Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes
Abstract
:1. Introduction
2. MEN1
3. MEN2
4. MEN4
5. MEN5
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wermer, P. Genetic aspects of adenomatosis of endocrine glands. Am. J. Med. 1954, 16, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L.; et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1). Best. Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Carney, J.A. Familial multiple endocrine neoplasia: The first 100 years. Am. J. Surg. Pathol. 2005, 29, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Carney, J.A. Familial multiple endocrine neoplasia syndromes: Components, classification, and nomenclature. J. Intern. Med. 1998, 243, 425–432. [Google Scholar] [CrossRef]
- Callender, G.G.; Rich, T.A.; Perrier, N.D. Multiple endocrine neoplasia syndromes. Surg. Clin. N. Am. 2008, 88, 863–895, viii. [Google Scholar] [CrossRef]
- Pedraza-Arevalo, S.; Gahete, M.D.; Alors-Perez, E.; Luque, R.M.; Castano, J.P. Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors. Rev. Endocr. Metab. Disord. 2018, 19, 179–192. [Google Scholar] [CrossRef]
- Woodward, E.R.; Maher, E.R. Von Hippel-Lindau disease and endocrine tumour susceptibility. Endocr. Relat. Cancer 2006, 13, 415–425. [Google Scholar] [CrossRef]
- Kalkan, E.; Waguespack, S.G. Endocrine tumors associated with neurofibromatosis type 1, Peutz-Jeghers syndrome and other familial neoplasia syndromes. Front. Horm. Res. 2013, 41, 166–181. [Google Scholar] [CrossRef]
- Sauter, M.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; D’Amato, L.; d’Augeres, G.B.; de Vries, P.J.; et al. Rare manifestations and malignancies in tuberous sclerosis complex: Findings from the TuberOus SClerosis registry to increAse disease awareness (TOSCA). Orphanet J. Rare Dis. 2021, 16, 301. [Google Scholar] [CrossRef]
- Moline, J.; Eng, C. Multiple endocrine neoplasia type 2: An overview. Genet. Med. 2011, 13, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Amodru, V.; Taieb, D.; Guerin, C.; Romanet, P.; Paladino, N.; Brue, T.; Cuny, T.; Barlier, A.; Sebag, F.; Castinetti, F. MEN2-related pheochromocytoma: Current state of knowledge, specific characteristics in MEN2B, and perspectives. Endocrine 2020, 69, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Pardi, E.; Cetani, F.; Elisei, R. Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J. Oncol. 2012, 2012, 705036. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, L.M.; Eng, C.; Healey, C.S.; Clayton, D.; Kwok, J.B.; Gardner, E.; Ponder, M.A.; Frilling, A.; Jackson, C.E.; Lehnert, H.; et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat. Genet. 1994, 6, 70–74. [Google Scholar] [CrossRef]
- Pellegata, N.S.; Quintanilla-Martinez, L.; Siggelkow, H.; Samson, E.; Bink, K.; Hofler, H.; Fend, F.; Graw, J.; Atkinson, M.J. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl. Acad. Sci. USA 2006, 103, 15558–15563. [Google Scholar] [CrossRef]
- Frederiksen, A.; Rossing, M.; Hermann, P.; Ejersted, C.; Thakker, R.V.; Frost, M. Clinical Features of Multiple Endocrine Neoplasia Type 4: Novel Pathogenic Variant and Review of Published Cases. J. Clin. Endocrinol. Metab. 2019, 104, 3637–3646. [Google Scholar] [CrossRef]
- Alrezk, R.; Hannah-Shmouni, F.; Stratakis, C.A. MEN4 and CDKN1B mutations: The latest of the MEN syndromes. Endocr. Relat. Cancer 2017, 24, T195–T208. [Google Scholar] [CrossRef]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef]
- Seabrook, A.J.; Harris, J.E.; Velosa, S.B.; Kim, E.; McInerney-Leo, A.M.; Dwight, T.; Hockings, J.I.; Hockings, N.G.; Kirk, J.; Leo, P.J.; et al. Multiple Endocrine Tumors Associated with Germline MAX Mutations: Multiple Endocrine Neoplasia Type 5? J. Clin. Endocrinol. Metab. 2021, 106, 1163–1182. [Google Scholar] [CrossRef]
- Sahakian, N.; Castinetti, F.; Romanet, P.; Reznik, Y.; Brue, T. Updates on the genetics of multiple endocrine neoplasia. Ann. Endocrinol. 2024, 85, 127–135. [Google Scholar] [CrossRef]
- Iyer, S.; Agarwal, S.K. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J. Mol. Endocrinol. 2018, 61, R13–R24. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Falchetti, A.; Del Monte, F.; Carbonell Sala, S.; Gozzini, A.; Luzi, E.; Brandi, M.L. Multiple endocrine neoplasia type 1. Orphanet J. Rare Dis. 2006, 1, 38. [Google Scholar] [CrossRef] [PubMed]
- Biancaniello, C.; D’Argenio, A.; Giordano, D.; Dotolo, S.; Scafuri, B.; Marabotti, A.; d’Acierno, A.; Tagliaferri, R.; Facchiano, A. Investigating the Effects of Amino Acid Variations in Human Menin. Molecules 2022, 27, 1747. [Google Scholar] [CrossRef] [PubMed]
- Mele, C.; Mencarelli, M.; Caputo, M.; Mai, S.; Pagano, L.; Aimaretti, G.; Scacchi, M.; Falchetti, A.; Marzullo, P. Phenotypes Associated With MEN1 Syndrome: A Focus on Genotype-Phenotype Correlations. Front. Endocrinol. 2020, 11, 591501. [Google Scholar] [CrossRef] [PubMed]
- Brandi, M.L.; Agarwal, S.K.; Perrier, N.D.; Lines, K.E.; Valk, G.D.; Thakker, R.V. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr. Rev. 2021, 42, 133–170. [Google Scholar] [CrossRef]
- Cuevas-Ocampo, A.K.; Bollen, A.W.; Goode, B.; Pajtler, K.W.; Chavez, L.; Sharma, T.; Dai, S.C.; McDermott, M.; Perry, A.; Korshunov, A.; et al. Genetic confirmation that ependymoma can arise as part of multiple endocrine neoplasia type 1 (MEN1) syndrome. Acta Neuropathol. 2017, 133, 661–663. [Google Scholar] [CrossRef]
- McKeeby, J.L.; Li, X.; Zhuang, Z.; Vortmeyer, A.O.; Huang, S.; Pirner, M.; Skarulis, M.C.; James-Newton, L.; Marx, S.J.; Lubensky, I.A. Multiple leiomyomas of the esophagus, lung, and uterus in multiple endocrine neoplasia type 1. Am. J. Pathol. 2001, 159, 1121–1127. [Google Scholar] [CrossRef]
- Guru, S.C.; Goldsmith, P.K.; Burns, A.L.; Marx, S.J.; Spiegel, A.M.; Collins, F.S.; Chandrasekharappa, S.C. Menin, the product of the MEN1 gene, is a nuclear protein. Proc. Natl. Acad. Sci. USA 1998, 95, 1630–1634. [Google Scholar] [CrossRef]
- Giusti, F.; Cianferotti, L.; Boaretto, F.; Cetani, F.; Cioppi, F.; Colao, A.; Davi, M.V.; Faggiano, A.; Fanciulli, G.; Ferolla, P.; et al. Multiple endocrine neoplasia syndrome type 1: Institution, management, and data analysis of a nationwide multicenter patient database. Endocrine 2017, 58, 349–359. [Google Scholar] [CrossRef]
- Dreijerink, K.M.; Goudet, P.; Burgess, J.R.; Valk, G.D.; International Breast Cancer in MEN1 Study Group. Breast-cancer predisposition in multiple endocrine neoplasia type 1. N. Engl. J. Med. 2014, 371, 583–584. [Google Scholar] [CrossRef]
- Tepede, A.A.; Welch, J.; Lee, M.; Mandl, A.; Agarwal, S.K.; Nilubol, N.; Patel, D.; Cochran, C.; Simonds, W.F.; Weinstein, L.S.; et al. 18F-FDOPA PET/CT accurately identifies MEN1-associated pheochromocytoma. Endocrinol. Diabetes Metab. Case Rep. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K. The future: Genetics advances in MEN1 therapeutic approaches and management strategies. Endocr. Relat. Cancer 2017, 24, T119–T134. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Giusti, F.; Brandi, M.L. Multiple endocrine neoplasia type 1: Extensive analysis of a large database of Florentine patients. Orphanet J. Rare Dis. 2018, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Knudson, A.G., Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Lee Burns, A.; Sukhodolets, K.E.; Kennedy, P.A.; Obungu, V.H.; Hickman, A.B.; Mullendore, M.E.; Whitten, I.; Skarulis, M.C.; Simonds, W.F.; et al. Molecular pathology of the MEN1 gene. Ann. N. Y. Acad. Sci. 2004, 1014, 189–198. [Google Scholar] [CrossRef]
- Luzi, E.; Marini, F.; Giusti, F.; Galli, G.; Cavalli, L.; Brandi, M.L. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s second hit”. PLoS ONE 2012, 7, e39767. [Google Scholar] [CrossRef]
- Lemos, M.C.; Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 2008, 29, 22–32. [Google Scholar] [CrossRef]
- de Laat, J.M.; van Leeuwaarde, R.S.; Valk, G.D. The Importance of an Early and Accurate MEN1 Diagnosis. Front. Endocrinol. 2018, 9, 533. [Google Scholar] [CrossRef]
- Goudet, P.; Dalac, A.; Le Bras, M.; Cardot-Bauters, C.; Niccoli, P.; Levy-Bohbot, N.; du Boullay, H.; Bertagna, X.; Ruszniewski, P.; Borson-Chazot, F.; et al. MEN1 disease occurring before 21 years old: A 160-patient cohort study from the Groupe d’etude des Tumeurs Endocrines. J. Clin. Endocrinol. Metab. 2015, 100, 1568–1577. [Google Scholar] [CrossRef]
- Brandi, M.L.; Gagel, R.F.; Angeli, A.; Bilezikian, J.P.; Beck-Peccoz, P.; Bordi, C.; Conte-Devolx, B.; Falchetti, A.; Gheri, R.G.; Libroia, A.; et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 2001, 86, 5658–5671. [Google Scholar] [CrossRef]
- Falchetti, A. Genetics of multiple endocrine neoplasia type 1 syndrome: What’s new and what’s old. F1000Research 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.A.; Saramago, A.; Cavaco, B.M.; Simoes-Pereira, J.; Leite, V. Familial parathyroid tumours-comparison of clinical profiles between syndromes. J. Endocrinol. Investig. 2023, 46, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Eller-Vainicher, C.; Chiodini, I.; Battista, C.; Viti, R.; Mascia, M.L.; Massironi, S.; Peracchi, M.; D’Agruma, L.; Minisola, S.; Corbetta, S.; et al. Sporadic and MEN1-related primary hyperparathyroidism: Differences in clinical expression and severity. J. Bone Miner. Res. 2009, 24, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Miyauchi, A.; Namihira, H.; Bhuiyan, M.M.; Imachi, H.; Murao, K.; Takahara, J. A newly recognized germline mutation of MEN1 gene identified in a patient with parathyroid adenoma and carcinoma. Endocrine 2000, 12, 223–226. [Google Scholar] [CrossRef]
- Dionisi, S.; Minisola, S.; Pepe, J.; De Geronimo, S.; Paglia, F.; Memeo, L.; Fitzpatrick, L.A. Concurrent parathyroid adenomas and carcinoma in the setting of multiple endocrine neoplasia type 1: Presentation as hypercalcemic crisis. Mayo Clin. Proc. 2002, 77, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Adikaram, P.R.; Welch, J.; Guan, B.; Weinstein, L.S.; Chen, H.; Simonds, W.F. Genotype of CDC73 germline mutation determines risk of parathyroid cancer. Endocr. Relat. Cancer 2020, 27, 483–494. [Google Scholar] [CrossRef]
- Krampitz, G.W.; Norton, J.A. Current management of the Zollinger-Ellison syndrome. Adv. Surg. 2013, 47, 59–79. [Google Scholar] [CrossRef]
- Norton, J.A. Surgical treatment and prognosis of gastrinoma. Best. Pract. Res. Clin. Gastroenterol. 2005, 19, 799–805. [Google Scholar] [CrossRef]
- Albers, M.B.; Manoharan, J.; Bartsch, D.K. Contemporary surgical management of the Zollinger-Ellison syndrome in multiple endocrine neoplasia type 1. Best. Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101318. [Google Scholar] [CrossRef]
- Kovac, S.; Smith, K.; Anderson, G.J.; Burgess, J.R.; Shulkes, A.; Baldwin, G.S. Interrelationships between circulating gastrin and iron status in mice and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G855–G861. [Google Scholar] [CrossRef]
- Casale, M.; Borriello, A.; Scianguetta, S.; Roberti, D.; Caiazza, M.; Bencivenga, D.; Tartaglione, I.; Ladogana, S.; Maruzzi, M.; Della Ragione, F.; et al. Hereditary hypochromic microcytic anemia associated with loss-of-function DMT1 gene mutations and absence of liver iron overload. Am. J. Hematol. 2018, 93, E58–E60. [Google Scholar] [CrossRef] [PubMed]
- Kovac, S.; Anderson, G.J.; Baldwin, G.S. Gastrins, iron homeostasis and colorectal cancer. Biochim. Biophys. Acta 2011, 1813, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Marques, L.; Murat, A.; Delemer, B.; Penfornis, A.; Cardot-Bauters, C.; Baudin, E.; Niccoli-Sire, P.; Levoir, D.; Choplin Hdu, B.; Chabre, O.; et al. Prospective endoscopic ultrasonographic evaluation of the frequency of nonfunctioning pancreaticoduodenal endocrine tumors in patients with multiple endocrine neoplasia type 1. Am. J. Gastroenterol. 2006, 101, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, T.D.; Toledo, R.A.; Sekiya, T.; Matuguma, S.E.; Maluf Filho, F.; Rocha, M.S.; Siqueira, S.A.; Glezer, A.; Bronstein, M.D.; Pereira, M.A.; et al. Penetrance of functioning and nonfunctioning pancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1 in the second decade of life. J. Clin. Endocrinol. Metab. 2014, 99, E89–E96. [Google Scholar] [CrossRef]
- Gauger, P.G.; Scheiman, J.M.; Wamsteker, E.J.; Richards, M.L.; Doherty, G.M.; Thompson, N.W. Role of endoscopic ultrasonography in screening and treatment of pancreatic endocrine tumours in asymptomatic patients with multiple endocrine neoplasia type 1. Br. J. Surg. 2003, 90, 748–754. [Google Scholar] [CrossRef]
- Kann, P.H.; Balakina, E.; Ivan, D.; Bartsch, D.K.; Meyer, S.; Klose, K.J.; Behr, T.; Langer, P. Natural course of small, asymptomatic neuroendocrine pancreatic tumours in multiple endocrine neoplasia type 1: An endoscopic ultrasound imaging study. Endocr. Relat. Cancer 2006, 13, 1195–1202. [Google Scholar] [CrossRef]
- Tonelli, F.; Fratini, G.; Falchetti, A.; Nesi, G.; Brandi, M.L. Surgery for gastroenteropancreatic tumours in multiple endocrine neoplasia type 1: Review and personal experience. J. Intern. Med. 2005, 257, 38–49. [Google Scholar] [CrossRef]
- Vannucci, L.; Marini, F.; Giusti, F.; Ciuffi, S.; Tonelli, F.; Brandi, M.L. MEN1 in children and adolescents: Data from patients of a regional referral center for hereditary endocrine tumors. Endocrine 2018, 59, 438–448. [Google Scholar] [CrossRef]
- Stratakis, C.A.; Schussheim, D.H.; Freedman, S.M.; Keil, M.F.; Pack, S.D.; Agarwal, S.K.; Skarulis, M.C.; Weil, R.J.; Lubensky, I.A.; Zhuang, Z.; et al. Pituitary macroadenoma in a 5-year-old: An early expression of multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 2000, 85, 4776–4780. [Google Scholar] [CrossRef]
- Cuny, T.; Pertuit, M.; Sahnoun-Fathallah, M.; Daly, A.; Occhi, G.; Odou, M.F.; Tabarin, A.; Nunes, M.L.; Delemer, B.; Rohmer, V.; et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: Besides AIP don’t forget MEN1 genetic analysis. Eur. J. Endocrinol. 2013, 168, 533–541. [Google Scholar] [CrossRef]
- Trivellin, G.; Daly, A.F.; Faucz, F.R.; Yuan, B.; Rostomyan, L.; Larco, D.O.; Schernthaner-Reiter, M.H.; Szarek, E.; Leal, L.F.; Caberg, J.H.; et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N. Engl. J. Med. 2014, 371, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Beckers, A.; Rostomyan, L.; Potorac, I.; Beckers, P.; Daly, A.F. X-LAG: How did they grow so tall? Ann. Endocrinol. 2017, 78, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Verges, B.; Boureille, F.; Goudet, P.; Murat, A.; Beckers, A.; Sassolas, G.; Cougard, P.; Chambe, B.; Montvernay, C.; Calender, A. Pituitary disease in MEN type 1 (MEN1): Data from the France-Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab. 2002, 87, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.; Asa, S.L.; Livolsi, V.A.; West, V.A.; Snyder, P.J. Gonadotroph tumor associated with multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 2005, 90, 570–574. [Google Scholar] [CrossRef]
- Incandela, F.; Feraco, P.; Putorti, V.; Geraci, L.; Salvaggio, G.; Sarno, C.; La Tona, G.; Lasio, G.; Gagliardo, C. Malignancy course of pituitary adenoma in MEN1 syndrome: Clinical-Neuroradiological signs. Eur. J. Radiol. Open 2020, 7, 100242. [Google Scholar] [CrossRef]
- Philippon, M.; Morange, I.; Barrie, M.; Barlier, A.; Taieb, D.; Dufour, H.; Conte-Devolx, B.; Brue, T.; Castinetti, F. Long-term control of a MEN1 prolactin secreting pituitary carcinoma after temozolomide treatment. Ann. Endocrinol. 2012, 73, 225–229. [Google Scholar] [CrossRef]
- Mollard, P.; Vacher, P.; Rogawski, M.A.; Dufy, B. Vasopressin enhances a calcium current in human ACTH-secreting pituitary adenoma cells. FASEB J. 1988, 2, 2907–2912. [Google Scholar] [CrossRef]
- Kanda, M.; Omori, Y.; Shinoda, S.; Yamauchi, T.; Tamemoto, H.; Kawakami, M.; Ishikawa, S.E. SIADH closely associated with non-functioning pituitary adenoma. Endocr. J. 2004, 51, 435–438. [Google Scholar] [CrossRef]
- Murphy, D.; Bishop, A.; Rindi, G.; Murphy, M.N.; Stamp, G.W.; Hanson, J.; Polak, J.M.; Hogan, B. Mice transgenic for a vasopressin-SV40 hybrid oncogene develop tumors of the endocrine pancreas and the anterior pituitary. A possible model for human multiple endocrine neoplasia type 1. Am. J. Pathol. 1987, 129, 552–566. [Google Scholar]
- Patti, G.; Scianguetta, S.; Roberti, D.; Di Mascio, A.; Balsamo, A.; Brugnara, M.; Cappa, M.; Casale, M.; Cavarzere, P.; Cipriani, S.; et al. Familial neurohypophyseal diabetes insipidus in 13 kindreds and 2 novel mutations in the vasopressin gene. Eur. J. Endocrinol. 2019, 181, 233–244. [Google Scholar] [CrossRef]
- Karhu, A.; Aaltonen, L.A. Susceptibility to pituitary neoplasia related to MEN-1, CDKN1B and AIP mutations: An update. Hum. Mol. Genet. 2007, 16, R73–R79. [Google Scholar] [CrossRef] [PubMed]
- Nord, K.H.; Magnusson, L.; Isaksson, M.; Nilsson, J.; Lilljebjorn, H.; Domanski, H.A.; Kindblom, L.G.; Mandahl, N.; Mertens, F. Concomitant deletions of tumor suppressor genes MEN1 and AIP are essential for the pathogenesis of the brown fat tumor hibernoma. Proc. Natl. Acad. Sci. USA 2010, 107, 21122–21127. [Google Scholar] [CrossRef] [PubMed]
- Trofimiuk-Muldner, M.; Domagala, B.; Sokolowski, G.; Skalniak, A.; Hubalewska-Dydejczyk, A. AIP gene germline variants in adult Polish patients with apparently sporadic pituitary macroadenomas. Front. Endocrinol. 2023, 14, 1098367. [Google Scholar] [CrossRef] [PubMed]
- Haworth, O.; Korbonits, M. AIP: A double agent? The tissue-specific role of AIP as a tumour suppressor or as an oncogene. Br. J. Cancer 2022, 127, 1175–1176. [Google Scholar] [CrossRef]
- Usategui-Martin, R.; De Luis-Roman, D.A.; Fernandez-Gomez, J.M.; Ruiz-Mambrilla, M.; Perez-Castrillon, J.L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
- Dreijerink, K.M.; Varier, R.A.; van Nuland, R.; Broekhuizen, R.; Valk, G.D.; van der Wal, J.E.; Lips, C.J.; Kummer, J.A.; Timmers, H.T. Regulation of vitamin D receptor function in MEN1-related parathyroid adenomas. Mol. Cell Endocrinol. 2009, 313, 1–8. [Google Scholar] [CrossRef]
- Longuini, V.C.; Lourenco, D.M., Jr.; Sekiya, T.; Meirelles, O.; Goncalves, T.D.; Coutinho, F.L.; Francisco, G.; Osaki, L.H.; Chammas, R.; Alves, V.A.; et al. Association between the p27 rs2066827 variant and tumor multiplicity in patients harboring MEN1 germline mutations. Eur. J. Endocrinol. 2014, 171, 335–342. [Google Scholar] [CrossRef]
- Circelli, L.; Ramundo, V.; Marotta, V.; Sciammarella, C.; Marciello, F.; Del Prete, M.; Sabatino, L.; Pasquali, D.; Izzo, F.; Scala, S.; et al. Prognostic role of the CDNK1B V109G polymorphism in multiple endocrine neoplasia type 1. J. Cell Mol. Med. 2015, 19, 1735–1741. [Google Scholar] [CrossRef]
- Takahashi, M. RET receptor signaling: Function in development, metabolic disease, and cancer. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 112–125. [Google Scholar] [CrossRef]
- Wagner, S.M.; Zhu, S.; Nicolescu, A.C.; Mulligan, L.M. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2. Clinics 2012, 67 (Suppl. S1), 77–84. [Google Scholar] [CrossRef]
- Regua, A.T.; Najjar, M.; Lo, H.W. RET signaling pathway and RET inhibitors in human cancer. Front. Oncol. 2022, 12, 932353. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N. Realizing the promise of cancer predisposition genes. Nature 2014, 505, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Garber, J.E.; Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol. 2005, 23, 276–292. [Google Scholar] [CrossRef] [PubMed]
- American Thyroid Association Guidelines Task, F.; Kloos, R.T.; Eng, C.; Evans, D.B.; Francis, G.L.; Gagel, R.F.; Gharib, H.; Moley, J.F.; Pacini, F.; Ringel, M.D.; et al. Medullary thyroid cancer: Management guidelines of the American Thyroid Association. Thyroid 2009, 19, 565–612. [Google Scholar] [CrossRef]
- Santoro, M.; Melillo, R.M.; Carlomagno, F.; Visconti, R.; De Vita, G.; Salvatore, G.; Lupoli, G.; Fusco, A.; Vecchio, G. Molecular biology of the MEN2 gene. J. Intern. Med. 1998, 243, 505–508. [Google Scholar] [CrossRef]
- Iwashita, T.; Murakami, H.; Kurokawa, K.; Kawai, K.; Miyauchi, A.; Futami, H.; Qiao, S.; Ichihara, M.; Takahashi, M. A two-hit model for development of multiple endocrine neoplasia type 2B by RET mutations. Biochem. Biophys. Res. Commun. 2000, 268, 804–808. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.Y.; Jo, K.H.; Mo, E.Y.; Kim, E.S.; Kim, H.S.; Han, J.H.; Moon, S.D. Clinical features and signaling effects of RET D631Y variant multiple endocrine neoplasia type 2 (MEN2). Korean J. Intern. Med. 2022, 37, 398–410. [Google Scholar] [CrossRef]
- Raue, F. German medullary thyroid carcinoma/multiple endocrine neoplasia registry. German MTC/MEN Study Group. Medullary Thyroid Carcinoma/Multiple Endocrine Neoplasia Type 2. Langenbecks Arch. Surg. 1998, 383, 334–336. [Google Scholar] [CrossRef]
- Wohllk, N.; Cote, G.J.; Bugalho, M.M.; Ordonez, N.; Evans, D.B.; Goepfert, H.; Khorana, S.; Schultz, P.; Richards, C.S.; Gagel, R.F. Relevance of RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1996, 81, 3740–3745. [Google Scholar] [CrossRef]
- Opsahl, E.M.; Brauckhoff, M.; Schlichting, E.; Helset, K.; Svartberg, J.; Brauckhoff, K.; Maehle, L.; Engebretsen, L.F.; Sigstad, E.; Groholt, K.K.; et al. A Nationwide Study of Multiple Endocrine Neoplasia Type 2A in Norway: Predictive and Prognostic Factors for the Clinical Course of Medullary Thyroid Carcinoma. Thyroid 2016, 26, 1225–1238. [Google Scholar] [CrossRef]
- Nose, V. Familial thyroid cancer: A review. Mod. Pathol. 2011, 24 (Suppl. S2), S19–S33. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; DeBenedetti, M.K.; Moley, J.F.; Norton, J.A.; Wells, S.A., Jr. Medullary thyroid carcinoma in children with multiple endocrine neoplasia types 2A and 2B. J. Pediatr. Surg. 1996, 31, 177–181, discussion 181–182. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A., Jr.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Uchino, S.; Okamoto, T.; Suzuki, S.; Kosugi, S.; Kikumori, T.; Sakurai, A.; MEN Consortium of Japan. High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients. Eur. J. Endocrinol. 2013, 168, 683–687. [Google Scholar] [CrossRef]
- Frank-Raue, K.; Rybicki, L.A.; Erlic, Z.; Schweizer, H.; Winter, A.; Milos, I.; Toledo, S.P.; Toledo, R.A.; Tavares, M.R.; Alevizaki, M.; et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum. Mutat. 2011, 32, 51–58. [Google Scholar] [CrossRef]
- Howe, J.R.; Norton, J.A.; Wells, S.A., Jr. Prevalence of pheochromocytoma and hyperparathyroidism in multiple endocrine neoplasia type 2A: Results of long-term follow-up. Surgery 1993, 114, 1070–1077. [Google Scholar]
- Rowland, K.J.; Chernock, R.D.; Moley, J.F. Pheochromocytoma in an 8-year-old patient with multiple endocrine neoplasia type 2A: Implications for screening. J. Surg. Oncol. 2013, 108, 203–206. [Google Scholar] [CrossRef]
- Pacak, K.; Ilias, I.; Adams, K.T.; Eisenhofer, G. Biochemical diagnosis, localization and management of pheochromocytoma: Focus on multiple endocrine neoplasia type 2 in relation to other hereditary syndromes and sporadic forms of the tumour. J. Intern. Med. 2005, 257, 60–68. [Google Scholar] [CrossRef]
- Ilias, I.; Pacak, K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr. Regul. 2009, 43, 89–93. [Google Scholar]
- Carling, T.; Udelsman, R. Parathyroid surgery in familial hyperparathyroid disorders. J. Intern. Med. 2005, 257, 27–37. [Google Scholar] [CrossRef]
- Schuffenecker, I.; Virally-Monod, M.; Brohet, R.; Goldgar, D.; Conte-Devolx, B.; Leclerc, L.; Chabre, O.; Boneu, A.; Caron, J.; Houdent, C.; et al. Risk and penetrance of primary hyperparathyroidism in multiple endocrine neoplasia type 2A families with mutations at codon 634 of the RET proto-oncogene. Groupe D’etude des Tumeurs a Calcitonine. J. Clin. Endocrinol. Metab. 1998, 83, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Verga, U.; Fugazzola, L.; Cambiaghi, S.; Pritelli, C.; Alessi, E.; Cortelazzi, D.; Gangi, E.; Beck-Peccoz, P. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin. Endocrinol. 2003, 59, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Gagel, R.F.; Levy, M.L.; Donovan, D.T.; Alford, B.R.; Wheeler, T.; Tschen, J.A. Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis. Ann. Intern. Med. 1989, 111, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, A.E.; Raymond, V.M.; Gruber, S.B.; Sisson, J. Familial medullary thyroid carcinoma associated with cutaneous lichen amyloidosis. Thyroid 2009, 19, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Verdy, M.; Weber, A.M.; Roy, C.C.; Morin, C.L.; Cadotte, M.; Brochu, P. Hirschsprung’s disease in a family with multiple endocrine neoplasia type 2. J. Pediatr. Gastroenterol. Nutr. 1982, 1, 603–607. [Google Scholar] [CrossRef]
- Fuentes, C.; Menendez, E.; Pineda, J.; Martinez De Esteban, J.P.; Anda, E.; Goni, M.J.; Bausch, B.; Neumann, H.P. The malignant potential of a succinate dehydrogenase subunit B germline mutation. J. Endocrinol. Investig. 2006, 29, 350–352. [Google Scholar] [CrossRef]
- Eng, C.; Plitt, G. Multiple Endocrine Neoplasia Type 2. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Her, Y.F.; Maher, L.J., 3rd. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int. J. Endocrinol. 2015, 2015, 296167. [Google Scholar] [CrossRef]
- Lendvai, N.; Toth, M.; Valkusz, Z.; Beko, G.; Szucs, N.; Csajbok, E.; Igaz, P.; Kriszt, B.; Kovacs, B.; Racz, K.; et al. Over-representation of the G12S polymorphism of the SDHD gene in patients with MEN2A syndrome. Clinics 2012, 67 (Suppl. S1), 85–89. [Google Scholar] [CrossRef]
- Majewska, A.; Budny, B.; Ziemnicka, K.; Ruchala, M.; Wierzbicka, M. Head and Neck Paragangliomas—A Genetic Overview. Int. J. Mol. Sci. 2020, 21, 7669. [Google Scholar] [CrossRef]
- Deng, Y.; Qin, Y.; Srikantan, S.; Luo, A.; Cheng, Z.M.; Flores, S.K.; Vogel, K.S.; Wang, E.; Dahia, P.L.M. The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum. Mol. Genet. 2018, 27, 1794–1808. [Google Scholar] [CrossRef]
- Walker, T.J.; Reyes-Alvarez, E.; Hyndman, B.D.; Sugiyama, M.G.; Oliveira, L.C.B.; Rekab, A.N.; Crupi, M.J.F.; Cabral-Dias, R.; Guo, Q.; Dahia, P.L.M.; et al. Loss of tumor suppressor TMEM127 drives RET-mediated transformation through disrupted membrane dynamics. eLife 2024, 12, RP89100. [Google Scholar] [CrossRef] [PubMed]
- Larouche, V.; Akirov, A.; Thomas, C.M.; Krzyzanowska, M.K.; Ezzat, S. A primer on the genetics of medullary thyroid cancer. Curr. Oncol. 2019, 26, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Clayton, D.; Schuffenecker, I.; Lenoir, G.; Cote, G.; Gagel, R.F.; van Amstel, H.K.; Lips, C.J.; Nishisho, I.; Takai, S.I.; et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996, 276, 1575–1579. [Google Scholar] [CrossRef]
- Castinetti, F.; Moley, J.; Mulligan, L.; Waguespack, S.G. A comprehensive review on MEN2B. Endocr. Relat. Cancer 2018, 25, T29–T39. [Google Scholar] [CrossRef] [PubMed]
- Brauckhoff, M.; Machens, A.; Hess, S.; Lorenz, K.; Gimm, O.; Brauckhoff, K.; Sekulla, C.; Dralle, H. Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: An exploratory analysis. Surgery 2008, 144, 1044–1050, discussion 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; Moley, J.A.; Dilley, W.G.; Owzar, K.; Debenedetti, M.K.; Wells, S.A., Jr. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N. Engl. J. Med. 2005, 353, 1105–1113. [Google Scholar] [CrossRef]
- Nguyen, L.; Niccoli-Sire, P.; Caron, P.; Bastie, D.; Maes, B.; Chabrier, G.; Chabre, O.; Rohmer, V.; Lecomte, P.; Henry, J.F.; et al. Pheochromocytoma in multiple endocrine neoplasia type 2: A prospective study. Eur. J. Endocrinol. 2001, 144, 37–44. [Google Scholar] [CrossRef]
- Thosani, S.; Ayala-Ramirez, M.; Palmer, L.; Hu, M.I.; Rich, T.; Gagel, R.F.; Cote, G.; Waguespack, S.G.; Habra, M.A.; Jimenez, C. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 2013, 98, E1813–E1819. [Google Scholar] [CrossRef]
- Makri, A.; Akshintala, S.; Derse-Anthony, C.; Del Rivero, J.; Widemann, B.; Stratakis, C.A.; Glod, J.; Lodish, M. Pheochromocytoma in Children and Adolescents with Multiple Endocrine Neoplasia Type 2B. J. Clin. Endocrinol. Metab. 2019, 104, 7–12. [Google Scholar] [CrossRef]
- Wray, C.J.; Rich, T.A.; Waguespack, S.G.; Lee, J.E.; Perrier, N.D.; Evans, D.B. Failure to recognize multiple endocrine neoplasia 2B: More common than we think? Ann. Surg. Oncol. 2008, 15, 293–301. [Google Scholar] [CrossRef]
- Bencivenga, D.; Stampone, E.; Roberti, D.; Della Ragione, F.; Borriello, A. p27(Kip1), an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021, 10, 2254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bergamaschi, D.; Jin, B.; Lu, X. Posttranslational modifications of p27kip1 determine its binding specificity to different cyclins and cyclin-dependent kinases in vivo. Blood 2005, 105, 3691–3698. [Google Scholar] [CrossRef] [PubMed]
- Bencivenga, D.; Stampone, E.; Aulitto, A.; Tramontano, A.; Barone, C.; Negri, A.; Roberti, D.; Perrotta, S.; Della Ragione, F.; Borriello, A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: A new mechanism for tumor suppressor loss-of-function. Mol. Oncol. 2021, 15, 915–941. [Google Scholar] [CrossRef] [PubMed]
- Cusan, M.; Mungo, G.; De Marco Zompit, M.; Segatto, I.; Belletti, B.; Baldassarre, G. Landscape of CDKN1B Mutations in Luminal Breast Cancer and Other Hormone-Driven Human Tumors. Front. Endocrinol. 2018, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Pellegata, N.S. Multiple endocrine neoplasia type 4. Front. Horm. Res. 2013, 41, 63–78. [Google Scholar] [CrossRef]
- Tonelli, F.; Giudici, F.; Giusti, F.; Marini, F.; Cianferotti, L.; Nesi, G.; Brandi, M.L. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient affected by MEN4 syndrome. Eur. J. Endocrinol. 2014, 171, K7–K17. [Google Scholar] [CrossRef]
- Zung, A.; Barash, G.; Banne, E.; Levine, M.A. Novel Calcium-Sensing Receptor (CASR) Mutation in a Family with Autosomal Dominant Hypocalcemia Type 1 (ADH1): Genetic Study over Three Generations and Clinical Characteristics. Horm. Res. Paediatr. 2023, 96, 473–482. [Google Scholar] [CrossRef]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef]
- Crona, J.; Gustavsson, T.; Norlen, O.; Edfeldt, K.; Akerstrom, T.; Westin, G.; Hellman, P.; Bjorklund, P.; Stalberg, P. Somatic Mutations and Genetic Heterogeneity at the CDKN1B Locus in Small Intestinal Neuroendocrine Tumors. Ann. Surg. Oncol. 2015, 22 (Suppl. S3), S1428–S1435. [Google Scholar] [CrossRef]
- Occhi, G.; Regazzo, D.; Trivellin, G.; Boaretto, F.; Ciato, D.; Bobisse, S.; Ferasin, S.; Cetani, F.; Pardi, E.; Korbonits, M.; et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet. 2013, 9, e1003350. [Google Scholar] [CrossRef]
- Sambugaro, S.; Di Ruvo, M.; Ambrosio, M.R.; Pellegata, N.S.; Bellio, M.; Guerra, A.; Buratto, M.; Foschini, M.P.; Tagliati, F.; degli Uberti, E.; et al. Early onset acromegaly associated with a novel deletion in CDKN1B 5′UTR region. Endocrine 2015, 49, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Schernthaner-Reiter, M.H.; Trivellin, G.; Stratakis, C.A. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 2016, 103, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, C.A.; Tichomirowa, M.A.; Boikos, S.; Azevedo, M.F.; Lodish, M.; Martari, M.; Verma, S.; Daly, A.F.; Raygada, M.; Keil, M.F.; et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin. Genet. 2010, 78, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Chasseloup, F.; Pankratz, N.; Lane, J.; Faucz, F.R.; Keil, M.F.; Chittiboina, P.; Kay, D.M.; Hussein Tayeb, T.; Stratakis, C.A.; Mills, J.L.; et al. Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing’s Disease with or without an MEN4 Phenotype. J. Clin. Endocrinol. Metab. 2020, 105, 1983–2005. [Google Scholar] [CrossRef]
- Georgitsi, M.; Raitila, A.; Karhu, A.; van der Luijt, R.B.; Aalfs, C.M.; Sane, T.; Vierimaa, O.; Makinen, M.J.; Tuppurainen, K.; Paschke, R.; et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab. 2007, 92, 3321–3325. [Google Scholar] [CrossRef]
- Ojeda, D.; Lakhal, B.; Fonseca, D.J.; Braham, R.; Landolsi, H.; Mateus, H.E.; Restrepo, C.M.; Elghezal, H.; Saad, A.; Laissue, P. Sequence analysis of the CDKN1B gene in patients with premature ovarian failure reveals a novel mutation potentially related to the phenotype. Fertil. Steril. 2011, 95, 2658–2660 e2651. [Google Scholar] [CrossRef]
- Charoenngam, N.; Mannstadt, M. Primary Hyperparathyroidism in a Patient with Bilateral Pheochromocytoma and a Mutation in the Tumor Suppressor MAX. JCEM Case Rep. 2023, 1, luad006. [Google Scholar] [CrossRef]
- Bausch, B.; Schiavi, F.; Ni, Y.; Welander, J.; Patocs, A.; Ngeow, J.; Wellner, U.; Malinoc, A.; Taschin, E.; Barbon, G.; et al. Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol. 2017, 3, 1204–1212. [Google Scholar] [CrossRef]
- Burnichon, N.; Cascon, A.; Schiavi, F.; Morales, N.P.; Comino-Mendez, I.; Abermil, N.; Inglada-Perez, L.; de Cubas, A.A.; Amar, L.; Barontini, M.; et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin. Cancer Res. 2012, 18, 2828–2837. [Google Scholar] [CrossRef]
- Shibata, M.; Inaishi, T.; Miyajima, N.; Adachi, Y.; Takano, Y.; Nakanishi, K.; Takeuchi, D.; Noda, S.; Aita, Y.; Takekoshi, K.; et al. Synchronous bilateral pheochromocytomas and paraganglioma with novel germline mutation in MAX: A case report. Surg. Case Rep. 2017, 3, 131. [Google Scholar] [CrossRef]
- Chang, X.; Li, Z.; Ma, X.; Cui, Y.; Chen, S.; Tong, A. A Novel Phenotype of Germline Pathogenic Variants in MAX: Concurrence of Pheochromocytoma and Ganglioneuroma in a Chinese Family and Literature Review. Front. Endocrinol. 2020, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Comino-Mendez, I.; Gracia-Aznarez, F.J.; Schiavi, F.; Landa, I.; Leandro-Garcia, L.J.; Leton, R.; Honrado, E.; Ramos-Medina, R.; Caronia, D.; Pita, G.; et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 2011, 43, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Nezu, M.; Hirotsu, Y.; Amemiya, K.; Katsumata, M.; Watanabe, T.; Takizawa, S.; Inoue, M.; Mochizuki, H.; Hosaka, K.; Oyama, T.; et al. A case of juvenile-onset pheochromocytoma with KIF1B p.V1529M germline mutation. Endocr. J. 2022, 69, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.B.; Ferreira, L.; Santos, A.P.; Costa, C.; Lima, J.; Santos, C.; Afonso, M.; Teixeira, M.R.; Carvalho, R.; Cardoso, M.H. Case Report: Pheochromocytoma and Synchronous Neuroblastoma in a Family with Hereditary Pheochromocytoma Associated with a MAX Deleterious Variant. Front. Endocrinol. 2021, 12, 609263. [Google Scholar] [CrossRef]
- Richter, J.E., Jr.; Hines, S.; Selvam, P.; Atwal, H.; Farres, H.; Caulfield, T.R.; Atwal, P.S. Clinical description & molecular modeling of novel MAX pathogenic variant causing pheochromocytoma in family, supports paternal parent-of-origin effect. Cancer Genet. 2021, 252–253, 107–110. [Google Scholar] [CrossRef]
- Mamedova, E.; Vasilyev, E.; Petrov, V.; Buryakina, S.; Tiulpakov, A.; Belaya, Z. Familial Acromegaly and Bilateral Asynchronous Pheochromocytomas in a Female Patient with a MAX Mutation: A Case Report. Front. Endocrinol. 2021, 12, 683492. [Google Scholar] [CrossRef]
- Romanet, P.; Guerin, C.; Pedini, P.; Essamet, W.; Castinetti, F.; Sebag, F.; Roche, P.; Cascon, A.; Tischler, A.S.; Pacak, K.; et al. Pathological and Genetic Characterization of Bilateral Adrenomedullary Hyperplasia in a Patient with Germline MAX Mutation. Endocr. Pathol. 2017, 28, 302–307. [Google Scholar] [CrossRef]
- Augert, A.; Mathsyaraja, H.; Ibrahim, A.H.; Freie, B.; Geuenich, M.J.; Cheng, P.F.; Alibeckoff, S.P.; Wu, N.; Hiatt, J.B.; Basom, R.; et al. MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell 2020, 38, 97–114.e117. [Google Scholar] [CrossRef]
- Loughrey, P.B.; Roncaroli, F.; Healy, E.; Weir, P.; Basetti, M.; Casey, R.T.; Hunter, S.J.; Korbonits, M. Succinate dehydrogenase and MYC-associated factor X mutations in pituitary neuroendocrine tumours. Endocr. Relat. Cancer 2022, 29, R157–R172. [Google Scholar] [CrossRef]
- Crona, J.; Maharjan, R.; Delgado Verdugo, A.; Stalberg, P.; Granberg, D.; Hellman, P.; Bjorklund, P. MAX mutations status in Swedish patients with pheochromocytoma and paraganglioma tumours. Fam. Cancer 2014, 13, 121–125. [Google Scholar] [CrossRef]
- Korpershoek, E.; Koffy, D.; Eussen, B.H.; Oudijk, L.; Papathomas, T.G.; van Nederveen, F.H.; Belt, E.J.; Franssen, G.J.; Restuccia, D.F.; Krol, N.M.; et al. Complex MAX Rearrangement in a Family with Malignant Pheochromocytoma, Renal Oncocytoma, and Erythrocytosis. J. Clin. Endocrinol. Metab. 2016, 101, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Pozza, C.; Sesti, F.; Di Dato, C.; Sbardella, E.; Pofi, R.; Schiavi, F.; Bonifacio, V.; Isidori, A.M.; Faggiano, A.; Lenzi, A.; et al. A Novel MAX Gene Mutation Variant in a Patient with Multiple and “Composite” Neuroendocrine-Neuroblastic Tumors. Front. Endocrinol. 2020, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Araujo, P.B.; Carvallo, M.S.; Vidal, A.P.; Nascimento, J.B.; Wo, J.M.; Naliato, E.O.; Cunha Neto, S.H.; Conceicao, F.L.; Fontes, R.; de Lima, V.V.; et al. Case Report: Composite pheochromocytoma with ganglioneuroma component: A report of three cases. Front. Endocrinol. 2022, 13, 903085. [Google Scholar] [CrossRef]
- Maltais, L.; Montagne, M.; Bedard, M.; Tremblay, C.; Soucek, L.; Lavigne, P. Biophysical characterization of the b-HLH-LZ of DeltaMax, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers. PLoS ONE 2017, 12, e0174413. [Google Scholar] [CrossRef] [PubMed]
Syndrome | Clinical Features | Incidence | Onset |
---|---|---|---|
MEN1 | Parathyroid hyperplasia with primary hyperparathyroidism | >90% | 20–25 y.o. |
Neuroendocrinal tumors:
| 30–80% | >40 y.o. | |
Pituitary adenoma:
| 30–50% in adult and 34% in children | ||
Other manifestations: pheochromocytomas, facial angiofibromas, collagenomas, meningiomas, ependymomas, lipomas, carcinoid tumors, breast cancer | |||
MEN2 | |||
| FMTC/Medullary thyroid carcinoma Or | 100% | |
Medullary thyroid carcinoma associated with | 100% | Third decade | |
Pheochromocytoma | 50% | Second decade | |
Primary hyperparathyroidism | 10–30% | 34 y.o. | |
Other: Cutaneous lichen amyloidosis | |||
| Medullary thyroid carcinoma | 100% | Earlier than MEN2A |
Pheochromocytoma | 50% | ||
Marfanoid habitus | 75% | ||
Other: Mucosal neuromas of the lips and tongue, ganglioneuromatosis of the gastrointestinal tract | |||
MEN4 | Primary hyperparathyroidism | 80–90% | |
Pituitary adenomas | 30–79 y.o. | ||
Other: Neuroendocrinal tumors; tumors of the adrenals, kidneys, and testicular and cervical organs | |||
MEN5 | Unilateral or bilateral pheochromocytoma | 20 y.o | |
Paraganglioma | 30–40 y.o. |
GENE | LOCUS | FUNCTION | MUTATION | PHENOTYPES |
---|---|---|---|---|
MEN1 | Chromosome 11 (11q13) | Gene transcription and epigenetic regulation | Autosomal dominant: 50% of mutations are insertions and deletions causing frame shifts, 20% are missense mutations, 20% are nonsense mutations and approximately 7% are splice site defects | MEN 1 syndrome: mainly parathyroid glands, pancreatic islets, and anterior pituitary |
RET (REarranged during Transfection) | Chromosome 10 (10q11.2) | Receptor tyrosine kinase protein; serves as a receptor for a series of proteins of the GDNF (glial cell line-derived neurotrophic factor) family | Substitutions; mainly 95% of RET mutations occur in the cysteine-rich extracellular domain (with 85% of these mutations located at codon Cys634) or in methionine 918 (methionine 918 → threonine) or alanine 883 in the kinase domain | MEN 2A: medullary thyroid carcinoma, hyperparathyroidism and pheochromocytoma MEN 2B: medullary thyroid carcinoma (more aggressive than MEN type A), pheochromocytoma and diffuse gastrointestinal ganglioneuromatosis FMTC: familiar medullary carcinoma. |
CDKN1B/p27 | Chromose 12 (12p13) | Inhibitor of cyclin-dependent kinase (CDKI), regulates cell cycle progression and arrest with inhibitory functions on various cyclin/CDK complexes, particularly at the transition from G1 to S phase, but many new functions have been discovered depending on its subcellular localization | Mainly missense mutations located within the coding sequence (for example: c.678 C>T (p.P69L) e c.283 C>T (p.P95S)) or germline mutations altering untranslated regions (UTRs) | Hyperparathyroidism and pituitary adenomas, with a more indolent course compared to MEN 1 |
MAX (Factor X associated with Myc) | Chromose 14 (14q23.3) | Tumor suppressor, transcription factor, which is a cofactor of the MYC proto-oncogene and plays an important role in the regulation of cell proliferation, differentiation and death | Inactivating mutations (truncating frameshift mutation, for example c.160C in exon 3 of the MYC-associated factor) | MEN 5: neuroendocrine tumors (PitNETs), pheochromocytomas and paragangliomas |
AIP (Aryl hydrocarbon receptor-interacting protein) | Chromosome 11 (11q13) | Co-chaperone of HSP90 and HSC70 involved in the cAMP-phosphodiesterases pathway | Nonsense and missense mutations; deletions; insertions; splice-site and promoter mutations | Pituitary adenomas at a younger age, larger in size and more aggressive |
CaSR (Calcium-sensing receptor) | Chromosome 3 (3q13.3-21) | Regulation of extracellular calcium homeostasis; apoptosis; cell proliferation | Inactivating mutations as missense mutations Hotspots cluster in exons 3, 4 and 7. | Primary hyperparathyroidism and familiar hypocalciuric hypercalcemia |
CDC73 (Parafibromin) | Chromosome 1 (1q31.2) | It participates in transcriptional processes important for chromatin remodeling, histone modification, initiation and elongation, and activates the wnt/ b-catenin and hedgehog signaling pathways | Mutations truncating the protein prematurely result in the loss of parafibromin function, especially with damage to the C-terminal | Parathyroid adenomas |
The VDR | Chromosome 12 (12q13.11) | The transcription process of genes involved in the signaling pathway of vitamin D, calcium and phosphorus; cellular proliferation processes and the control of the immune system | Fokl (rs10735810), BsmI (rs1544410), Taql (rs731236) and Apal (rs7975232) | Parathyroid gland hyperplasia and adenomas; cardiovascular alterations, rheumatic arthritis and metabolic bone diseases, type 2 diabetes, cancer and autoimmune diseases |
SDHB, SDHC, SDHD, SDH5 e TMEM127 | Chromosome 1-2-11 | SDH(B-C-D-5) encode the succinate dehydrogenase (SDH) comples, which are necessary for the mitochondrial electron transport chain and for the generation of ATP; TMEM127 is a tumor-suppressor gene that encodes a transmembrane protein of unknown function | Amino acid substitutions, truncating mutations, rearrangements, missense mutations, which all cause the inactivation of TMEM127 and SDH | Pheochromocytomas, renal cancers, gastrointestinal stromal tumor, papillary thyroid carcinoma and paragangliomas |
Xq26.3 (GPR101) | Chromosome X | An orphane G-protein coupled receptor, the role of which is not yet known but it is able to influence GH levels at the pituitary and hypothalamic levels | Microduplications | Development of mixed GH and/or prolactin adenomas |
AVP (vasopressin gene) | Chromosome 20 (20p12) | Receptor V1a—vasoconstriction, gluconeogenesis, platelet aggregation, release of factor VIII and von Willebrand factor; Repector V1b—secretion of adrenocorticotropin (ACTH) in response to stress; V2—insertion of aquaporin-2 (AQP2) (channels for the passage of water) | Missense mutations c.173 G>C (p.Cys58Ser) e c.215 C>A (p.Ala72Glu) | Pituitary adenomas |
SLC11A2 (DMT-1) | Chromosome 12 | It allows the uptake of iron in the kidneys and intestines and allows iron to be recovered from the recycling of endosomes | Splicing c.762 + 35A>G; substitution 223G>A | Tumors of the gastrointestinal system (colorectal cancer) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzaro, F.; De Biasio, D.; Cesaro, F.G.; Stampone, E.; Tartaglione, I.; Casale, M.; Bencivenga, D.; Marzuillo, P.; Roberti, D. Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. J. Clin. Med. 2024, 13, 5510. https://doi.org/10.3390/jcm13185510
Lanzaro F, De Biasio D, Cesaro FG, Stampone E, Tartaglione I, Casale M, Bencivenga D, Marzuillo P, Roberti D. Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes. Journal of Clinical Medicine. 2024; 13(18):5510. https://doi.org/10.3390/jcm13185510
Chicago/Turabian StyleLanzaro, Francesca, Delia De Biasio, Francesco Giustino Cesaro, Emanuela Stampone, Immacolata Tartaglione, Maddalena Casale, Debora Bencivenga, Pierluigi Marzuillo, and Domenico Roberti. 2024. "Childhood Multiple Endocrine Neoplasia (MEN) Syndromes: Genetics, Clinical Heterogeneity and Modifying Genes" Journal of Clinical Medicine 13, no. 18: 5510. https://doi.org/10.3390/jcm13185510