Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review
Abstract
:1. Introduction
- Type of EEG study: sleep EEGs are significantly more likely to detect epileptiform abnormalities than awake EEGs [17];
- Criteria used to make ASD diagnosis: the prevalence of epilepsy in people with a diagnosis of autism based on Kanner’s Autism criteria is likely to be much higher than the prevalence of epilepsy in individuals with a diagnosis of ASD based on DSM-5 criteria [18] since severe Autism Spectrum Disorder symptoms represent an independent risk factor for epilepsy [19];
- Developmental regression: despite the fact that the relationship between regression and epilepsy in autism remains unclear, several studies report statistically significant associations between the presence of regression and an increase in epilepsy [23];
- Age: despite the classic bimodal distribution of epilepsy according to age (i.e., early childhood and adolescence), a significantly higher prevalence of seizures in ASD is detectable during adolescence [24]. Accordingly, a large study reported that the overall prevalence of epilepsy in ASD children aged 2 to 17 is 12.5%, but this rate is largely driven by epilepsy in ASD children aged 13 to 17, in which the prevalence is 26% [25];
- Idiopathic versus non-idiopathic ASD: the prevalence of epilepsy in syndromic autism is typically higher than in idiopathic autism [23].
2. Materials and Methods
2.1. Literature Research
2.2. Inclusion Criteria
- ASD diagnosis based on DSM criteria or ICD criteria.
- Cohort including participants with idiopathic ASD.
- Participants with ASD as the main diagnosis.
- Articles published in the English language.
- Availability of a full text of the paper.
2.3. Exclusion Criteria
- Studies focused on quantitative EEG (qEEG).
- Non-ASD participants.
- The age range of ASD patients having an upper limit greater than 18 y or the age range not specified.
- Meta-analyses or literature reviews.
3. Results
3.1. Characteristics of Participants
3.2. EEG Technical Issues
3.3. Main EEG Findings
3.4. Correlation between EEG Abnormalities and Clinical Features
4. Discussion
4.1. Effect of ASD Diagnostic Criteria on the EEG Abnormality Rate
4.2. Neurophysiopathological Basis of the Link between ASD and EEG Discharges
- More marked reduction in inhibitory GABAergic interneurons, which would be more susceptible to death induced by epileptic discharge than excitatory glutamatergic neurons [68];
- Reduction in inhibitory GABAergic transmission: along with the concomitant reduction in the levels of GABA-A receptor ligands and the activity of glutamate decarboxylase (GAD) [31], this phenomenon is also the result of glutamate accumulation, due to the hyper-synchronism of epileptic discharge that causes glutamatergic hyperstimulation of post-synaptic neurons. These neurons undergo an increase in intracellular [Ca2+] and the consequent activation of Calcineurin which, through dephosphorylation, causes the internalization of post-synaptic GABA-A receptors [72];
- Reduction in Parvalbumin (PV) levels: this event may be linked to the reduction in the number of Parvalbumin-expressing (PV+) GABAergic interneurons, which according to some authors, would be more susceptible to death from excitotoxicity [73], or linked to the reduction in the mRNA coding for PV in the absence of a real reduction in the number of PV+ GABAergic interneurons [74].
4.3. Relationship between EEG Abnormalities and the ASD Phenotype
- Yousef et al., 2017 [58] argue that generalized EEG abnormalities are the most frequent, followed by focal ones: in severe ASD, they are typically bilateral fronto-temporal or centro-temporalI; in moderate ASD, they are typically frontotemporal and centroparietal; and in mild ASD, they are typically centroparietal;
- Anukirthiga et al., 2019 [59] maintain that epileptiform SEAs, as well as epilepsy, are significantly more frequent in ASD patients with an IQ less than 80;
- Milovanovic et al., 2019 [60] assert that epileptiform SEAs, like epilepsy, have small effects on motor skills and no effect on adaptive behavior or communication/socialization/daily living skills;
- Akhter, 2021 [61] reports that epileptiform SEAs can be found in ASD patients both with ID and without ID, but they tend to be more frequent in subjects suffering from moderate–severe ID;
- Kammoun et al., 2022 [55] report that all patients with EEG abnormalities suffered from moderate–severe ASD and that, more specifically, ten subjects showed behavioral instability, which was associated with EEG abnormalities in the frontal lobe in 81.81% of them; twelve subjects showed absence of language, which was associated with EEG abnormalities in different lobes; four subjects showed language regression; and nine subjects showed ID;
- Santarone et al., 2023 [54] claim that there is no significant association between SEAs and developmental delay in ASD patients.
4.4. Roles of EEG Recording Techniques and Sleep in Studying ASD
- According to hypothesis 1, there would be a causal relationship between ASD and an E/I imbalance, while sleep disorders would not be associated with either ASD or an E/I imbalance;
- According to hypothesis 2, there is no known causal relationship between ASD and an E/I imbalance, which could be more adequately investigated once the confounding factor, constituted by sleep disorders, has been removed;
- According to hypothesis 3, there would be a bidirectional pathophysiological relationship between ASD and sleep disorders, which in turn is causally associated with an E/I imbalance.
4.5. Age as a Key to Interpret EEG Tracings in ASD Patients
5. Conclusions
- Since EEG abnormalities show an interesting association with the ASD phenotype, in particular, with the degree of severity [55,58] and also with developmental delay [54], IQ [59,61] and behavioral disorders [137], studying abnormal brain electrical activity could provide valuable help to understand better the pathophysiology underlying ASD.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorde r |
EEG | Electroencephalogram |
NDD | neurodevelopmental disorder |
ID | intellectual disability |
IQ | intelligence quotient |
Glu | glutamate |
GABA | gamma-aminobutyric acid |
GABARD | delta-subunit of GABA-A receptors |
TSC | Tuberous Sclerosis Complex |
DSM | Diagnostic and Statistical Manual of Mental Disorders |
ICD | International Classification of Diseases |
qEEG | quantitative Eelectroencephalogram |
DSM-TR | Diagnostic and Statistical Manual of Mental Disorders-Text Revision |
ADOS-2 | Autism Diagnostic Observation Schedule—Second Edition |
ADI-R | Autism Diagnostic Interview—Revised |
CARS | Childhood Autism Rating Scale |
IEDs | interictal epileptic discharges |
TLE | Temporal Lobe Epilepsy |
GAD | glutamate decarboxylase |
PV | Parvalbumin |
PNS | Peripheral Nervous System |
CNS | Central Nervous System |
SEA | subclinical EEG abnormalities |
FLE | Frontal Lobe Epilepsy |
HV | hyperventilation |
IPS | intermittent photic stimulation |
ADHD | Attention-Deficit/Hyperactivity Disorder |
NREM | non-rapid eye movement |
REM | rapid eye movement |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR, 5th ed.; Text Revision; American Psychiatric Association Publishing: Washington, DC, USA, 2022. [Google Scholar]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global Prevalence of Autism: A Systematic Review Update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dewey, D. What Is Comorbidity and Why Does It Matter in Neurodevelopmental Disorders? Curr. Dev. Disord. Rep. 2018, 5, 235–242. [Google Scholar] [CrossRef]
- Al-Beltagi, M. Autism Medical Comorbidities. World J. Clin. Pediatr. 2021, 10, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism Spectrum Disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. About Autism; National Human Genome Research Institute: Bethesda, MA, USA, 2019.
- Won, H.; Mah, W.; Kim, E. Autism Spectrum Disorder Causes, Mechanisms, and Treatments: Focus on Neuronal Synapses. Front. Mol. Neurosci. 2013, 6, 19. [Google Scholar] [CrossRef]
- Khoja, S.; Haile, M.T.; Chen, L.Y. Advances in Neurexin Studies and the Emerging Role of Neurexin-2 in Autism Spectrum Disorder. Front. Mol. Neurosci. 2023, 16, 1125087. [Google Scholar] [CrossRef]
- Azhari, A.; Truzzi, A.; Neoh, M.J.-Y.; Balagtas, J.P.M.; Tan, H.H.; Goh, P.P.; Ang, X.A.; Setoh, P.; Rigo, P.; Bornstein, M.H.; et al. A Decade of Infant Neuroimaging Research: What Have We Learned and Where Are We Going? Infant Behav. Dev. 2020, 58, 101389. [Google Scholar] [CrossRef]
- Britton, J.W.; Frey, L.C.; Hopp, J.L.; Korb, P.; Koubeissi, M.Z.; Lievens, W.E.; Pestana-Knight, E.M.; St Louis, E.K. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants; American Epilepsy Society: Chicago, IL, USA, 2016; ISBN 978-0-9979756-0-4. [Google Scholar]
- Billeci, L.; Sicca, F.; Maharatna, K.; Apicella, F.; Narzisi, A.; Campatelli, G.; Calderoni, S.; Pioggia, G.; Muratori, F. On the Application of Quantitative EEG for Characterizing Autistic Brain: A Systematic Review. Front. Hum. Neurosci. 2013, 7, 442. [Google Scholar] [CrossRef]
- Boutros, N.N.; Lajiness-O’Neill, R.; Zillgitt, A.; Richard, A.E.; Bowyer, S.M. EEG Changes Associated with Autistic Spectrum Disorders. Neuropsychiatr. Electrophysiol. 2015, 1, 3. [Google Scholar] [CrossRef]
- Tuchman, R.; Cuccaro, M.; Alessandri, M. Autism and Epilepsy: Historical Perspective. Brain Dev. 2010, 32, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Lukmanji, S.; Manji, S.A.; Kadhim, S.; Sauro, K.M.; Wirrell, E.C.; Kwon, C.-S.; Jetté, N. The Co-Occurrence of Epilepsy and Autism: A Systematic Review. Epilepsy Behav. 2019, 98, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Hrdlicka, M.; Komarek, V.; Propper, L.; Kulisek, R.; Zumrova, A.; Faladova, L.; Havlovicova, M.; Sedlacek, Z.; Blatny, M.; Urbanek, T. Not EEG Abnormalities but Epilepsy Is Associated with Autistic Regression and Mental Functioning in Childhood Autism. Eur. Child Adolesc. Psychiatry 2004, 13, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Besag, F.M.C.; Vasey, M.J. Seizures and Epilepsy in Autism Spectrum Disorder. Child Adolesc. Psychiatr. Clin. 2020, 29, 483–500. [Google Scholar] [CrossRef] [PubMed]
- Ewen, J.B.; Marvin, A.R.; Law, K.; Lipkin, P.H. Epilepsy and Autism Severity: A Study of 6975 Children. Autism Res. 2019, 12, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Smith, T.; Paciorkowski, A.R. Autism Spectrum Disorder and Epilepsy: Disorders with a Shared Biology. Epilepsy Behav. 2015, 47, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Jeste, S.S.; Tuchman, R. Autism Spectrum Disorder and Epilepsy: Two Sides of the Same Coin? J. Child Neurol. 2015, 30, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Zarakoviti, E.; Shafran, R.; Skuse, D.; McTague, A.; Batura, N.; Palmer, T.; Dalrymple, E.; Bennett, S.D.; Reilly, C. Factor Associated with the Occurrence of Epilepsy in Autism: A Systematic Review. J. Autism Dev. Disord. 2023, 53, 3873–3890. [Google Scholar] [CrossRef]
- Spence, S.J.; Schneider, M.T. The Role of Epilepsy and Epileptiform EEGs in Autism Spectrum Disorders. Pediatr. Res. 2009, 65, 599–606. [Google Scholar] [CrossRef]
- Deykin, E.Y.; MacMahon, B. The Incidence of Seizures among Children with Autistic Symptoms. Am. J. Psychiatry 1979, 136, 1310–1312. [Google Scholar] [CrossRef]
- Viscidi, E.W.; Triche, E.W.; Pescosolido, M.F.; McLean, R.L.; Joseph, R.M.; Spence, S.J.; Morrow, E.M. Clinical Characteristics of Children with Autism Spectrum Disorder and Co-Occurring Epilepsy. PLoS ONE 2013, 8, e67797. [Google Scholar] [CrossRef]
- Amiet, C.; Gourfinkel-An, I.; Bouzamondo, A.; Tordjman, S.; Baulac, M.; Lechat, P.; Mottron, L.; Cohen, D. Epilepsy in Autism Is Associated with Intellectual Disability and Gender: Evidence from a Meta-Analysis. Biol. Psychiatry 2008, 64, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Calderoni, S. Sex/Gender Differences in Children with Autism Spectrum Disorder: A Brief Overview on Epidemiology, Symptom Profile, and Neuroanatomy. J. Neurosci. Res. 2023, 101, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Polyak, A.; Rosenfeld, J.A.; Girirajan, S. An Assessment of Sex Bias in Neurodevelopmental Disorders. Genome Med. 2015, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Marín, O. Interneuron Dysfunction in Psychiatric Disorders. Nat. Rev. Neurosci. 2012, 13, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lachance, M.; Rossignol, E. Involvement of Cortical Fast-Spiking Parvalbumin-Positive Basket Cells in Epilepsy. Prog. Brain Res. 2016, 226, 81–126. [Google Scholar] [CrossRef] [PubMed]
- Bozzi, Y.; Provenzano, G.; Casarosa, S. Neurobiological Bases of Autism-Epilepsy Comorbidity: A Focus on Excitation/Inhibition Imbalance. Eur. J. Neurosci. 2018, 47, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Leonzino, M.; Busnelli, M.; Antonucci, F.; Verderio, C.; Mazzanti, M.; Chini, B. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2. Cell Rep. 2016, 15, 96–103. [Google Scholar] [CrossRef]
- Sarlo, G.L.; Holton, K.F. Brain Concentrations of Glutamate and GABA in Human Epilepsy: A Review. Seizure 2021, 91, 213–227. [Google Scholar] [CrossRef]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the Role of Neurotransmitters in Epilepsy: An Updated Review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef]
- Medina-Ceja, L.; García-Barba, C. The Glutamate Receptor Antagonists CNQX and MPEP Decrease Fast Ripple Events in Rats Treated with Kainic Acid. Neurosci. Lett. 2017, 655, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Peret, A.; Christie, L.A.; Ouedraogo, D.W.; Gorlewicz, A.; Epsztein, J.; Mulle, C.; Crépel, V. Contribution of Aberrant GluK2-Containing Kainate Receptors to Chronic Seizures in Temporal Lobe Epilepsy. Cell Rep. 2014, 8, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Rogawski, M.A. AMPA Receptors as a Molecular Target in Epilepsy Therapy. Acta Neurol. Scand. 2013, 127, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hussman, J.P. Suppressed GABAergic Inhibition as a Common Factor in Suspected Etiologies of Autism. J. Autism Dev. Disord. 2001, 31, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Reutiman, T.J.; Folsom, T.D.; Rooney, R.J.; Patel, D.H.; Thuras, P.D. mRNA and Protein Levels for GABAAalpha4, Alpha5, Beta1 and GABABR1 Receptors Are Altered in Brains from Subjects with Autism. J. Autism Dev. Disord. 2010, 40, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, Y.A.; Kemper, T.L.; Bauman, M.L.; Blatt, G.J. Parvalbumin-, Calbindin-, and Calretinin-Immunoreactive Hippocampal Interneuron Density in Autism. Acta Neurol. Scand. 2010, 121, 99–108. [Google Scholar] [CrossRef]
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; et al. Oxytocin-Mediated GABA Inhibition during Delivery Attenuates Autism Pathogenesis in Rodent Offspring. Science 2014, 343, 675–679. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Is Birth a Critical Period in the Pathogenesis of Autism Spectrum Disorders? Nat. Rev. Neurosci. 2015, 16, 498–505. [Google Scholar] [CrossRef]
- Ahring, P.K.; Liao, V.W.Y.; Gardella, E.; Johannesen, K.M.; Krey, I.; Selmer, K.K.; Stadheim, B.F.; Davis, H.; Peinhardt, C.; Koko, M.; et al. Gain-of-Function Variants in GABRD Reveal a Novel Pathway for Neurodevelopmental Disorders and Epilepsy. Brain 2022, 145, 1299–1309. [Google Scholar] [CrossRef]
- Nebel, R.A.; Zhao, D.; Pedrosa, E.; Kirschen, J.; Lachman, H.M.; Zheng, D.; Abrahams, B.S. Reduced CYFIP1 in Human Neural Progenitors Results in Dysregulation of Schizophrenia and Epilepsy Gene Networks. PLoS ONE 2016, 11, e0148039. [Google Scholar] [CrossRef] [PubMed]
- De Rubeis, S.; Pasciuto, E.; Li, K.W.; Fernández, E.; Di Marino, D.; Buzzi, A.; Ostroff, L.E.; Klann, E.; Zwartkruis, F.J.T.; Komiyama, N.H.; et al. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation. Neuron 2013, 79, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Parenti, I.; Lehalle, D.; Nava, C.; Torti, E.; Leitão, E.; Person, R.; Mizuguchi, T.; Matsumoto, N.; Kato, M.; Nakamura, K.; et al. Missense and Truncating Variants in CHD5 in a Dominant Neurodevelopmental Disorder with Intellectual Disability, Behavioral Disturbances, and Epilepsy. Hum. Genet. 2021, 140, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Rodenas-Cuadrado, P.; Pietrafusa, N.; Francavilla, T.; La Neve, A.; Striano, P.; Vernes, S.C. Characterisation of CASPR2 Deficiency Disorder--a Syndrome Involving Autism, Epilepsy and Language Impairment. BMC Med. Genet. 2016, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, J.; Verhelle, B.; Vervisch, J.; Lemmens, K.; Kotulska, K.; Moavero, R.; Curatolo, P.; Weschke, B.; Riney, K.; Feucht, M.; et al. Early Epileptiform EEG Activity in Infants with Tuberous Sclerosis Complex Predicts Epilepsy and Neurodevelopmental Outcomes. Epilepsia 2021, 62, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Domańska-Pakieła, D.; Kaczorowska, M.; Jurkiewicz, E.; Kotulska, K.; Dunin-Wąsowicz, D.; Jóźwiak, S. EEG Abnormalities Preceding the Epilepsy Onset in Tuberous Sclerosis Complex Patients—A Prospective Study of 5 Patients. Eur. J. Paediatr. Neurol. 2014, 18, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Goyal, M.; Peters, J.M.; Krueger, D.; Sahin, M.; Northrup, H.; Au, K.S.; O’Kelley, S.; Williams, M.; Pearson, D.A.; et al. Scalp EEG Spikes Predict Impending Epilepsy in TSC Infants: A Longitudinal Observational Study. Epilepsia 2019, 60, 2428–2436. [Google Scholar] [CrossRef]
- Gradisnik, P.; Zagradisnik, B.; Palfy, M.; Kokalj-Vokac, N.; Marcun-Varda, N. Predictive Value of Paroxysmal EEG Abnormalities for Future Epilepsy in Focal Febrile Seizures. Brain Dev. 2015, 37, 868–873. [Google Scholar] [CrossRef]
- Kanemura, H.; Mizorogi, S.; Aoyagi, K.; Sugita, K.; Aihara, M. EEG Characteristics Predict Subsequent Epilepsy in Children with Febrile Seizure. Brain Dev. 2012, 34, 302–307. [Google Scholar] [CrossRef]
- Wirrell, E.C. Prognostic Significance of Interictal Epileptiform Discharges in Newly Diagnosed Seizure Disorders. J. Clin. Neurophysiol. 2010, 27, 239–248. [Google Scholar] [CrossRef]
- Santarone, M.E.; Zambrano, S.; Zanotta, N.; Mani, E.; Minghetti, S.; Pozzi, M.; Villa, L.; Molteni, M.; Zucca, C. EEG Features in Autism Spectrum Disorder: A Retrospective Analysis in a Cohort of Preschool Children. Brain. Sci. 2023, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Kammoun, I.; BenTouhemi, D.; Hadjkacem, I.; Zouari, H.; Kamoun, F.; Khemekhem, K.; Ayadi, H.; Ellouze, E.; Hsairi, I.; Ghribi, F.; et al. Autism Spectrum Disorder and Eeg Specificity: A Cross—Sectional Tunisian Study Specificite De L’eeg Dans Le Trouble Du Spectre Autistique: Une Etude Transversale Tunisienne. J. L’inf. Méd. Sfax 2022, 41, 41–47. [Google Scholar]
- Polat, İ.; Has, A.S.; Yiş, U.; Ayanoğlu, M.; Okur, D.; Bayram, E.; Baykara, H.B. Epilepsy and Electroencephalographic Abnormalities in Children with Autistic Spectrum Disorder. J. Dr Behcet Uz Child. Hosp. 2022, 12, 107–115. [Google Scholar] [CrossRef]
- Barbosa de Matos, M.; Nau, A.L.; Fezer, G.F.; Zeigelboim, B.S.; Liberalesso, P.B.N. Epilepsy and eeg abnormalities in children with autism spectrum disorder. J. Epilepsy Clin. Neurophysiol. 2015, 21, 103–106. [Google Scholar]
- Yousef, A.M.; Youssef, U.M.; El-Shabrawy, A.; Fattah, N.R.A.; Khedr, H. EEG Abnormalities and Severity of Symptoms in Non-Epileptic Autistic Children. Egypt. J. Psychiatry 2017, 38, 59. [Google Scholar] [CrossRef]
- Anukirthiga, B.; Mishra, D.; Pandey, S.; Juneja, M.; Sharma, N. Prevalence of Epilepsy and Inter-Ictal Epileptiform Discharges in Children with Autism and Attention-Deficit Hyperactivity Disorder. Indian J. Pediatr. 2019, 86, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, M.; Radivojevic, V.; Radosavljev-Kircanski, J.; Grujicic, R.; Toskovic, O.; Aleksić-Hil, O.; Pejovic-Milovancevic, M. Epilepsy and Interictal Epileptiform Activity in Patients with Autism Spectrum Disorders. Epilepsy Behav. 2019, 92, 45–52. [Google Scholar] [CrossRef]
- Akhter, S.; Shefa, J.; Mannan, M. EEG Changes and Their Relationship with Intellectual Disability in Children with Autism Spectrum Disorders in a Tertiary Care Hospital. J. Int. Child Neurol. Assoc. 2021, 1.1. [Google Scholar] [CrossRef]
- Sharma, V.; Saini, A.G.; Malhi, P.; Singhi, P. Epilepsy and EEG Abnormalities in Children with Autism Spectrum Disorders. Indian J. Pediatr. 2022, 89, 975–982. [Google Scholar] [CrossRef]
- Kanemura, H.; Sano, F.; Tando, T.; Sugita, K.; Aihara, M. Can EEG Characteristics Predict Development of Epilepsy in Autistic Children? Eur. J. Paediatr. Neurol. 2013, 17, 232–237. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 1994. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; Text Revision; American Psychiatric Association Publishing: Washington, DC, USA, 2000. [Google Scholar]
- World Health Organization (WHO). The ICD-10 Classification of Mental and Behavioural Disorders; WHO: Geneva, Switzerland, 1993. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Jarero-Basulto, J.J.; Gasca-Martínez, Y.; Rivera-Cervantes, M.C.; Ureña-Guerrero, M.E.; Feria-Velasco, A.I.; Beas-Zarate, C. Interactions between Epilepsy and Plasticity. Pharmaceuticals 2018, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Larner, A.J. Axonal Sprouting and Synaptogenesis in Temporal Lobe Epilepsy: Possible Pathogenetic and Therapeutic Roles of Neurite Growth Inhibitory Factors. Seizure 1995, 4, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Schmeiser, B.; Zentner, J.; Prinz, M.; Brandt, A.; Freiman, T.M. Extent of Mossy Fiber Sprouting in Patients with Mesiotemporal Lobe Epilepsy Correlates with Neuronal Cell Loss and Granule Cell Dispersion. Epilepsy Res. 2017, 129, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Stringer, J.L.; Agarwal, K.S.; Dure, L.S. Is Cell Death Necessary for Hippocampal Mossy Fiber Sprouting? Epilepsy Res. 1997, 27, 67–76. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.O.; Huang, Y.Z.; Leonard, A.S. Molecular Signaling Mechanisms Underlying Epileptogenesis. Sci. STKE 2006, 2006, re12. [Google Scholar] [CrossRef] [PubMed]
- Fairless, R.; Williams, S.K.; Diem, R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. Int. J. Mol. Sci. 2019, 20, 2146. [Google Scholar] [CrossRef] [PubMed]
- Vizi, S.; Bagosi, A.; Krisztin-Péva, B.; Gulya, K.; Mihály, A. Repeated 4-Aminopyridine Seizures Reduce Parvalbumin Content in the Medial Mammillary Nucleus of the Rat Brain. Mol. Brain Res. 2004, 131, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, J.L.R.; Merzenich, M.M. Model of Autism: Increased Ratio of Excitation/Inhibition in Key Neural Systems. Genes Brain Behav. 2003, 2, 255–267. [Google Scholar] [CrossRef]
- Vignoli, A.; Fabio, R.A.; La Briola, F.; Giannatiempo, S.; Antonietti, A.; Maggiolini, S.; Canevini, M.P. Correlations between Neurophysiological, Behavioral, and Cognitive Function in Rett Syndrome. Epilepsy Behav. 2010, 17, 489–496. [Google Scholar] [CrossRef]
- Chao, H.-T.; Chen, H.; Samaco, R.C.; Xue, M.; Chahrour, M.; Yoo, J.; Neul, J.L.; Gong, S.; Lu, H.-C.; Heintz, N.; et al. Dysfunction in GABA Signalling Mediates Autism-like Stereotypies and Rett Syndrome Phenotypes. Nature 2010, 468, 263–269. [Google Scholar] [CrossRef]
- Godoy, L.D.; Prizon, T.; Rossignoli, M.T.; Leite, J.P.; Liberato, J.L. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front. Integr. Neurosci. 2022, 16, 765324. [Google Scholar] [CrossRef]
- Permyakov, E.A.; Uversky, V.N. What Is Parvalbumin For? Biomolecules 2022, 12, 656. [Google Scholar] [CrossRef]
- Rupert, D.D.; Shea, S.D. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front. Neural Circuits 2022, 16, 886629. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kubota, Y. GABAergic Cell Subtypes and Their Synaptic Connections in Rat Frontal Cortex. Cereb. Cortex 1997, 7, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lee, J.; Kim, E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biol. Psychiatry 2017, 81, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Filice, F.; Vörckel, K.J.; Sungur, A.Ö.; Wöhr, M.; Schwaller, B. Reduction in Parvalbumin Expression Not Loss of the Parvalbumin-Expressing GABA Interneuron Subpopulation in Genetic Parvalbumin and Shank Mouse Models of Autism. Mol. Brain 2016, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, E.; Ariza, J.; Rogers, H.; Noctor, S.C.; Martínez-Cerdeño, V. The Number of Parvalbumin-Expressing Interneurons Is Decreased in the Prefrontal Cortex in Autism. Cereb. Cortex 2017, 27, 1931–1943. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Miller, B.L. Conceptual and Clinical Aspects of the Frontal Lobes. In The Human Frontal Lobes: Functions and Disorders, 2nd ed.; The Guilford Press: New York, NY, USA, 2007; pp. 12–21. ISBN 978-1-59385-329-7. [Google Scholar]
- Cristofori, I.; Cohen-Zimerman, S.; Grafman, J. Executive Functions. Handb. Clin. Neurol. 2019, 163, 197–219. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Biso, G.M.N.R.; Fowler, J.B. Neuroanatomy, Temporal Lobe. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Velásquez, C.; Goméz, E.; Martino, J. Mapping Visuospatial and Self-Motion Perception Functions in the Left Parietal Lobe. Neurosurg. Focus 2018, 45, V8. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Al Khalili, Y. Neuroanatomy, Occipital Lobe. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Schultz, R.T. Developmental Deficits in Social Perception in Autism: The Role of the Amygdala and Fusiform Face Area. Int. J. Dev. Neurosci. 2005, 23, 125–141. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Belmonte, M.K. Autism: A Window onto the Development of the Social and the Analytic Brain. Annu. Rev. Neurosci. 2005, 28, 109–126. [Google Scholar] [CrossRef]
- Belmonte, M.K.; Allen, G.; Beckel-Mitchener, A.; Boulanger, L.M.; Carper, R.A.; Webb, S.J. Autism and Abnormal Development of Brain Connectivity. J. Neurosci. 2004, 24, 9228–9231. [Google Scholar] [CrossRef] [PubMed]
- Lagae, L.; Pauwels, J.; Monté, C.P.; Verhelle, B.; Vervisch, I. Frontal Absences in Children. Eur. J. Paediatr. Neurol. 2001, 5, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Le Normand, M.T. Language Development in Children with Simple-Partial Left-Hemisphere Epilepsy. Brain Lang. 1998, 64, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Boone, K.B.; Miller, B.L.; Rosenberg, L.; Durazo, A.; McIntyre, H.; Weil, M. Neuropsychological and Behavioral Abnormalities in an Adolescent with Frontal Lobe Seizures. Neurology 1988, 38, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Lassonde, M.; Sauerwein, H.C.; Jambaqué, I.; Smith, M.L.; Helmstaedter, C. Neuropsychology of Childhood Epilepsy: Pre- and Postsurgical Assessment. Epileptic Disord. 2000, 2, 3–13. [Google Scholar] [PubMed]
- Prévost, J.; Lortie, A.; Nguyen, D.; Lassonde, M.; Carmant, L. Nonlesional Frontal Lobe Epilepsy (FLE) of Childhood: Clinical Presentation, Response to Treatment and Comorbidity. Epilepsia 2006, 47, 2198–2201. [Google Scholar] [CrossRef] [PubMed]
- Nolan, M.A.; Redoblado, M.A.; Lah, S.; Sabaz, M.; Lawson, J.A.; Cunningham, A.M.; Bleasel, A.F.; Bye, A.M.E. Memory Function in Childhood Epilepsy Syndromes. J. Paediatr. Child Health 2004, 40, 20–27. [Google Scholar] [CrossRef]
- Sinclair, D.B.; Wheatley, M.; Snyder, T. Frontal Lobe Epilepsy in Childhood. Pediatr. Neurol. 2004, 30, 169–176. [Google Scholar] [CrossRef]
- Nolan, M.A.; Redoblado, M.A.; Lah, S.; Sabaz, M.; Lawson, J.A.; Cunningham, A.M.; Bleasel, A.F.; Bye, A.M.E. Intelligence in Childhood Epilepsy Syndromes. Epilepsy Res. 2003, 53, 139–150. [Google Scholar] [CrossRef]
- Lee, I.-C.; Chen, Y.-J.; Lee, H.-S.; Li, S.-Y. Prognostic Factors for Outcome in Pediatric Probable Lesional Frontal Lobe Epilepsy with an Unknown Cause (Cryptogenic). J. Child Neurol. 2014, 29, 1660–1663. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Avanzini, G.; Franceschetti, S.; Nichelli, F.; Saletti, V.; Vago, C.; Pantaleoni, C.; D’Arrigo, S.; Andreucci, E.; Aggio, F.; et al. Unilateral Frontal Lobe Epilepsy Affects Executive Functions in Children. Neurol. Sci. 2005, 26, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Tangviriyapaiboon, D.; Traisathit, P.; Siripornpanich, V.; Suyakong, C.; Apikomonkon, H.; Homkham, N.; Thumronglaohapun, S.; Srikummoon, P. Detection of Electroencephalographic Abnormalities and Its Associated Factors among Children with Autism Spectrum Disorder in Thailand. Healthcare 2022, 10, 1969. [Google Scholar] [CrossRef] [PubMed]
- Fujii, E.; Mori, K.; Miyazaki, M.; Hashimoto, T.; Harada, M.; Kagami, S. Function of the Frontal Lobe in Autistic Individuals: A Proton Magnetic Resonance Spectroscopic Study. J. Med. Investig. 2010, 57, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Abe, N.; Fujii, T.; Ueno, A.; Koseki, Y.; Hashimoto, R.; Mugikura, S.; Takahashi, S.; Mori, E. The Role of the Dorsolateral Prefrontal Cortex in Deception When Remembering Neutral and Emotional Events. Neurosci. Res. 2011, 69, 121–128. [Google Scholar] [CrossRef]
- Hill, E.L. Executive Dysfunction in Autism. Trends Cogn. Sci. 2004, 8, 26–32. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Choi, U.-S.; Park, S.-Y.; Oh, S.-H.; Yoon, H.-W.; Koh, Y.-J.; Im, W.-Y.; Park, J.-I.; Song, D.-H.; Cheon, K.-A.; et al. Abnormal Activation of the Social Brain Network in Children with Autism Spectrum Disorder: An FMRI Study. Psychiatry Investig. 2015, 12, 37–45. [Google Scholar] [CrossRef]
- Baird, G.; Charman, T.; Baron-Cohen, S.; Cox, A.; Swettenham, J.; Wheelwright, S.; Drew, A. A Screening Instrument for Autism at 18 Months of Age: A 6-Year Follow-up Study. J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 694–702. [Google Scholar] [CrossRef]
- Baird, G.; Simonoff, E.; Pickles, A.; Chandler, S.; Loucas, T.; Meldrum, D.; Charman, T. Prevalence of Disorders of the Autism Spectrum in a Population Cohort of Children in South Thames: The Special Needs and Autism Project (SNAP). Lancet 2006, 368, 210–215. [Google Scholar] [CrossRef]
- Bertrand, J.; Mars, A.; Boyle, C.; Bove, F.; Yeargin-Allsopp, M.; Decoufle, P. Prevalence of Autism in a United States Population: The Brick Township, New Jersey, Investigation. Pediatrics 2001, 108, 1155–1161. [Google Scholar] [CrossRef]
- Bölte, S.; Poustka, F. The Relation between General Cognitive Level and Adaptive Behavior Domains in Individuals with Autism with and without Co-Morbid Mental Retardation. Child Psychiatry Hum. Dev. 2002, 33, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Bölte, S.; Dziobek, I.; Poustka, F. Brief Report: The Level and Nature of Autistic Intelligence Revisited. J. Autism Dev. Disord. 2009, 39, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, L.H.; Norrelgen, F.; Kjellmer, L.; Westerlund, J.; Gillberg, C.; Fernell, E. Coexisting Disorders and Problems in Preschool Children with Autism Spectrum Disorders. Sci. World J. 2013, 2013, 213979. [Google Scholar] [CrossRef]
- Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010. MMWR Surveill. Summ. 2014, 63, 1–21. [Google Scholar]
- Chakrabarti, S.; Fombonne, E. Pervasive Developmental Disorders in Preschool Children: Confirmation of High Prevalence. Am. J. Psychiatry 2005, 162, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Charman, T.; Pickles, A.; Simonoff, E.; Chandler, S.; Loucas, T.; Baird, G. IQ in Children with Autism Spectrum Disorders: Data from the Special Needs and Autism Project (SNAP). Psychol. Med. 2011, 41, 619–627. [Google Scholar] [CrossRef] [PubMed]
- de Bildt, A.; Sytema, S.; Kraijer, D.; Minderaa, R. Prevalence of Pervasive Developmental Disorders in Children and Adolescents with Mental Retardation. J. Child Psychol. Psychiatry 2005, 46, 275–286. [Google Scholar] [CrossRef]
- Matson, J.L.; Shoemaker, M. Intellectual Disability and Its Relationship to Autism Spectrum Disorders. Res. Dev. Disabil. 2009, 30, 1107–1114. [Google Scholar] [CrossRef]
- Miller, J.S.; Bilder, D.; Farley, M.; Coon, H.; Pinborough-Zimmerman, J.; Jenson, W.; Rice, C.E.; Fombonne, E.; Pingree, C.B.; Ritvo, E.; et al. Autism Spectrum Disorder Reclassified: A Second Look at the 1980s Utah/UCLA Autism Epidemiologic Study. J. Autism Dev. Disord. 2013, 43, 200–210. [Google Scholar] [CrossRef]
- Jones, C.R.G.; Happé, F.; Pickles, A.; Marsden, A.J.S.; Tregay, J.; Baird, G.; Simonoff, E.; Charman, T. “Everyday Memory” Impairments in Autism Spectrum Disorders. J. Autism Dev. Disord. 2011, 41, 455–464. [Google Scholar] [CrossRef]
- Hajri, M.; Abbes, Z.; Yahia, H.B.; Jelili, S.; Halayem, S.; Mrabet, A.; Bouden, A. Cognitive Deficits in Children with Autism Spectrum Disorders: Toward an Integrative Approach Combining Social and Non-Social Cognition. Front. Psychiatry 2022, 13, 917121. [Google Scholar] [CrossRef]
- Woolfenden, S.; Sarkozy, V.; Ridley, G.; Coory, M.; Williams, K. A Systematic Review of Two Outcomes in Autism Spectrum Disorder—Epilepsy and Mortality. Dev. Med. Child Neurol. 2012, 54, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Maeda, T.; Ishii, K.; Tajima, D.; Koga, M.; Hamasaki, Y. Characterization of Childhood-Onset Complex Partial Seizures Associated with Autism Spectrum Disorder. Epilepsy Behav. 2011, 20, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.; Le Couteur, A.; Gottesman, I.; Bolton, P.; Simonoff, E.; Yuzda, E.; Rutter, M. Autism as a Strongly Genetic Disorder: Evidence from a British Twin Study. Psychol. Med. 1995, 25, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Mouridsen, S.E.; Rich, B.; Isager, T. Epilepsy in Disintegrative Psychosis and Infantile Autism: A Long-Term Validation Study. Dev. Med. Child Neurol. 1999, 41, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.G.; Parmeggiani, A.; Bach, V.; Santucci, M.; Visconti, P. EEG Features and Epilepsy in Patients with Autism. Brain Dev. 1995, 17, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Gillberg, C. Autistic Children Growing up: Problems during Puberty and Adolescence. Dev. Med. Child Neurol. 1984, 26, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, F.R.; Nelson, D.S. Seizure Disorders in Autism. J. Am. Acad. Child Adolesc. Psychiatry 1990, 29, 127–129. [Google Scholar] [CrossRef]
- Gedye, A. Frontal Lobe Seizures in Autism. Med. Hypotheses 1991, 34, 174–182. [Google Scholar] [CrossRef]
- Maurer, R.G.; Damasio, A.R. Childhood Autism from the Point of View of Behavioral Neurology. J. Autism Dev. Disord. 1982, 12, 195–205. [Google Scholar] [CrossRef]
- Ross, E.D. The Aprosodias. Functional-Anatomic Organization of the Affective Components of Language in the Right Hemisphere. Arch. Neurol. 1981, 38, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, K. Parvalbumin-Expressing GABAergic Interneurons and Perineuronal Nets in the Prelimbic and Orbitofrontal Cortices in Association with Basal Anxiety-like Behaviors in Adult Mice. Behav. Brain Res. 2021, 398, 112915. [Google Scholar] [CrossRef]
- Tuchman, R.F.; Rapin, I. Regression in Pervasive Developmental Disorders: Seizures and Epileptiform Electroencephalogram Correlates. Pediatrics 1997, 99, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, A. Correlation between EEG Abnormalities and Symptoms of Autism Spectrum Disorder (ASD). Brain Dev. 2010, 32, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Parmeggiani, A.; Barcia, G.; Posar, A.; Raimondi, E.; Santucci, M.; Scaduto, M.C. Epilepsy and EEG Paroxysmal Abnormalities in Autism Spectrum Disorders. Brain Dev. 2010, 32, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Akshoomoff, N.; Farid, N.; Courchesne, E.; Haas, R. Abnormalities on the Neurological Examination and EEG in Young Children with Pervasive Developmental Disorders. J. Autism Dev. Disord. 2007, 37, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.K.; Trauner, D.A. Incidence and Behavioral Correlates of Epileptiform Abnormalities in Autism Spectrum Disorders. J. Autism Dev. Disord. 2014, 44, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Swatzyna, R.J.; Tarnow, J.D.; Turner, R.P.; Roark, A.J.; MacInerney, E.K.; Kozlowski, G.P. Integration of EEG Into Psychiatric Practice: A Step toward Precision Medicine for Autism Spectrum Disorder. J. Clin. Neurophysiol. 2017, 34, 230–235. [Google Scholar] [CrossRef]
- Valvo, G.; Baldini, S.; Brachini, F.; Apicella, F.; Cosenza, A.; Ferrari, A.R.; Guerrini, R.; Muratori, F.; Romano, M.F.; Santorelli, F.M.; et al. Somatic Overgrowth Predisposes to Seizures in Autism Spectrum Disorders. PLoS ONE 2013, 8, e75015. [Google Scholar] [CrossRef]
- Canitano, R.; Luchetti, A.; Zappella, M. Epilepsy, Electroencephalographic Abnormalities, and Regression in Children with Autism. J. Child Neurol. 2005, 20, 27–31. [Google Scholar] [CrossRef]
- Chez, M.G.; Chang, M.; Krasne, V.; Coughlan, C.; Kominsky, M.; Schwartz, A. Frequency of Epileptiform EEG Abnormalities in a Sequential Screening of Autistic Patients with No Known Clinical Epilepsy from 1996 to 2005. Epilepsy Behav. 2006, 8, 267–271. [Google Scholar] [CrossRef]
- Hara, H. Autism and Epilepsy: A Retrospective Follow-up Study. Brain Dev. 2007, 29, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Hartley, S.L.; Barker, E.T.; Seltzer, M.M.; Floyd, F.; Greenberg, J.; Orsmond, G.; Bolt, D. The Relative Risk and Timing of Divorce in Families of Children with an Autism Spectrum Disorder. J. Fam. Psychol. 2010, 24, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Capal, J.K.; Carosella, C.; Corbin, E.; Horn, P.S.; Caine, R.; Manning-Courtney, P. EEG Endophenotypes in Autism Spectrum Disorder. Epilepsy Behav. 2018, 88, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Nicotera, A.G.; Hagerman, R.J.; Catania, M.V.; Buono, S.; Di Nuovo, S.; Liprino, E.M.; Stracuzzi, E.; Giusto, S.; Di Vita, G.; Musumeci, S.A. EEG Abnormalities as a Neurophysiological Biomarker of Severity in Autism Spectrum Disorder: A Pilot Cohort Study. J. Autism Dev. Disord. 2019, 49, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Eeg-Olofsson, O.; Petersén, I.; Selldén, U. The Development of the Electroencephalogram in Normal Children from the Age of 1 through 15 Years. Paroxysmal Activity. Neuropadiatrie 1971, 2, 375–404. [Google Scholar] [CrossRef] [PubMed]
- Cavazzuti, G.B.; Cappella, L.; Nalin, A. Longitudinal Study of Epileptiform EEG Patterns in Normal Children. Epilepsia 1980, 21, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, O.S.; Dayyat, E.; Kheirandish-Gozal, L.; Gozal, D. Prevalence of Epileptiform Activity in Healthy Children during Sleep. Sleep Med. 2008, 9, 303–309. [Google Scholar] [CrossRef]
- Hashimoto, T.; Sasaki, M.; Sugai, K.; Hanaoka, S.; Fukumizu, M.; Kato, T. Paroxysmal Discharges on EEG in Young Autistic Patients Are Frequent in Frontal Regions. J. Med. Investig. 2001, 48, 175–180. [Google Scholar]
- Romero-González, M.; Navas-Sánchez, P.; Marín-Gámez, E.; Barbancho-Fernández, M.A.; Fernández-Sánchez, V.E.; Lara-Muñoz, J.P.; Guzmán-Parra, J. EEG Abnormalities and Clinical Phenotypes in Pre-School Children with Autism Spectrum Disorder. Epilepsy Behav. 2022, 129, 108619. [Google Scholar] [CrossRef]
- Numis, A.L.; Major, P.; Montenegro, M.A.; Muzykewicz, D.A.; Pulsifer, M.B.; Thiele, E.A. Identification of Risk Factors for Autism Spectrum Disorders in Tuberous Sclerosis Complex. Neurology 2011, 76, 981–987. [Google Scholar] [CrossRef] [PubMed]
- European Chromosome 16 Tuberous Sclerosis Consortium Identification and Characterization of the Tuberous Sclerosis Gene on Chromosome 16. Cell 1993, 75, 1305–1315. [CrossRef] [PubMed]
- van Slegtenhorst, M.; de Hoogt, R.; Hermans, C.; Nellist, M.; Janssen, B.; Verhoef, S.; Lindhout, D.; van den Ouweland, A.; Halley, D.; Young, J.; et al. Identification of the Tuberous Sclerosis Gene TSC1 on Chromosome 9q34. Science 1997, 277, 805–808. [Google Scholar] [CrossRef] [PubMed]
- de Vries, P.J.; Hunt, A.; Bolton, P.F. The Psychopathologies of Children and Adolescents with Tuberous Sclerosis Complex (TSC): A Postal Survey of UK Families. Eur. Child Adolesc. Psychiatry 2007, 16, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Crucitti, J.; Hyde, C.; Enticott, P.G.; Stokes, M.A. A Systematic Review of Frontal Lobe Volume in Autism Spectrum Disorder Revealing Distinct Trajectories. J. Integr. Neurosci. 2022, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, C.M.; Spence, S.J. Clinical Characteristics of Children and Young Adults with Co-Occurring Autism Spectrum Disorder and Epilepsy. Epilepsy Behav. 2015, 47, 183–190. [Google Scholar] [CrossRef]
- Lado, F.A.; Rubboli, G.; Capovilla, G.; Avanzini, G.; Moshé, S.L. Pathophysiology of Epileptic Encephalopathies. Epilepsia 2013, 54 (Suppl. 8), 6–13. [Google Scholar] [CrossRef]
- Hirosawa, T.; Kikuchi, M.; Fukai, M.; Hino, S.; Kitamura, T.; An, K.-M.; Sowman, P.; Takahashi, T.; Yoshimura, Y.; Miyagishi, Y.; et al. Association between Magnetoencephalographic Interictal Epileptiform Discharge and Cognitive Function in Young Children with Typical Development and with Autism Spectrum Disorders. Front. Psychiatry 2018, 9, 568. [Google Scholar] [CrossRef]
- Hirosawa, T.; Sowman, P.F.; Fukai, M.; Kameya, M.; Soma, D.; Hino, S.; Kitamura, T.; An, K.-M.; Yoshimura, Y.; Hasegawa, C.; et al. Relationship between Epileptiform Discharges and Social Reciprocity or Cognitive Function in Children with and without Autism Spectrum Disorders: An MEG Study. Psychiatry Clin. Neurosci. 2020, 74, 510–511. [Google Scholar] [CrossRef]
- Hirosawa, T.; An, K.-M.; Soma, D.; Shiota, Y.; Sano, M.; Kameya, M.; Hino, S.; Naito, N.; Tanaka, S.; Yaoi, K.; et al. Epileptiform Discharges Relate to Altered Functional Brain Networks in Autism Spectrum Disorders. Brain Commun. 2021, 3, fcab184. [Google Scholar] [CrossRef]
- Faras, H.; Al Ateeqi, N.; Tidmarsh, L. Autism Spectrum Disorders. Ann. Saudi Med. 2010, 30, 295–300. [Google Scholar] [CrossRef]
- Ceman, S.; Saugstad, J. MicroRNAs: Meta-Controllers of Gene Expression in Synaptic Activity Emerge as Genetic and Diagnostic Markers of Human Disease. Pharmacol. Ther. 2011, 130, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Herman, G.E.; Henninger, N.; Ratliff-Schaub, K.; Pastore, M.; Fitzgerald, S.; McBride, K.L. Genetic Testing in Autism: How Much Is Enough? Genet. Med. 2007, 9, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, D.H. Genetics of Autism Spectrum Disorders. Trends Cogn. Sci. 2011, 15, 409–416. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, S.R. Rett and Rett-Related Disorders: Common Mechanisms for Shared Symptoms? Exp. Biol. Med. 2023. [Google Scholar] [CrossRef] [PubMed]
- Perrino, P.A.; Chamberlain, S.J.; Eigsti, I.-M.; Fitch, R.H. Communication-Related Assessments in an Angelman Syndrome Mouse Model. Brain Behav. 2021, 11, e01937. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.L.; Basit, H.; Shah, M.; Los, E. Fragile X Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mecarelli, O. Manuale Teorico-Pratico di Elettroencefalografia (pp. 194–214). In Medici Oggi; Adis International; Springer Healthcare Italia Srl: Milano, Italy, 2009. [Google Scholar]
- Bickford, R.G.; Sem-Jacobsen, C.W.; White, P.T.; Daly, D. Some Observations on the Mechanism of Photic and Photometrazol Activation. Electroencephalogr. Clin. Neurophysiol. 1952, 4, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Pratt, K.L.; Mattson, R.H.; Weikers, N.J.; Williams, R. EEG Activation of Epileptics Following Sleep Deprivation: A Prospective Study of 114 Cases. Electroencephalogr. Clin. Neurophysiol. 1968, 24, 11–15. [Google Scholar] [CrossRef]
- Badawy, R.A.B.; Curatolo, J.M.; Newton, M.; Berkovic, S.F.; Macdonell, R.A.L. Sleep Deprivation Increases Cortical Excitability in Epilepsy: Syndrome-Specific Effects. Neurology 2006, 67, 1018–1022. [Google Scholar] [CrossRef]
- Baldin, E.; Hauser, W.A.; Buchhalter, J.R.; Hesdorffer, D.C.; Ottman, R. Utility of EEG Activation Procedures in Epilepsy: A Population-Based Study. J. Clin. Neurophysiol. 2017, 34, 512–519. [Google Scholar] [CrossRef]
- Peltola, M.E.; Leitinger, M.; Halford, J.J.; Vinayan, K.P.; Kobayashi, K.; Pressler, R.M.; Mindruta, I.; Mayor, L.C.; Lauronen, L.; Beniczky, S. Routine and Sleep EEG: Minimum Recording Standards of the International Federation of Clinical Neurophysiology and the International League Against Epilepsy. Epilepsia 2023, 64, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Miskin, C.; Carvalho, K.S.; Valencia, I.; Legido, A.; Khurana, D.S. EEG Duration: The Long and the Short of It. J. Child Neurol. 2015, 30, 1767–1769. [Google Scholar] [CrossRef] [PubMed]
- Petruzzelli, M.G.; Matera, E.; Giambersio, D.; Marzulli, L.; Gabellone, A.; Legrottaglie, A.R.; Margari, A.; Margari, L. Subjective and Electroencephalographic Sleep Parameters in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review. J. Clin. Med. 2021, 10, 3893. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, F.; Giannotti, F.; Ivanenko, A.; Johnson, K. Sleep in Children with Autistic Spectrum Disorder. Sleep Med. 2010, 11, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Souders, M.C.; Zavodny, S.; Eriksen, W.; Sinko, R.; Connell, J.; Kerns, C.; Schaaf, R.; Pinto-Martin, J. Sleep in Children with Autism Spectrum Disorder. Curr. Psychiatry Rep. 2017, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, C.; Palagini, L.; Caruso, D.; Masci, I.; Nobili, L.; Vita, A.; Dell’Osso, L. Systematic Review of Sleep Disturbances and Circadian Sleep Desynchronization in Autism Spectrum Disorder: Toward an Integrative Model of a Self-Reinforcing Loop. Front. Psychiatry 2019, 10, 366. [Google Scholar] [CrossRef] [PubMed]
- Arazi, A.; Meiri, G.; Danan, D.; Michaelovski, A.; Flusser, H.; Menashe, I.; Tarasiuk, A.; Dinstein, I. Reduced Sleep Pressure in Young Children with Autism. Sleep 2020, 43, zsz309. [Google Scholar] [CrossRef]
- Johnson, K.P.; Giannotti, F.; Cortesi, F. Sleep Patterns in Autism Spectrum Disorders. Child Adolesc. Psychiatr. Clin. 2009, 18, 917–928. [Google Scholar] [CrossRef]
- Schreck, K.A.; Mulick, J.A.; Smith, A.F. Sleep Problems as Possible Predictors of Intensified Symptoms of Autism. Res. Dev. Disabil. 2004, 25, 57–66. [Google Scholar] [CrossRef]
- Souders, M.C.; Mason, T.B.A.; Valladares, O.; Bucan, M.; Levy, S.E.; Mandell, D.S.; Weaver, T.E.; Pinto-Martin, J. Sleep Behaviors and Sleep Quality in Children with Autism Spectrum Disorders. Sleep 2009, 32, 1566–1578. [Google Scholar] [CrossRef]
- DeVincent, C.J.; Gadow, K.D.; Delosh, D.; Geller, L. Sleep Disturbance and Its Relation to DSM-IV Psychiatric Symptoms in Preschool-Age Children with Pervasive Developmental Disorder and Community Controls. J. Child Neurol. 2007, 22, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hubbard, J.A.; Fabes, R.A.; Adam, J.B. Sleep Disturbances and Correlates of Children with Autism Spectrum Disorders. Child Psychiatry Hum. Dev. 2006, 37, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Leyfer, O.T.; Folstein, S.E.; Bacalman, S.; Davis, N.O.; Dinh, E.; Morgan, J.; Tager-Flusberg, H.; Lainhart, J.E. Comorbid Psychiatric Disorders in Children with Autism: Interview Development and Rates of Disorders. J. Autism Dev. Disord. 2006, 36, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Watanabe, T.; Sasaki, Y. Are Sleep Disturbances a Cause or Consequence of Autism Spectrum Disorder? Psychiatry Clin. Neurosci. 2023, 77, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Veatch, O.J.; Maxwell-Horn, A.C.; Malow, B.A. Sleep in Autism Spectrum Disorders. Curr. Sleep Med. Rep. 2015, 1, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Winkelman, J.W.; Buxton, O.M.; Jensen, J.E.; Benson, K.L.; O’Connor, S.P.; Wang, W.; Renshaw, P.F. Reduced Brain GABA in Primary Insomnia: Preliminary Data from 4T Proton Magnetic Resonance Spectroscopy (1H-MRS). Sleep 2008, 31, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Bridi, M.C.D.; Zong, F.-J.; Min, X.; Luo, N.; Tran, T.; Qiu, J.; Severin, D.; Zhang, X.-T.; Wang, G.; Zhu, Z.-J.; et al. Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits. Neuron 2020, 105, 621–629.e4. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, M.; Watanabe, T.; Sasaki, Y. Coregistration of Magnetic Resonance Spectroscopy and Polysomnography for Sleep Analysis in Human Subjects. STAR Protoc. 2021, 2, 100974. [Google Scholar] [CrossRef]
- Miano, S.; Bruni, O.; Elia, M.; Trovato, A.; Smerieri, A.; Verrillo, E.; Roccella, M.; Terzano, M.G.; Ferri, R. Sleep in Children with Autistic Spectrum Disorder: A Questionnaire and Polysomnographic Study. Sleep Med. 2007, 9, 64–70. [Google Scholar] [CrossRef]
- Diomedi, M.; Curatolo, P.; Scalise, A.; Placidi, F.; Caretto, F.; Gigli, G.L. Sleep Abnormalities in Mentally Retarded Autistic Subjects: Down’s Syndrome with Mental Retardation and Normal Subjects. Brain Dev. 1999, 21, 548–553. [Google Scholar] [CrossRef]
- Elia, M.; Ferri, R.; Musumeci, S.A.; Del Gracco, S.; Bottitta, M.; Scuderi, C.; Miano, G.; Panerai, S.; Bertrand, T.; Grubar, J.C. Sleep in Subjects with Autistic Disorder: A Neurophysiological and Psychological Study. Brain Dev. 2000, 22, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Thirumalai, S.S.; Shubin, R.A.; Robinson, R. Rapid Eye Movement Sleep Behavior Disorder in Children with Autism. J. Child Neurol. 2002, 17, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Limoges, E.; Mottron, L.; Bolduc, C.; Berthiaume, C.; Godbout, R. Atypical Sleep Architecture and the Autism Phenotype. Brain 2005, 128, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Brimacombe, M.; Chaaban, J.; Zimmerman-Bier, B.; Wagner, G.C. Autism Spectrum Disorders: Concurrent Clinical Disorders. J. Child Neurol. 2008, 23, 6–13. [Google Scholar] [CrossRef]
- Ingiosi, A.M.; Schoch, H.; Wintler, T.; Singletary, K.G.; Righelli, D.; Roser, L.G.; Medina, E.; Risso, D.; Frank, M.G.; Peixoto, L. Shank3 Modulates Sleep and Expression of Circadian Transcription Factors. Elife 2019, 8, e42819. [Google Scholar] [CrossRef]
- Medina, E.; Schoch, H.; Ford, K.; Wintler, T.; Singletary, K.G.; Peixoto, L. Shank3 Influences Mammalian Sleep Development. J. Neurosci. Res. 2022, 100, 2174–2186. [Google Scholar] [CrossRef] [PubMed]
- Cochoy, D.M.; Kolevzon, A.; Kajiwara, Y.; Schoen, M.; Pascual-Lucas, M.; Lurie, S.; Buxbaum, J.D.; Boeckers, T.M.; Schmeisser, M.J. Phenotypic and Functional Analysis of SHANK3 Stop Mutations Identified in Individuals with ASD and/or ID. Mol. Autism 2015, 6, 23. [Google Scholar] [CrossRef]
- MacDuffie, K.E.; Munson, J.; Greenson, J.; Ward, T.M.; Rogers, S.J.; Dawson, G.; Estes, A. Sleep Problems and Trajectories of Restricted and Repetitive Behaviors in Children with Neurodevelopmental Disabilities. J. Autism Dev. Disord. 2020, 50, 3844–3856. [Google Scholar] [CrossRef]
- MacDuffie, K.E.; Shen, M.D.; Dager, S.R.; Styner, M.A.; Kim, S.H.; Paterson, S.; Pandey, J.; St John, T.; Elison, J.T.; Wolff, J.J.; et al. Sleep Onset Problems and Subcortical Development in Infants Later Diagnosed with Autism Spectrum Disorder. Am. J. Psychiatry 2020, 177, 518–525. [Google Scholar] [CrossRef]
- CDC. CDC Child Development Positive Parenting Tips. Available online: https://www.cdc.gov/ncbddd/childdevelopment/positiveparenting/index.html (accessed on 9 November 2023).
- Hughes, J.R. Autism: The First Firm Finding = Underconnectivity? Epilepsy Behav. 2007, 11, 20–24. [Google Scholar] [CrossRef]
- Supekar, K.; Uddin, L.Q.; Khouzam, A.; Phillips, J.; Gaillard, W.D.; Kenworthy, L.E.; Yerys, B.E.; Vaidya, C.J.; Menon, V. Brain Hyperconnectivity in Children with Autism and Its Links to Social Deficits. Cell Rep. 2013, 5, 738–747. [Google Scholar] [CrossRef]
- Noonan, S.K.; Haist, F.; Müller, R.-A. Aberrant Functional Connectivity in Autism: Evidence from Low-Frequency BOLD Signal Fluctuations. Brain Res. 2009, 1262, 48–63. [Google Scholar] [CrossRef]
- O’Reilly, C.; Lewis, J.D.; Elsabbagh, M. Is Functional Brain Connectivity Atypical in Autism? A Systematic Review of EEG and MEG Studies. PLoS ONE 2017, 12, e0175870. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Supekar, K.; Menon, V. Reconceptualizing Functional Brain Connectivity in Autism from a Developmental Perspective. Front. Hum. Neurosci. 2013, 7, 458. [Google Scholar] [CrossRef]
- Haghighat, H.; Mirzarezaee, M.; Araabi, B.N.; Khadem, A. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity. Brain Topogr. 2021, 34, 306–322. [Google Scholar] [CrossRef]
- Rane, P.; Cochran, D.; Hodge, S.M.; Haselgrove, C.; Kennedy, D.N.; Frazier, J.A. Connectivity in Autism: A Review of MRI Connectivity Studies. Harv. Rev. Psychiatry 2015, 23, 223–244. [Google Scholar] [CrossRef] [PubMed]
AUTHORS (Publication Year) | ASD DIAGNOSTIC CRITERIA | AGE RANGE/MEAN AGE (Years) with Standard Deviation (SD) Where Specified | EEG RECORDING FEATURES | TYPE (Epileptiform/ Non-Epileptiform) | NUMBER OF PATIENTS WITH EPILEPSY | FUNCTIONAL PROFILE AMONG PATIENTS WITH ABNORMAL EEG |
---|---|---|---|---|---|---|
DATABASE | PATIENT COHORT (M/F) | LOCATION | ||||
Kanemura H. et al. (2013) [63] | DSM-IV n = 21 (12/9) | 9–12/10.25 (at the last observation) |
| Epileptiform abnormalities (n = 11) | 6 | Not specified |
Pubmed/Google Scholar | n = 21 (12/9) | Focal and multifocal | ||||
Barbosa de Matos M. et al. (2015) [57] | DSM-5 | 1.42–4.83/ASD diagnosis 2.99 ± 0.98 and epilepsy diagnosis 2.80 ± 0.36 |
| Epileptiform abnormalities (n = 9) Disorganized background activity (n = 28) | 11 | Not specified |
Google Scholar | n = 63 (40/23) | Focal, multifocal and generalized | ||||
Yousef A. M. et al. (2017) [58] | DSM IV Childhood Autism Rating Scale (CARS) > 30 | 2–12/4.97 ± 2.9 SD |
| Epileptiform abnormalities (n = 20) | 0 | Direct correlation between ASD severity (CARS) and EEG abnormalities (predominantly generalized discharges) |
n = 40 (28/12) | ||||||
Google Scholar | Focal and generalized | |||||
Anukirthiga B. et al. (2019) [59] | DSM-5 | 6–12/7.7 |
| Epileptiform abnormalities (n = 41) | Among ASD patients: 41 (24 with IEDs) | Concomitant epilepsy and IEDs |
Pubmed/Scopu/Google Scholar | n = 130 of which 90 with ASD (69/21) | Focal, multifocal and generalized | ||||
Milovanovic M. et al. (2019) [60] | ICD-10 Autism Diagnostic Interview-Revised (ADI-R) | 2–18/6.58 ± 3.72 SD |
| Epileptiform abnormalities (n = 31) Abnormal background activity, focal slow activity and abnormal sleep architecture (n = 19) | 17 (all of them with epileptiform abnormalities) | No evidence of direct correlation between adaptive behavior and epilepsy/EEG abnormalities |
Pubmed/Scopus/Google Scholar | n = 112 (90/22) | Focal and generalized | ||||
Akhter S. (2021) [61] | DSM-IV-TR | 2–12/5.25 ± 2.75 |
| Epileptiform abnormalities (n = 19) Background rhythmic theta/delta slowing, generalised intermittent slow waves, excessive beta activity and lateralized asymmetry (n = 8) | 10 | Variable correlation between EEG abnormalities and ID severity |
Google Scholar | n = 52 (41/11) | Focal, multifocal and generalized | ||||
Polat I. et al. (2022) [56] | DSM-5 | 2–17/boys 6.3 ± 3.7 girls 5.7 ± 3 |
| Epileptiform abnormalities (n = 37) Dysrhythmia/slowing down of the ground rhythm and paradoxical delta activity (n = 20) | 25 | Correlation between EEG abnormalities and functional profile not specified |
Google Scholar | n = 166 (124/42) | Focal and generalized | ||||
Sharma V. et al. (2022) [62] | DSM-5 | 3–14/5.6 ± 2.4 |
| Epileptiform abnormalities (n = not specified) Focal slowing and intermittent arrhythmic delta slowing (n = not specified) | 23 (15 with EEG abnormalities) | Direct correlation between global developmental delay/ID severity and EEG abnormalities |
Pubmed/Scopus/Google Scholar | n = 100 (80/20) | Focal, multifocal and generalized | ||||
Kammoun I. et al. (2022) [55] | DSM-5 | 2–6/5 |
| Epileptiform abnormalities (n = not specified) Sleep disorganization (n = 5) | 0 | Direct correlation between EEG abnormalities and the severity of neurodevelopmental disorders |
Google Scholar | n = 39 (23/16) | Focal and multifocal | ||||
Santarone M. E. et al. (2023) [54] | DSM-5 ADOS-2 Italian Version ADI-R Italian Version | 1.57–4.72/2.88 |
| Epileptiform abnormalities (n = not specified) Slow or irregular background activity, asymmetry, abnormal fast activity and asynchrony (n = not specified) | 1 | Direct correlation between nonepileptiform abnormalities during sleep and developmental delay |
Pubmed/Scopus/Google Scholar | n = 292 (248/44) | Focal and generalized |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosetti, C.; Ferrini, L.; Ferrari, A.R.; Bartolini, E.; Calderoni, S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J. Clin. Med. 2024, 13, 279. https://doi.org/10.3390/jcm13010279
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. Journal of Clinical Medicine. 2024; 13(1):279. https://doi.org/10.3390/jcm13010279
Chicago/Turabian StyleBosetti, Chiara, Luca Ferrini, Anna Rita Ferrari, Emanuele Bartolini, and Sara Calderoni. 2024. "Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review" Journal of Clinical Medicine 13, no. 1: 279. https://doi.org/10.3390/jcm13010279