; Kharchuk, M.S.; Chepurna, O.M.; Ohulchanskyy, T.Y.; Pud, A.A. Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Appl. Nanosci. 2020, 10, 4951–4964. [Google Scholar] [CrossRef]
- Schild, H.G. Poly(n-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Stuart, M.A.; Huck, W.T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli- responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, P.; De Vicente, J.; Nardecchia, S.; Marchal, J.A.; Boulaiz, H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. Nanomaterials 2018, 8, 935. [Google Scholar] [CrossRef]
- De Lima Caroline, S.A.; Balogh, T.S.; Varca, J.P.R.O.; Varca, G.H.C.; Lugão, A.B.; Camacho-Cruz, L.A.; Bucio, E.; Kadlubowski, S.S. An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics 2020, 12, 970–998. [Google Scholar] [CrossRef]
- Kondo, A.; Kamura, H.; Hagashotani, K. Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification. Appl. Microbiol. Biotechnol. 1994, 41, 99–105. [Google Scholar] [CrossRef]
- Kondo, A.; Fukuda, H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J. Ferment. Bioeng. 1997, 84, 337–341. [Google Scholar] [CrossRef]
- Yi, C.; Xu, Z. Syntesis and Caracterizacion of Termoresensitive Composite Micrsphere Latex. J. Appl. Polym. Sci. 2005, 96, 824–828. [Google Scholar] [CrossRef]
- Facundo, I.A.; Soria, M.J.; Rosales, M.G.; Elizalde, L.E.; Diaz de León, M.; Saade, H.; López, R.G. Synthesis and characterization of thermosensitive core-shell polymeric nanoparticles. Polym. Bull. 2011, 67, 985–995. [Google Scholar] [CrossRef]
- Zhu, P.W.; Napper, D.H. Experimental Observation of Coil-to-Globule Type transitions at Interfaces. J. Colloid Interface Sci. 1994, 164, 489–494. [Google Scholar] [CrossRef]
- Sauzedde, F.; Elaissari, A.; Pichot, C. Hydrophilic magnetic polymer latex. 1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latex. Colloid. Polym. Sci. 1999, 277, 846–855. [Google Scholar]
- Rabelero MZacarias, M.; Mendizabal, E.; Puig JE Domínguez, J.M.; Katime, I. High-content polystyrene latex by microemulsion polymerization. Polym. Bull. 1997, 38, 695. [Google Scholar] [CrossRef]
- Roy, S.; Devi, S. High solids content semicontinuous microemulsion copolymerization of methylmethacrylate and butylacrylate. Polymer 1997, 38, 3325. [Google Scholar] [CrossRef]
- Sosa, N.; Peralta, R.D.; López, R.G.; Ramos, L.F.; Katime, I.; Cesteros, C.; Mendizábal, E.; Puig, J.E. A comparasion of the characteristics of poly(vynil acetate) latez with high solid content made by emulsion an semi-continuos microemulsion poilymerization. Polymer 2001, 42, 6923. [Google Scholar] [CrossRef]
- Xiao, X.J.; Chow, P.Y.; Quek, C.H.; Hng, H.H.; Gan, L.M. Nanoparticles of Polystyrene Latexes by Semicontinuous Microemulsion Polymerization Using Mixed Surfactants. J. Nanosci. Nanotech. 2003, 3, 235. [Google Scholar]
- Ramírez, A.G.; López, R.G.; Tauer, K. Studies on Semibatch Microemulsion Polymerization of Butyl Acrylate: Influence of the Potassium Peroxodisulfate Concentration. Macromolecules 2004, 37, 2738. [Google Scholar] [CrossRef]
- Sajjadi, S.; Brooks, B.W. Semibatch Emulsion Polymerization of Butyl Acrylate. I. Effect of Monomer Distribution. J. Appl. Polym. Sci. 1999, 74, 3094. [Google Scholar] [CrossRef]
- Ledezma, R.; Esther Trevino, M.; Elizalde, L.E.; Pérez-Carrillo, L.A.; Mendizábal, E.; Puig, J.E.; López, R.G. Semicontinuous Heterophase Polymerization Under Monomer Starved Conditions to Prepare Nanoparticles with Narrow Size Distribution. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 1463–1473. [Google Scholar] [CrossRef]
- Jorge, E.; Puig, M.R. Semicontinuous microemulsion polymerization. Curr. Opin. Colloid Interface Sci. 2016, 25, 83–88. [Google Scholar]
- Krackeler, J.J.; Naidus, H. Particle size and molecular weight distributions of various polystyrene emulsions. J. Polym. Sci. Part C 1969, 27, 207–235. [Google Scholar] [CrossRef]
- Smith, W.V.; Ewart, R.H. Kinetics of emulsion polymerization. J. Chem. Phys. 1948, 16, 592–599. [Google Scholar] [CrossRef]
- Matejicek, A.; Pivonková, A.; Kaska, J.; Ditl, P.; Formáneck, L. Influence of Agitation on the Creation of Coagulum during the Emulsion Polymerization of the System Styrene-Butylacrylate- Acrylic Acid. J. Appl. Polym. Sci. 1988, 35, 583. [Google Scholar] [CrossRef]
- Duracher, D.; Elaïssari, A.; Mallet, F.; Pichot, C. Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)-poly(N-isopropylacrylamide) particles. Langmuir 2000, 16, 9002–9008. [Google Scholar] [CrossRef]
- Chen, Y.; Gautrot, J.E.; Zhu, X.X. Synthesis and characterization of core–shell microspheres with double thermosensitive. Langmuir 2007, 23, 1047–1051. [Google Scholar] [CrossRef]
- Ballauff, M.; Lu, Y. “Smart” nanoparticles: Preparation, characterization and applications. Polymer 2007, 48, 1815–1823. [Google Scholar] [CrossRef]
QLS | STEM | ||||
---|---|---|---|---|---|
Dz (nm) | Dn (nm) | Dw (nm) | Dv (nm) | Dz (nm) | Dw/Dn |
42.4 | 30.7 | 34.3 | 31.9 | 35.2 | 1.12 |
Sample | METB | QLS | ||
---|---|---|---|---|
Dn (nm) | Dw (nm) | PDI | Dz 25 °C (nm) | |
Seed | 30.7 | 34.3 | 1.12 | 42.4 |
Core–shell | 41.4 | 45.7 | 1.1 | 51.9 |
PS/PNIPAM-MBA | %MBA | Dz (25 °C) (nm) | Dz (55 °C) (nm) | Volume Percentage Loss | Shrinkage (nm) |
---|---|---|---|---|---|
(75.0/25.0) | 3.0 | 53.19 | 48.59 | 23.70 | 4.6 |
* (78.1/21.9) | 2.0 | 51.8 | 44.5 | 33.0 | 7.3 |
* (74.1/25.9) | 2.0 | 57.8 | 50.3 | 36.0 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palos Zúñiga, A.C.; Facundo Arzola, I.A.; Rosales Sosa, M.G.; Rangel Hernández, Y.M.; Reyes Guzmán, C.V.; García Yregoi, M.; Muñoz Ramirez, L.; Saade Caballero, H. Synthesis and Characterization of Thermosensitive Nanosupports with Core–Shell Structure (PSt-PNIPAM) and Their Application with Silver Nanoparticles. J. Compos. Sci. 2024, 8, 516. https://doi.org/10.3390/jcs8120516
Palos Zúñiga AC, Facundo Arzola IA, Rosales Sosa MG, Rangel Hernández YM, Reyes Guzmán CV, García Yregoi M, Muñoz Ramirez L, Saade Caballero H. Synthesis and Characterization of Thermosensitive Nanosupports with Core–Shell Structure (PSt-PNIPAM) and Their Application with Silver Nanoparticles. Journal of Composites Science. 2024; 8(12):516. https://doi.org/10.3390/jcs8120516
Chicago/Turabian StylePalos Zúñiga, Ana Cecilia, Isabel Araceli Facundo Arzola, Ma. Gloria Rosales Sosa, Yadira Marlen Rangel Hernández, Claudia Verónica Reyes Guzmán, Manuel García Yregoi, Leonor Muñoz Ramirez, and Hened Saade Caballero. 2024. "Synthesis and Characterization of Thermosensitive Nanosupports with Core–Shell Structure (PSt-PNIPAM) and Their Application with Silver Nanoparticles" Journal of Composites Science 8, no. 12: 516. https://doi.org/10.3390/jcs8120516
APA StylePalos Zúñiga, A. C., Facundo Arzola, I. A., Rosales Sosa, M. G., Rangel Hernández, Y. M., Reyes Guzmán, C. V., García Yregoi, M., Muñoz Ramirez, L., & Saade Caballero, H. (2024). Synthesis and Characterization of Thermosensitive Nanosupports with Core–Shell Structure (PSt-PNIPAM) and Their Application with Silver Nanoparticles. Journal of Composites Science, 8(12), 516. https://doi.org/10.3390/jcs8120516