Heart Rate Variability and Cognition: A Narrative Systematic Review of Longitudinal Studies
Abstract
:1. Introduction
1.1. Heart Rate Variability
1.2. Heart Rate Variability and Cognition
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion/Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment and Risk of Bias
2.5. Data Synthesis
3. Results
3.1. Study Publication Year, Design, Sample Size, Participants and Follow-Up
3.2. Study Exclusion Criteria (Comorbidities and Medications)
3.3. HRV Methodology
3.4. Evaluation of Cognition
3.5. Confounders Controlled for in the Statistical Analyses
3.6. Study Results
3.6.1. General Relationship between HRV and Cognition
3.6.2. Relationship between PNS and SNS Activity and All Cognitive Outcomes
3.6.3. Relationship between PNS and SNS Activity and Specific Cognitive Domains
Executive Functioning
Episodic Memory
Language
3.7. Quality Assessment and Risk of Bias
4. Discussion
4.1. Interpretation of the Results
4.1.1. General Relationship between HRV and Cognition
4.1.2. Relationship between PNS and SNS Activity and All Cognitive Outcomes
4.1.3. Relationship between PNS and SNS Activity and Specific Cognitive Domains
Executive Functioning
Episodic Memory
Language
4.2. Clinical Implications
4.3. Limitations of the Review Process
4.4. Limitations of the Reviewed Evidence and Future Directions
4.4.1. Study Design
4.4.2. Study Population
4.4.3. HRV Methodology
4.4.4. Evaluation of Cognition
4.4.5. Relationship between PNS and SNS Activity and Cognition
4.4.6. Underlying Mechanisms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, M.; Thomas Bigger, J.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public. Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, P.; Ciulla, M.M.; De Asmundis, C.; Magrini, F.; Brugada, P. The prognostic value of heart rate variability in the elderly, changing the perspective: From sympathovagal balance to chaos theory. Pacing Clin. Electrophysiol. 2012, 35, 622–638. [Google Scholar] [CrossRef] [PubMed]
- Ellenbroek, B.A.; Kidwell, M.; Colussi-Mas, J.; Youn, J. Heart Rate Variability as a Translational Biomarker for Emotional and Cognitive Deficits. In Handbook of Behavioral Neuroscience; Nomikos, G.G., Feltner, D.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 29, pp. 199–212. [Google Scholar]
- Singh, J.; Ameenpur, S.; Ahmed, R.; Basheer, S.; Chishti, S.; Lawrence, R.; Fiori, F.; Santosh, P. An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome. Biomedicines 2022, 10, 1684. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.D.; Redline, S.; Hughes, T.M.; Heckbert, S.R.; Goldberger, A.L. Prediction of Cognitive Decline Using Heart Rate Fragmentation Analysis: The Multi-Ethnic Study of Atherosclerosis. Front. Aging Neurosci. 2021, 13, 708130. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.D.; Davis, R.B.; Goldberger, A.L. Heart Rate Fragmentation: A New Approach to the Analysis of Cardiac Interbeat Interval Dynamics. Front. Physiol. 2017, 8, 255. [Google Scholar] [CrossRef]
- Castiglioni, P.; Merati, G.; Parati, G.; Faini, A. Sample, Fuzzy and Distribution Entropies of Heart Rate Variability: What Do They Tell Us on Cardiovascular Complexity? Entropy 2023, 25, 281. [Google Scholar] [CrossRef]
- Faini, A.; Parati, G.; Castiglioni, P. Multiscale assessment of the degree of multifractality for physiological time series. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200254. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Montano, N.; Mela, G.S. Sympathovagal balance: A reappraisal. Circulation 1998, 98, 2640–2643. [Google Scholar] [CrossRef]
- Montano, N.; Porta, A.; Cogliati, C.; Costantino, G.; Tobaldini, E.; Casali, K.R.; Iellamo, F. Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neurosci. Biobehav. Rev. 2009, 33, 71–80. [Google Scholar] [CrossRef]
- Williams, D.P.; Hill, L.K.; Koenig, J.; Thayer, J.F. Examining the Association between the Low-to-High-Frequency Ratio and Impedance Derived Measures of Cardiac Autonomic Balance and Regulation. Biomed. Sci. Instrum. 2016. [Google Scholar]
- Malik, M.; Hnatkova, K.; Huikuri, H.V.; Lombardi, F.; Schmidt, G.; Zabel, M. CrossTalk proposal: Heart rate variability is a valid measure of cardiac autonomic responsiveness. J. Physiol. 2019, 597, 2595–2598. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Porta, A.; Schwartz, P.J. Autonomic Control of the Heart and Its Clinical Impact. A Personal Perspective. Front. Physiol. 2020, 11, 582. [Google Scholar] [CrossRef]
- Heathers, J.A. Everything Hertz: Methodological issues in short-term frequency-domain HRV. Front. Physiol. 2014, 5, 177. [Google Scholar] [CrossRef]
- Eckberg, D.L. Sympathovagal balance: A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- von Rosenberg, W.; Chanwimalueang, T.; Adjei, T.; Jaffer, U.; Goverdovsky, V.; Mandic, D.P. Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Front. Physiol. 2017, 8, 360. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef]
- Arakaki, X.; Arechavala, R.J.; Choy, E.H.; Bautista, J.; Bliss, B.; Molloy, C.; Wu, D.A.; Shimojo, S.; Jiang, Y.; Kleinman, M.T.; et al. The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Front. Neurosci. 2023, 17, 1055445. [Google Scholar] [CrossRef]
- da Silva, V.P.; Ramalho Oliveira, B.R.; Tavares Mello, R.G.; Moraes, H.; Deslandes, A.C.; Laks, J. Heart Rate Variability Indexes in Dementia: A Systematic Review with a Quantitative Analysis. Curr. Alzheimer Res. 2018, 15, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Huang, Y.C.; Huang, W.L. Heart rate variability in patients with dementia or neurocognitive disorders: A systematic review and meta-analysis. Aust. N. Z. J. Psychiatry 2022, 56, 16–27. [Google Scholar] [CrossRef]
- Liu, K.Y.; Elliott, T.; Knowles, M.; Howard, R. Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101539. [Google Scholar] [CrossRef] [PubMed]
- Hovland, A.; Pallesen, S.; Hammar, Å.; Hansen, A.L.; Thayer, J.F.; Tarvainen, M.; Nordhus, I.H. The relationships among heart rate variability, executive functions, and clinical variables in patients with panic disorder. Int. J. Psychophysiol. 2012, 86, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Levy, B. Illness severity, trait anxiety, cognitive impairment and heart rate variability in bipolar disorder. Psychiatry Res. 2014, 220, 890–895. [Google Scholar] [CrossRef]
- Hoffmann, A.; Ettinger, U.; Reyes Del Paso, G.A.; Duschek, S. Executive function and cardiac autonomic regulation in depressive disorders. Brain Cogn. 2017, 118, 108–117. [Google Scholar] [CrossRef]
- Lazaridi, M.; Panagiotaropoulou, G.; Covanis, P.; Karantinos, T.; Aggelopoulos, E.; Klein, C.; Smyrnis, N. Brain-Heart Link in Schizophrenia: Cognitive Inhibitory Control Deficit in Patients Is Specifically Related to Parasympathetic Dysregulation. Schizophr. Bull. 2022, 48, 1155–1163. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Silvani, A.; Calandra-Buonaura, G.; Dampney, R.A.; Cortelli, P. Brain-heart interactions: Physiology and clinical implications. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150181. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 2014, 114, 1804–1814. [Google Scholar] [CrossRef]
- Laitinen, T.; Hartikainen, J.; Niskanen, L.; Geelen, G.; Länsimies, E. Sympathovagal balance is major determinant of short-term blood pressure variability in healthy subjects. Am. J. Physiol. 1999, 276, 1245–1252. [Google Scholar] [CrossRef]
- Parati, G.; Torlasco, C.; Pengo, M.; Bilo, G.; Ochoa, J.E. Blood pressure variability: Its relevance for cardiovascular homeostasis and cardiovascular diseases. Hypertens. Res. 2020, 43, 609–620. [Google Scholar] [CrossRef]
- Beishon, L.C.; Hosford, P.; Gurung, D.; Brassard, P.; Minhas, J.S.; Robinson, T.G.; Haunton, V.; Panerai, R.B. The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Auton. Neurosci. 2022, 240, 102985. [Google Scholar] [CrossRef]
- Forte, G.; De Pascalis, V.; Favieri, F.; Casagrande, M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J. Clin. Med. 2019, 22, 34. [Google Scholar] [CrossRef]
- Jia, P.; Lee, H.W.Y.; Chan, J.Y.C.; Yiu, K.K.L.; Tsoi, K.K.F. Long-Term Blood Pressure Variability Increases Risks of Dementia and Cognitive Decline: A Meta-Analysis of Longitudinal Studies. Hypertension 2021, 78, 996–1004. [Google Scholar] [CrossRef]
- Thayer, J.F.; Sternberg, E.M. Neural aspects of immunomodulation: Focus on the vagus nerve. Brain Behav. Immun. 2010, 24, 1223–1228. [Google Scholar] [CrossRef]
- Kelly, M.J.; Breathnach, C.; Tracey, K.J.; Donnelly, S.C. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep. Med. 2022, 3, 100696. [Google Scholar] [CrossRef]
- Walker, K.A. Inflammation and neurodegeneration: Chronicity matters. Aging 2018, 11, 3–4. [Google Scholar] [CrossRef]
- Low, A.; Mak, E.; Rowe, J.B.; Markus, H.S.; O’Brien, J.T. Inflammation and cerebral small vessel disease: A systematic review. Ageing Res. Rev. 2019, 53, 100916. [Google Scholar] [CrossRef]
- Paouri, E.; Georgopoulos, S. Systemic and CNS Inflammation Crosstalk: Implications for Alzheimer’s Disease. Curr. Alzheimer Res. 2019, 16, 559–574. [Google Scholar] [CrossRef]
- Leonardo, S.; Fregni, F. Association of inflammation and cognition in the elderly: A systematic review and meta-analysis. Front. Aging Neurosci. 2023, 15, 1069439. [Google Scholar] [CrossRef]
- Feng, L.; Wang, Y.; Zeng, D.; Wang, M.; Duan, X. Predictors of cognitive decline in older individuals without dementia: An updated meta-analysis. Ann. Clin. Transl. Neurol. 2023, 10, 497–506. [Google Scholar] [CrossRef]
- Elias, M.F.; Torres, R.V. The Renaissance of Heart Rate Variability as a Predictor of Cognitive Functioning. Am. J. Hypertens. 2017, 31, 21–23. [Google Scholar] [CrossRef]
- Tucker-Drob, E.M. Cognitive Aging and Dementia: A Life Span Perspective. Annu. Rev. Dev. Psychol. 2019, 1, 177–196. [Google Scholar] [CrossRef]
- Wu, Z.; Phyo, A.Z.Z.; Al-Harbi, T.; Woods, R.L.; Ryan, J. Distinct Cognitive Trajectories in Late Life and Associated Predictors and Outcomes: A Systematic Review. J. Alzheimers Dis. Rep. 2020, 4, 459–478. [Google Scholar] [CrossRef]
- Caruana, E.J.; Roman, M.; Hernández-Sánchez, J.; Solli, P. Longitudinal studies. J. Thorac. Dis. 2015, 7, E537–E540. [Google Scholar]
- Chen, L.; Jiao, J.; Zhang, Y. Therapeutic approaches for improving cognitive function in the aging brain. Front. Neurosci. 2022, 16, 1060556. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.G.; Dantas de Souza, A.C.; Barbosa, I.R.; Jerez-Roig, J.; Souza, D.L.B. Multimorbidity and Its Impact on Workers: A Review of Longitudinal Studies. Saf. Health Work. 2019, 10, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, M.; Dumais, A.; Zouaoui, I.; Potvin, S. The clouded debate: A systematic review of comparative longitudinal studies examining the impact of recreational cannabis legalization on key public health outcomes. Front. Psychiatry 2023, 13, 1060656. [Google Scholar] [CrossRef] [PubMed]
- Taris, T.W.; Kessler, S.R.; Kelloway, E.K. Strategies addressing the limitations of cross-sectional designs in occupational health psychology: What they are good for (and what not). Work. Stress 2021, 35, 1–5. [Google Scholar] [CrossRef]
- Hansen, C.S.; Færch, K.; Jørgensen, M.E.; Malik, M.; Witte, D.R.; Brunner, E.J.; Tabák, A.G.; Kivimäki, M.; Vistisen, D. Heart Rate, Autonomic Function, and Future Changes in Glucose Metabolism in Individuals Without Diabetes: The Whitehall II Cohort Study. Diabetes Care 2019, 42, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Friedman, G.D.; Cutter, G.R.; Donahue, R.P.; Hughes, G.H.; Hulley, S.B.; Jacobs, D.R., Jr.; Liu, K.; Savage, P.J. CARDIA: Study design, recruitment, and some characteristics of the examined subjects. J. Clin. Epidemiol. 1988, 41, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Ryff, C.D.; Seeman, T.; Weinstein, M. Midlife in the United States (MIDUS 2): Biomarker Project, 2004–2009. Inter-University Consortium for Political and Social Research [Distributor]. 14 December 2022. Available online: https://www.icpsr.umich.edu/web/NACDA/studies/29282/versions/V10 (accessed on 20 July 2023).
- Nevels, T.L.; Wirth, M.D.; Ginsberg, J.P.; McLain, A.C.; Burch, J.B. The role of sleep and heart rate variability in metabolic syndrome: Evidence from the Midlife in the United States study. Sleep 2023, 46, zsad013. [Google Scholar] [CrossRef]
- O’Neal, W.T.; Chen, L.Y.; Nazarian, S.; Soliman, E.Z. Reference ranges for short-term heart rate variability measures in individuals free of cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis (MESA). J. Electrocardiol. 2016, 49, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Chahal, H.; Greenland, P.; Guallar, E.; Lima, J.A.C.; Soliman, E.Z.; Alonso, A.; Heckbert, S.R.; Nazarian, S. Resting Heart Rate, Short-Term Heart Rate Variability and Incident Atrial Fibrillation (from the Multi-Ethnic Study of Atherosclerosis (MESA)). Am. J. Cardiol. 2019, 124, 1684–1689. [Google Scholar] [CrossRef]
- Tsuji, H.; Larson, M.G.; Venditti, F.J., Jr.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef]
- Wu, J.S.; Lu, F.H.; Yang, Y.C.; Lin, T.S.; Chen, J.J.; Wu, C.H.; Huang, Y.H.; Chang, C.J. Epidemiological study on the effect of pre-hypertension and family history of hypertension on cardiac autonomic function. J. Am. Coll. Cardiol. 2008, 51, 1896–1901. [Google Scholar] [CrossRef] [PubMed]
- Zeki Al Hazzouri, A.; Elfassy, T.; Carnethon, M.R.; Lloyd-Jones, D.M.; Yaffe, K. Heart Rate Variability and Cognitive Function In Middle-Age Adults: The Coronary Artery Risk Development in Young Adults. Am. J. Hypertens. 2017, 31, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, M.; Gervès-Pinquié, C.; Feuilloy, M.; Le Vaillant, M.; Trzepizur, W.; Meslier, N.; Paris, A.; Pigeanne, T.; Racineux, J.L.; Balusson, F.; et al. Association of Nocturnal Hypoxemia and Pulse Rate Variability with Incident Atrial Fibrillation in Patients Investigated for Obstructive Sleep Apnea. Ann. Am. Thorac. Soc. 2021, 18, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Britton, A.; Singh-Manoux, A.; Hnatkova, K.; Malik, M.; Marmot, M.G.; Shipley, M. The association between heart rate variability and cognitive impairment in middle-aged men and women. The Whitehall II cohort study. Neuroepidemiology 2008, 31, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Mahinrad, S.; Jukema, J.W.; van Heemst, D.; Macfarlane, P.W.; Clark, E.N.; de Craen, A.J.; Sabayan, B. 10-Second heart rate variability and cognitive function in old age. Neurology 2016, 86, 1120–1127. [Google Scholar] [CrossRef]
- Kim, M.S.; Yoon, J.H.; Hong, J.M. Early differentiation of dementia with Lewy bodies and Alzheimer’s disease: Heart rate variability at mild cognitive impairment stage. Clin. Neurophysiol. 2018, 129, 1570–1578. [Google Scholar] [CrossRef]
- Knight, E.L.; Giuliano, R.J.; Shank, S.W.; Clarke, M.M.; Almeida, D.M. Parasympathetic and sympathetic nervous systems interactively predict change in cognitive functioning in midlife adults. Psychophysiology 2020, 57, e13622. [Google Scholar] [CrossRef]
- Schaich, C.L.; Malaver, D.; Chen, H.; Shaltout, H.A.; Zeki Al Hazzouri, A.; Herrington, D.M.; Hughes, T.M. Association of Heart Rate Variability with Cognitive Performance: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2020, 9, 013827. [Google Scholar] [CrossRef]
- Weinstein, G.; Davis-Plourde, K.; Beiser, A.S.; Seshadri, S. Autonomic Imbalance and Risk of Dementia and Stroke: The Framingham Study. Stroke 2021, 52, 2068–2076. [Google Scholar] [CrossRef]
- Chou, Y.T.; Sun, Z.J.; Shao, S.C.; Yang, Y.C.; Lu, F.H.; Chang, C.J.; Liao, T.C.; Li, C.Y.; Chen, T.H.; Wu, J.S.; et al. Autonomic modulation and the risk of dementia in a middle-aged cohort: A 17-year follow-up study. Biomed. J. 2022, 26, 100576. [Google Scholar] [CrossRef]
- Gafni, T.; Gabriel, K.P.; Shuval, K.; Yaffe, K.; Sidney, S.; Weinstein, G. Physical activity trajectories, autonomic balance and cognitive function: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Prev. Med. 2022, 164, 107291. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, P.; Lucchi, T.; Abbate, C.; Inglese, S.; Tomasini, E.; Mari, D.; Rossi, P.D.; Vicenzi, M. Autonomic function predicts cognitive decline in mild cognitive impairment: Evidence from power spectral analysis of heart rate variability in a longitudinal study. Front. Aging Neurosci. 2022, 14, 886023. [Google Scholar] [CrossRef] [PubMed]
- Sabil, A.; Blanchard, M.; Annweiler, C.; Bailly, S.; Goupil, F.; Pigeanne, T.; Trzepizur, W.; Gervès-Pinquié, C.; Gagnadoux, F.; Pays de la Loire Sleep Cohort Study Group. Overnight pulse rate variability and risk of major neurocognitive disorder in older patients with obstructive sleep apnea. J. Am. Geriatr. Soc. 2022, 70, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality if Nonrandomized Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford_web.ppt (accessed on 30 July 2023).
- Reus, C.R.; Phé, V.; Dechartres, A.; Grilo, N.R.; Chartier-Kastler, E.J.; Mozer, P.C. Performance and Safety of the Artificial Urinary Sphincter (AMS 800) for Non-neurogenic Women with Urinary Incontinence Secondary to Intrinsic Sphincter Deficiency: A Systematic Review. Eur. Urol. Focus. 2020, 6, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Lachman, M.E.; Agrigoroaei, S.; Tun, P.A.; Weaver, S.L. Monitoring cognitive functioning: Psychometric properties of the brief test of adult cognition by telephone. Assessment 2014, 21, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Hasegawa, K.; Homma, A.; Imai, Y.; Larson, E.; Graves, A.; Sugimoto, K.; Yamaguchi, T.; Sasaki, H.; Chiu, D.; et al. The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia. Int. Psychogeriatr. 1994, 6, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- Faria, C.A.; Alves, H.V.D.; Charchat-Fichman, H. The most frequently used tests for assessing executive functions in aging. Dement. Neuropsychol. 2015, 9, 149–155. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Wright, L.M.; De Marco, M.; Venneri, A. Current Understanding of Verbal Fluency in Alzheimer’s Disease: Evidence to Date. Psychol. Res. Behav. Manag. 2023, 16, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Raven, J. The Progressive Matrices and Mill Hill Vocabulary Scale in Western Societies. In Human Assessment and Cultural Factors, NATO Conference Series; Irvine, S.H., Berry, J.W., Eds.; Springer: Boston, MA, USA, 1983; Volume 21, pp. 107–114. [Google Scholar]
- Ralph, M.A.; Jefferies, E.; Patterson, K.; Rogers, T.T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 2017, 18, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Zaza, A.; Lombardi, F. Autonomic indexes based on the analysis of heart rate variability: A view from the sinus node. Cardiovasc. Res. 2001, 50, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Quintana, D.S.; Heathers, J.A. Considerations in the assessment of heart rate variability in biobehavioral research. Front. Psychol. 2014, 5, 805. [Google Scholar] [CrossRef] [PubMed]
- Sacha, J. Interaction between heart rate and heart rate variability. Ann. Noninvasive Electrocardiol. 2014, 19, 207–216. [Google Scholar] [CrossRef] [PubMed]
- de Geus, E.J.C.; Gianaros, P.J.; Brindle, R.C.; Jennings, J.R.; Berntson, G.G. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology 2019, 56, e13287. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef]
- Barbic, F.; Minonzio, M.; Cairo, B.; Shiffer, D.; Cerina, L.; Verzeletti, P.; Badilini, F.; Vaglio, M.; Porta, A.; Santambrogio, M.; et al. Effects of a cool classroom microclimate on cardiac autonomic control and cognitive performances in undergraduate students. Sci. Total Environ. 2022, 808, 152005. [Google Scholar] [CrossRef]
- Dalise, A.M.; Prestano, R.; Fasano, R.; Gambardella, A.; Barbieri, M.; Rizzo, M.R. Autonomic Nervous System and Cognitive Impairment in Older Patients: Evidence from Long-Term Heart Rate Variability in Real-Life Setting. Front. Aging Neurosci. 2020, 12, 40. [Google Scholar] [CrossRef]
- Sabil, A.; Gervès-Pinquié, C.; Blanchard, M.; Feuilloy, M.; Trzepizur, W.; Goupil, F.; Pigeanne, T.; Oger, E.; Girault, J.M.; Gagnadoux, F.; et al. Overnight Oximetry-derived Pulse Rate Variability Predicts Stroke Risk in Patients with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2021, 204, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Raman, D.; Kaffashi, F.; Lui, L.Y.; Sauer, W.H.; Redline, S.; Stone, P.; Cawthon, P.M.; Stone, K.L.; Ensrud, K.E.; Ancoli-Israel, S.; et al. Polysomnographic Heart Rate Variability Indices and Atrial Ectopy Associated with Incident Atrial Fibrillation Risk in Older Community-dwelling Men. JACC Clin. Electrophysiol. 2017, 3, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, J.C.; Pichot, V.; Hupin, D.; Berger, M.; Celle, S.; Mouhli, L.; Bäck, M.; Lacour, J.R.; Roche, F. Targeting autonomic nervous system as a biomarker of well-ageing in the prevention of stroke. Front. Aging Neurosci. 2022, 14, 969352. [Google Scholar] [CrossRef] [PubMed]
- Logue, S.F.; Gould, T.J. The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacol. Biochem. Behav. 2014, 123, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Raz, N. Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neurosci. Biobehav. Rev. 2014, 42, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Woodward, S.H.; Kaloupek, D.G.; Schaer, M.; Martinez, C.; Eliez, S. Right anterior cingulate cortical volume covaries with respiratory sinus arrhythmia magnitude in combat veterans. J. Rehabil. Res. Dev. 2008, 45, 451–463. [Google Scholar] [CrossRef]
- Wood, K.N.; Badrov, M.B.; Speechley, M.R.; Shoemaker, J.K. Regional cerebral cortical thickness correlates with autonomic outflow. Auton. Neurosci. 2017, 207, 28–36. [Google Scholar] [CrossRef]
- Winkelmann, T.; Thayer, J.F.; Pohlack, S.; Nees, F.; Grimm, O.; Flor, H. Structural brain correlates of heart rate variability in a healthy young adult population. Brain Struct. Funct. 2017, 222, 1061–1068. [Google Scholar] [CrossRef]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Jennings, J.R.; Sheu, L.K.; Kuan, D.C.; Manuck, S.B.; Gianaros, P.J. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiology 2016, 53, 444–454. [Google Scholar] [CrossRef]
- Schumann, A.; de la Cruz, F.; Köhler, S.; Brotte, L.; Bär, K.J. The Influence of Heart Rate Variability Biofeedback on Cardiac Regulation and Functional Brain Connectivity. Front. Neurosci. 2021, 15, 691988. [Google Scholar] [CrossRef] [PubMed]
- Magnon, V.; Vallet, G.T.; Benson, A.; Mermillod, M.; Chausse, P.; Lacroix, A.; Bouillon-Minois, J.B.; Dutheil, F. Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex 2022, 155, 218–236. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef] [PubMed]
- Sible, I.J.; Nation, D.A. Blood Pressure Variability and Cognitive Decline: A Post Hoc Analysis of the SPRINT MIND Trial. Am. J. Hypertens. 2023, 36, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Artero, S.; Tiemeier, H.; Prins, N.D.; Sabatier, R.; Breteler, M.M.; Ritchie, K. Neuroanatomical localisation and clinical correlates of white matter lesions in the elderly. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Boots, E.A.; Castellanos, K.J.; Zhan, L.; Barnes, L.L.; Tussing-Humphreys, L.; Deoni, S.C.L.; Lamar, M. Inflammation, Cognition, and White Matter in Older Adults: An Examination by Race. Front. Aging Neurosci. 2020, 12, 553998. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Doyle, M.F.; Chen, J.; Alosco, M.L.; Mez, J.; Satizabal, C.L.; Qiu, W.Q.; Murabito, J.M.; Lunetta, K.L. Association between inflammatory biomarkers and cognitive aging. PLoS ONE 2022, 17, e0274350. [Google Scholar] [CrossRef]
- Dahan, L.; Rampon, C.; Florian, C. Age-related memory decline, dysfunction of the hippocampus and therapeutic opportunities. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 102, 109943. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Kivimaki, M.; Glymour, M.M.; Elbaz, A.; Berr, C.; Ebmeier, K.P.; Ferrie, J.E.; Dugravot, A. Timing of onset of cognitive decline: Results from Whitehall II prospective cohort study. BMJ 2012, 344, d7622. [Google Scholar] [CrossRef]
- Hughes, M.L.; Agrigoroaei, S.; Jeon, M.; Bruzzese, M.; Lachman, M.E. Change in Cognitive Performance from Midlife into Old Age: Findings from the Midlife in the United States (MIDUS) Study. J. Int. Neuropsychol. Soc. 2018, 24, 805–820. [Google Scholar] [CrossRef]
- Vasudev, A.; Saxby, B.K.; O’Brien, J.; Colloby, S.J.; Firbank, M.J.; Brooker, H.; Wesnes, K.; Thomas, A.J. Relationship between cognition, magnetic resonance white matter hyperintensities, and cardiovascular autonomic changes in late-life depression. Am. J. Geriatr. Psychiatry. 2012, 20, 691–699. [Google Scholar] [CrossRef]
- Chen, P.C.; Zhang, J.; Thayer, J.F.; Mednick, S.C. Understanding the roles of central and autonomic activity during sleep in the improvement of working memory and episodic memory. Proc. Natl. Acad. Sci. USA 2022, 119, e2123417119. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, P.; Mari, D.; Abbate, C.; Inglese, S.; Bertagnoli, L.; Tomasini, E.; Rossi, P.D.; Lombardi, F. Autonomic function in amnestic and non-amnestic mild cognitive impairment: Spectral heart rate variability analysis provides evidence for a brain-heart axis. Sci. Rep. 2020, 10, 11661. [Google Scholar] [CrossRef]
- Hilgarter, K.; Schmid-Zalaudek, K.; Csanády-Leitner, R.; Mörtl, M.; Rössler, A.; Lackner, H.K. Phasic heart rate variability and the association with cognitive performance: A cross-sectional study in a healthy population setting. PLoS ONE 2021, 16, e0246968. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, Z.; Umegaki, H.; Makino, T.; Suzuki, Y.; Kuzuya, M. Relationship between cardiac autonomic function and cognitive function in Alzheimer’s disease. Geriatr. Gerontol. Int. 2017, 17, 92–98. [Google Scholar] [CrossRef]
- Abulafia, C.; Duarte-Abritta, B.; Villarreal, M.; Ladrón-de-Guevara, M.S.; García, C.; Sequeyra, G.; Sevlever, G.; Fiorentini, L.; Bär, K.J.; Gustafson, D.R.; et al. Relationship between Cognitive and Sleep-wake Variables in Asymptomatic Offspring of Patients with Late-onset Alzheimer’s Disease. Front. Aging Neurosci. 2017, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Frewen, J.; Finucane, C.; Savva, G.M.; Boyle, G.; Coen, R.F.; Kenny, R.A. Cognitive function is associated with impaired heart rate variability in ageing adults: The Irish longitudinal study on ageing wave one results. Clin. Auton. Res. 2013, 23, 313–323. [Google Scholar] [CrossRef]
- Patriquin, M.A.; Scarpa, A.; Friedman, B.H.; Porges, S.W. Respiratory sinus arrhythmia: A marker for positive social functioning and receptive language skills in children with autism spectrum disorders. Dev. Psychobiol. 2013, 55, 101–112. [Google Scholar] [CrossRef]
- Noppeney, U.; Price, C.J. Retrieval of abstract semantics. Neuroimage 2004, 22, 164–170. [Google Scholar] [CrossRef]
- Melrose, R.J.; Campa, O.M.; Harwood, D.G.; Osato, S.; Mandelkern, M.A.; Sultzer, D.L. The neural correlates of naming and fluency deficits in Alzheimer’s disease: An FDG-PET study. Int. J. Geriatr. Psychiatry. 2009, 24, 885–893. [Google Scholar] [CrossRef]
- Wilson, R.S.; Wang, T.; Yu, L.; Bennett, D.A.; Boyle, P.A. Normative Cognitive Decline in Old Age. Ann. Neurol. 2020, 87, 816–829. [Google Scholar] [CrossRef] [PubMed]
- Casaletto, K.B.; Elahi, F.M.; Staffaroni, A.M.; Walters, S.; Contreras, W.R.; Wolf, A.; Dubal, D.; Miller, B.; Yaffe, K.; Kramer, J.H. Cognitive aging is not created equally: Differentiating unique cognitive phenotypes in "normal" adults. Neurobiol. Aging 2019, 77, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Melis, R.J.F.; Haaksma, M.L.; Muniz-Terrera, G. Understanding and predicting the longitudinal course of dementia. Curr. Opin. Psychiatry 2019, 32, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Khoury, R.; Ghossoub, E. Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-art review. Biomark. Neuropsychiatry 2019, 1, 100005. [Google Scholar] [CrossRef]
- Pérez Palmer, N.; Trejo Ortega, B.; Joshi, P. Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatr. Clin. N. Am. 2022, 45, 639–661. [Google Scholar] [CrossRef]
- Mather, M.; Thayer, J. How heart rate variability affects emotion regulation brain networks. Curr. Opin. Behav. Sci. 2018, 19, 98–104. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef]
- Lehrer, P.; Kaur, K.; Sharma, A.; Shah, K.; Huseby, R.; Bhavsar, J.; Sgobba, P.; Zhang, Y. Heart Rate Variability Biofeedback Improves Emotional and Physical Health and Performance: A Systematic Review and Meta Analysis. Appl. Psychophysiol. Biofeedback 2020, 45, 109–129. [Google Scholar] [CrossRef]
- Tinello, D.; Kliegel, M.; Zuber, S. Does Heart Rate Variability Biofeedback Enhance Executive Functions Across the Lifespan? A Systematic Review. J. Cogn. Enhanc. 2022, 6, 126–142. [Google Scholar] [CrossRef]
- Jester, D.J.; Rozek, E.K.; McKelley, R.A. Heart rate variability biofeedback: Implications for cognitive and psychiatric effects in older adults. Aging Ment. Health 2019, 23, 574–580. [Google Scholar] [CrossRef]
- Lin, I.M.; Fan, S.Y.; Yen, C.F.; Yeh, Y.C.; Tang, T.C.; Huang, M.F.; Liu, T.L.; Wang, P.W.; Lin, H.C.; Tsai, H.Y.; et al. Heart Rate Variability Biofeedback Increased Autonomic Activation and Improved Symptoms of Depression and Insomnia among Patients with Major Depression Disorder. Clin. Psychopharmacol. Neurosci. 2019, 17, 222–232. [Google Scholar] [CrossRef] [PubMed]
- American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Obesity Expert Panel, 2013. Expert Panel Report: Guidelines (2013) for the management of overweight and obesity in adults. Obesity 2014, 22, S41–S410. [Google Scholar]
- Rao, G.; Lopez-Jimenez, F.; Boyd, J.; D’Amico, F.; Durant, N.H.; Hlatky, M.A.; Howard, G.; Kirley, K.; Masi, C.; Powell-Wiley, T.M.; et al. Methodological Standards for Meta-Analyses and Qualitative Systematic Reviews of Cardiac Prevention and Treatment Studies: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e172–e194. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.D.; Moons, K.G.M.; Snell, K.I.E.; Ensor, J.; Hooft, L.; Altman, D.G.; Hayden, J.; Collins, G.S.; Debray, T.P.A. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019, 364, k4597. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (Updated August 2023). Cochrane. 2023. Available online: https://training.cochrane.org/handbook (accessed on 20 November 2023).
- Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018, 5, 61. [Google Scholar] [CrossRef]
- von Hippel, P.T. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med. Res. Methodol. 2015, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Shamseer, L.; Altman, D.G.; Tetzlaff, J.; Sampson, M.; Tricco, A.C.; Catalá-López, F.; Li, L.; Reid, E.K.; Sarkis-Onofre, R.; et al. Epidemiology and Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study. PLoS Med. 2016, 13, e1002028. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.; Allers, K.; Rombey, T.; Helbach, J.; Hoffmann, A.; Mathes, T.; Pieper, D. Nearly 80 systematic reviews were published each day: Observational study on trends in epidemiology and reporting over the years 2000–2019. J. Clin. Epidemiol. 2021, 138, 1–11. [Google Scholar] [CrossRef]
- Yamamoto, N.; Taito, S.; Miura, T.; Ariie, T.; Tomita, Y.; Ogihara, H.; Shiratsuchi, D.; Yorifuji, T.; Tsujimoto, Y. Epidemiology and Reporting Characteristics of Systematic Reviews in Orthopedic Journals: A Meta-Epidemiological Study. J. Clin. Med. 2023, 12, 7031. [Google Scholar] [CrossRef]
- Montori, V.M.; Smieja, M.; Guyatt, G.H. Publication bias: A brief review for clinicians. Mayo Clin. Proc. 2000, 75, 1284–1288. [Google Scholar] [CrossRef]
- Aali, G.; Shokraneh, F. No limitations to language, date, publication type, and publication status in search step of systematic reviews. J. Clin. Epidemiol. 2021, 133, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Harbord, R.M. Funnel Plots in Meta-analysis. Stata J. 2004, 4, 127–141. [Google Scholar] [CrossRef]
- Taris, T.W.; Kompier, M. Challenges in longitudinal designs in occupational health psychology. Scand. J. Work. Environ. Health. 2003, 29, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ployhart, R.E.; Ward, A.K. The “quick start guide” for conducting and publishing longitudinal research. J. Bus. Psychol. 2011, 26, 413–422. [Google Scholar] [CrossRef]
- Teague, S.; Youssef, G.J.; Macdonald, J.A.; Sciberras, E.; Shatte, A.; Fuller-Tyszkiewicz, M.; Greenwood, C.; McIntosh, J.; Olsson, C.A.; Hutchinson, D. Retention strategies in longitudinal cohort studies: A systematic review and meta-analysis. BMC Med. Res. Methodol. 2018, 18, 151. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Preiss, D. Reverse Causality in Cardiovascular Epidemiological Research: More Common Than Imagined? Circulation 2017, 135, 2369–2372. [Google Scholar] [CrossRef] [PubMed]
- Bilchick, K.C.; Berger, R.D. Heart rate variability. J. Cardiovasc. Electrophysiol. 2006, 17, 691–694. [Google Scholar] [CrossRef]
- Castiglioni, P.; Di Rienzo, M. On the evaluation of heart rate spectra: The Lomb periodogram. In Proceedings of the Computers in Cardiology Conference, Indianapolis, IN, USA, 8–11 September 1996; IEEE: Piscataway, NJ, USA; pp. 505–508. [Google Scholar]
- Li, K.; Rüdiger, H.; Ziemssen, T. Spectral Analysis of Heart Rate Variability: Time Window Matters. Front. Neurol. 2019, 10, 545. [Google Scholar] [CrossRef]
- Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-Ruscone, T. Assessment of cardiac autonomic modulation during graded head–up tilt by symbolic analysis of heart rate variability. Am. J. Physiol. Circ. Physiol. 2007, 293, 702–708. [Google Scholar] [CrossRef]
- Berntson, G.G.; Bigger, J.T., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Schipke, J.D.; Arnold, G.; Pelzer, M. Effect of respiration rate on short-term heart rate variability. J. Clin. Basic. Cardiol. 1999, 2, 92–95. [Google Scholar]
- Penttilä, J.; Helminen, A.; Jartti, T.; Kuusela, T.; Huikuri, H.V.; Tulppo, M.P.; Coffeng, R.; Scheinin, H. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clin. Physiol. 2001, 21, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.K.; Siebenbrock, A.; Sollers, J.J.; Thayer, J.F. Are all measures created equal? Heart rate variability and respiration. Biomed. Sci. Instrum. 2009, 45, 71–76. [Google Scholar] [PubMed]
- Bastin, C.; Salmon, E. Early neuropsychological detection of Alzheimer’s disease. Eur. J. Clin. Nutr. 2014, 68, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.S.; Goldberg, T.E. Composite cognitive and functional measures for early stage Alzheimer’s disease trials. Alzheimers Dement. 2020, 12, e12017. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Hebert, L.E.; Bienias, J.L. Methodological issues in the study of cognitive decline. Am. J. Epidemiol. 1999, 149, 789–793. [Google Scholar] [CrossRef]
- Williams, P.G.; Cribbet, M.R.; Tinajero, R.; Rau, H.K.; Thayer, J.F.; Suchy, Y. The association between individual differences in executive functioning and resting high-frequency heart rate variability. Biol. Psychol. 2019, 148, 107772. [Google Scholar] [CrossRef]
- Elliott, E.; Haldane, D.; Quinn, T.J. Pitfalls of neurocognitive testing in an occupational medical setting. Occup. Med. 2019, 69, 83–85. [Google Scholar] [CrossRef]
- Bilder, R.M.; Widaman, K.F.; Bauer, R.M.; Drane, D.; Loring, D.W.; Umfleet, L.G.; Reise, S.P.; Vannier, L.C.; Wahlstrom, D.; Fossum, J.L.; et al. Construct identification in the neuropsychological battery: What are we measuring? Neuropsychology 2023, 37, 351–372. [Google Scholar] [CrossRef]
Study | Design | N | Population | Age (Mean, Years) | % Female | Education | % White Ethnicity | Exclusion Criteria (Comorbidities/ Medications) | Follow-Up | Recording Device | Conditions | Length of Recording | HRV Indices | Cognition | Confounders Controlled for a | Results |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Britton et al., 2008 [66] | L | 5375 | General (Whitehall II study: British civil servants) | 55 | 29.1 | NR | NR | N | 5 years | ECG | Resting (supine) | 5 min | Time domain: SDNN Frequency domain: HF, LF (Blackman Tukey algorithm) | Cognitive tests: 20-word free recall, Alice Heim 4-I, Mill Hill, Letter fluency, Category fluency | Age, sex, education | Lower SDNN, HF and LF associated with greater decline in Mill Hill test |
Mahinrad et al., 2016 [67] | L | 3583 | Clinical (PROSPER study: subjects at high risk/with vascular disease enrolled in a RCT of pravastatin) | 75.0 | 53.3 | Mean age left school: 15.2 years | NR | Non-sinus rhythm + PROSPER criteria b | 3.2 years (mean) | ECG | Resting (supine) Morning | 10 s | Time domain: SDNN | Cognitive tests: Stroop, Letter- Digit Coding, Picture– Word Learning | Age, sex, education, SBP, DBP, diabetes mellitus, smoking, BMI, myocardial infarction, stroke/TIA, antihypertensive medications and statins, HR | Lower SDNN associated with greater decline in Letter–Digit Coding test |
Zeki Al Hazzouri et al., 2017 [64] | LT | 2118 | General (CARDIA study: adults recruited from 4 US field centers) | 45.3 | 57.7 | Mean education: 15.2 years | 57.8 | Non-sinus rhythm | 5 years | ECG | Resting (supine) Morning, at least 2 h after a light snack, no smoking or intense physical activity for 2 h before the examination c | 10 s | Time domain: SDNN, RMSSD | Cognitive tests: RAVLT, Digit Symbol Substitution, Stroop | Age, sex, education, ethnicity, SBP, DBP, diabetes mellitus, smoking, BMI, physical activity, depressive symptoms, myocardial infarction, stroke/TIA, antihypertensive medications | Lower SDNN associated with worse performance on Stroop test |
Kim et al., 2018 [68] | L | 91 d | Clinical (MCI) | 69.6 | 54.9 | Mean education: 8.4 years | NR | Focal brain lesions, multiple lacunar infarctions, diffuse white matter hyperintensity, Parkinson’s disease, diabetes mellitus, cardiac diseases, medications such as beta blockers or thyroxine | 30 mos (mean) | ECG | Resting (supine) Morning, between 8:00 and 12:00 a.m., no alcohol or caffeinated beverages after 10:00 p.m. and no smoking 1 hr before the recording | NR | Time domain: SDNN, RMSSD Frequency domain: TP, LF, HF, LF/HF (FFT) | Dementia incidence (AD and DLB) | Age, sex, education | Lower SDNN, RMSSD, TP, LF and HF associated with progression of MCI to DLB |
Knight et al., 2020 [69] | L | 869 | General (MIDUS study: community-dwelling English- speaking US adults) | 53.8 | 57.9 | NR | 81 | N | 9.3 years (mean) | ECG | Resting (seated) Psychological challenge: cognitive task Physical challenge: active standing Morning, after a light breakfast with no caffeinated beverages c | 10 min (resting) 5 min: challenge and recovery from challenge No recovery for the physical challenge | Frequency domain: HF (FFT c) | Cognitive tests: BTACT summary score, BTACT episodic memory subscore, BTACT executive functioning subscore | Age, sex, high blood pressure, depression, emphysema/ COPD, heart disease, heart murmur, circulation problems, TIA/stroke, medications affecting cardiovascular/ autonomic/ cognitive functioning | Greater PNS responsivity (recovery/reactivity) to a cognitive challenge associated with lesser decline in BTACT summary score (with greater effects for executive functioning than for episodic memory subscore) |
Schaich et al., 2020 [70] | LT | 3018 | General (MESA study: adults recruited from 6 US field centers) | 59.1 | 54.9 | More than high school: 68.9% | 40.2 | Non-sinus rhythm, clinical cardiovascular disease at baseline, dementia medications | 10 years | ECG | Resting (supine) Morning, in the fasting state | 10 s | Time domain: SDNN, RMSSD | Cognitive tests: CASI, Digit Symbol Coding, Digit Span (Forward and Backward combined) | Age, sex, education, ethnicity, SBP, diabetes mellitus, smoking, BMI, physical activity, depression scale score, myocardial infarction, heart failure, stroke/TIA, antihypertensive and antiarrhythmic medications, ApoE genotype, HR | Lower SDNN associated with worse performance on CASI and Digit Symbol Coding test |
Costa et al., 2021 [7] | L | 1897 | General (MESA sleep study: subjects from MESA exam 5 undergoing PSG) | 68 | 53.9 | More than high school: 69.8% | 36.1 | Pacemaker, atrial fibrillation, prevalent dementia | 6.4 years (mean) | ECG (from PSG) | Resting (supine) Night | Night sleep (mdn sleep duration 370 min) | HRF indices: PIP, PNNLS, PNNSS Time domain: SDNN, RMSSD Frequency domain: HF (Lomb periodogram) | Cognitive tests: CASI, Digit Symbol Coding, Digit Span Forward, Digit Span Backward | Age, sex, education, ethnicity, gross family income, SBP, diabetes mellitus, total cholesterol, HDL cholesterol, smoking, physical activity, alcohol consumption, depression, cardiovascular and atrial fibrillation events, antihypertensive/lipid-lowering/ antidepressant medications, ApoE genotype, HR | Higher HRF associated with worse performance and greater decline in all cognitive tests |
Weinstein et al., 2021 [71] | L | 1581 | General (FO study: adult offspring of the original FHS cohort) | 55.0 | 53.6 | More than high school: 58.6% | NR | Prevalent dementia, atrial fibrillation and congestive heart failure | 10.0 years (mdn) e | ECG | Ambulatory | 2 h | Time domain: SDNN, RMSSD | Dementia incidence (all-cause) | Age, sex, education, SBP, diabetes mellitus, smoking, physical activity, antihypertensive/antiarrhythmic/cardiac glycoside medications, ApoE genotype | Lower SDNN and RMSSD associated with higher incidence of dementia |
Chou et al., 2022 [72] | L | 565 | General (Tainan study: adult residents of Tainan city, Taiwan) | 48.0 | 56.1 | NR | NR | Prevalent dementia, cerebral vascular accidents, antiarrhythmic treatment | 15.8 years (mean) f | ECG | Resting (supine) No smoking, alcohol, coffee and tea on the examination day | 5 min | Time domain: SDNN Frequency domain: LF, HF, LF/HF (FFT c) | Dementia incidence (all-cause) | Age, sex, socioeconomic status, SBP, FPG, total cholesterol/ HDL cholesterol ratio, smoking, BMI, physical activity, alcohol consumption, ApoE genotype | Lower SDNN and higher LF/HF associated with higher incidence of dementia |
Gafni et al., 2022 [73] | LT | 1939 | General (CARDIA study: adults recruited from 4 US field centers) | 45.2 g | 58.0 | Mean education: 15.0 to 15.6 years | 56.9 | N | 10 years g | ECG | Resting (supine) Morning at least 2 h after a light snack, no smoking or intense physical activity for 2 hr before the examination c | 10 s | Time domain: SDNN, RMSSD | Cognitive tests: MoCA, RAVLT, Digit Symbol Substitution, Stroop, Category fluency, Letter fluency | Age, sex, education, ethnicity, difficulty paying for basics, smoking, high alcohol intake, antihypertensive/ antiarrhythmic/ cardiac glycoside medications | Lower SDNN and RMSSD associated with worse performance on Category fluency test |
Nicolini et al., 2022 [74] | L | 71 h | Clinical (MCI) | 78.2 | 77.5 | Mean education: 11.0 years | NR | Non-sinus rhythm, heart disease, diabetes mellitus, neurological and psychiatric diseases, severe diseases, beta-blockers, alpha-blockers, centrally-acting CCBs, class I and III antiarrhythmic drugs, digoxin, TCAs, SSNRIs, atypical antidepressants, antipsychotics and AChEIs | 2.8 years (mean) | ECG | Resting (supine) Physical challenge: active standing and paced breathing at 12 b/min (supine) Morning, between 8:30 and 11:30 a.m., after a light breakfast and no caffeinated beverages, alcohol, smoking and intense physical activity in the 12 h prior to testing | 5 min | Time domain: SDNN, RMSSD, pNN50 Frequency domain: LFn, LF/HF, TP, LF, HF (FFT) | Cognitive tests: episodic memory score and executive functioning score | Age, sex, education, physical activity, physical/ mental comorbidity, HR | Greater response to a SNS challenge (LFn and LF/HF) associated with greater decline in episodic memory score, greater response to a PNS challenge (LFn and LF/HF) associated with lesser decline in executive functioning score |
Sabil et al., 2022 [75] | L | 3283 | Clinical (PDL Sleep Cohort study: subjects with obstructive sleep apnea) | 69 i | 35.4 | Less than high school diploma: 70.4% | NR | Prevalent dementia, atrial fibrillation, pacemaker, neuromuscular diseases, chronic respiratory failure | 6.8 years (mdn) | Pulse oximeter | Resting (supine) Night | Night sleep (duration NR) | Time domain: SDNN, RMSSD Frequency domain: LFn, HFn, LF/HF (method NA) | Dementia incidence (all-cause) | Age, education, hypertension, alcohol intake, depression, stroke, CCBs, Epworth sleepiness score | Higher RMSSD and SDNN associated with higher incidence of dementia |
Cognition | Cognitive Test | Study |
---|---|---|
Global cognition | BTACT summary score a | Knight et al., 2020 [69] |
Cognitive Abilities Screening Instrument | Schaich et al., 2020 [70], Costa et al., 2021 [7] | |
Montreal Cognitive Assessment | Gafni et al., 2022 [73] | |
Episodic memory domain | BTACT episodic memory subscore b | Knight et al., 2020 [69] |
Episodic memory score c | Nicolini et al., 2022 [74] | |
Picture–Word Learning (visual) | Mahinrad et al., 2016 [67] | |
Rey Auditory–Verbal Learning (verbal) | Zeki Al Hazzouri et al., 2017 [64], Gafni et al., 2022 [73] | |
20-word free recall (verbal) | Britton et al., 2008 [66] | |
Executive functioning domain | Alice Heim 4-I | Britton et al., 2008 [66] |
BTACT executive functioning subscore d | Knight et al., 2020 [69] | |
Category fluency | Britton et al., 2008 [66], Gafni et al., 2022 [73] | |
Digit Span Backward | Schaich et al., 2020 [70], Costa et al., 2021 [7] | |
Digit Span Forward | Schaich et al., 2020 [70], Costa et al., 2021 [7] | |
Digit Symbol Coding | Schaich et al., 2020 [70], Costa et al., 2021 [7] | |
Digit Symbol Substitution | Zeki Al Hazzouri et al., 2017 [64], Gafni et al., 2022 [73] | |
Executive functioning score e | Nicolini et al., 2022 [74] | |
Letter–Digit Coding | Mahinrad et al., 2016 [67] | |
Letter fluency | Gafni et al., 2022 [73], Britton et al., 2008 [66] | |
Mill Hill | Britton et al., 2008 [66] | |
Stroop | Mahinrad et al., 2016 [67], Zeki Al Hazzouri et al., 2017 [64], Gafni et al., 2022 [73] | |
Language domain | Category fluency | Britton et al., 2008 [66], Gafni et al., 2022 [73] |
Mill Hill | Britton et al., 2008 [66] |
Relationship between PNS Activity and Cognitive Outcome | Relationship between SNS Activity and Cognitive Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cognitive Outcome | GC | EF | EM | LG | Dem | GC | EF | EM | LG | Dem | |
Study | Britton et al., 2008 [66] | NA | + | No | + | NA | NA | NA | NA | NA | NA |
Mahinrad et al., 2016 [67] | NA | + | No | NA | NA | NA | NA | NA | NA | NA | |
Zeki Al Hazzouri et al., 2017 [64] | NA | + | No | NA | NA | NA | NA | NA | NA | NA | |
Kim et al., 2018 [68] | NA | NA | NA | NA | - | NA | NA | NA | NA | No | |
Knight et al., 2020 [69] | + | + | + | NA | NA | NA | NA | NA | NA | NA | |
Schaich et al., 2020 [70] | + | + | NA | NA | NA | NA | NA | NA | NA | NA | |
Costa et al., 2021 [7] | + | + | NA | NA | NA | NA | NA | NA | NA | NA | |
Weinstein et al., 2021 [71] | NA | NA | NA | NA | - | NA | NA | NA | NA | NA | |
Chou et al., 2022 [72] | NA | NA | NA | NA | - | NA | NA | NA | NA | + | |
Gafni et al., 2022 [73] | No | + | No | + | NA | NA | NA | NA | NA | NA | |
Nicolini et al., 2022 [74] | NA | + | NA | NA | NA | NA | NA | - | NA | NA | |
Sabil et al., 2022 [75] | NA | NA | NA | NA | + | NA | NA | NA | NA | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolini, P.; Malfatto, G.; Lucchi, T. Heart Rate Variability and Cognition: A Narrative Systematic Review of Longitudinal Studies. J. Clin. Med. 2024, 13, 280. https://doi.org/10.3390/jcm13010280
Nicolini P, Malfatto G, Lucchi T. Heart Rate Variability and Cognition: A Narrative Systematic Review of Longitudinal Studies. Journal of Clinical Medicine. 2024; 13(1):280. https://doi.org/10.3390/jcm13010280
Chicago/Turabian StyleNicolini, Paola, Gabriella Malfatto, and Tiziano Lucchi. 2024. "Heart Rate Variability and Cognition: A Narrative Systematic Review of Longitudinal Studies" Journal of Clinical Medicine 13, no. 1: 280. https://doi.org/10.3390/jcm13010280