Beyond Clinical Factors: Harnessing Artificial Intelligence and Multimodal Cardiac Imaging to Predict Atrial Fibrillation Recurrence Post-Catheter Ablation
Abstract
:1. Introduction
2. Conventional Prediction of AF Recurrence after Catheter Ablation
2.1. Predictors of AF Recurrence
2.2. Scoring Systems for Predicting AF Recurrence
3. Cardiac Imaging for Predicting AF Recurrence
3.1. Echocardiography
3.2. Cardiac Computed Tomography and Cardiac Magnetic Resonance Imaging
4. Applications of Artificial Intelligence for Predicting AF Recurrence
4.1. AI Models to Predict AF Recurrence
4.2. Limitations of AI in Medicine
5. Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
AI Disclosures
Conflicts of Interest
References
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Wolf, P.A.; D’Agostino, R.B.; Silbershatz, H.; Kannel, W.B.; Levy, D. Impact of Atrial Fibrillation on the Risk of Death. Circulation 1998, 98, 946–952. [Google Scholar] [CrossRef]
- Rienstra, M.; Lubitz, S.A.; Mahida, S.; Magnani, J.W.; Fontes, J.D.; Sinner, M.F.; Van Gelder, I.C.; Ellinor, P.T.; Benjamin, E.J. Symptoms and Functional Status of Patients with Atrial Fibrillation: State-of-the-Art and Future Research Opportunities. Circulation 2012, 125, 2933–2943. [Google Scholar] [CrossRef]
- Parameswaran, R.; Al-Kaisey, A.M.; Kalman, J.M. Catheter Ablation for Atrial Fibrillation: Current Indications and Evolving Technologies. Nat. Rev. Cardiol. 2021, 18, 210–225. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef]
- Tzeis, S.; Gerstenfeld, E.P.; Kalman, J.; Saad, E.; Shamloo, A.S.; Andrade, J.G.; Barbhaiya, C.R.; Baykaner, T.; Boveda, S.; Calkins, H.; et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2024, 67, 921–1072. [Google Scholar] [CrossRef]
- Kistler, P.M.; Sanders, P.; Amarena, J.V.; Bain, C.R.; Chia, K.M.; Choo, W.-K.; Eslick, A.T.; Hall, T.; Hopper, I.K.; Kotschet, E.; et al. 2023 Cardiac Society of Australia and New Zealand Expert Position Statement on Catheter and Surgical Ablation for Atrial Fibrillation. Heart Lung Circ. 2024, 33, 828–881. [Google Scholar] [CrossRef]
- Ganesan, A.N.; Shipp, N.J.; Brooks, A.G.; Kuklik, P.; Lau, D.H.; Lim, H.S.; Sullivan, T.; Roberts-Thomson, K.C.; Sanders, P. Long-term Outcomes of Catheter Ablation of Atrial Fibrillation: A Systematic Review and Meta-analysis. J. Am. Heart Assoc. 2013, 2, e004549. [Google Scholar] [CrossRef]
- Calkins, H.; Kuck, K.H.; Cappato, R.; Brugada, J.; Camm, A.J.; Chen, S.-A.; Crijns, H.J.G.; Damiano, R.J., Jr.; Davies, D.W.; DiMarco, J.; et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions, Endpoints, and Research Trial Design: A Report of the Heart Rhythm Society (Hrs) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in Partnership with the European Heart Rhythm Association (EHRA), a Registered Branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in Collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the Governing Bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. EP Eur. 2012, 14, 528–606. [Google Scholar] [CrossRef]
- Calkins, H.; Reynolds, M.R.; Spector, P.; Sondhi, M.; Xu, Y.; Martin, A.; Williams, C.J.; Sledge, I. Treatment of Atrial Fibrillation with Antiarrhythmic Drugs or Radiofrequency Ablation. Circ. Arrhythmia Electrophysiol. 2009, 2, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Mark, D.B.; Anstrom, K.J.; Sheng, S.; Piccini, J.P.; Baloch, K.N.; Monahan, K.H.; Daniels, M.R.; Bahnson, T.D.; Poole, J.E.; Rosenberg, Y.; et al. Effect of Catheter Ablation vs Medical Therapy on Quality of Life among Patients with Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest among Patients with Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Packer, D.L.; Piccini, J.P.; Monahan, K.H.; Al-Khalidi, H.R.; Silverstein, A.P.; Noseworthy, P.A.; Poole, J.E.; Bahnson, T.D.; Lee, K.L.; Mark, D.B.; et al. Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure. Circulation 2021, 143, 1377–1390. [Google Scholar] [CrossRef]
- Khanra, D.; Mukherjee, A.; Deshpande, S.; Padmanabhan, D.; Mohan, S.; Khan, H.; Kella, D.; Kathuria, N. Catheter Ablation Outscores All Other Treatment Modalities in Reducing All-Cause Mortality and Heart Failure Related Morbidity in Patients of Persistent Atrial Fibrillation with Systolic Heart Failure. EP Eur. 2021, 23, euab116.217. [Google Scholar] [CrossRef]
- Sohns, C.; Fox, H.; Marrouche, N.F.; Crijns, H.J.G.M.; Costard-Jaeckle, A.; Bergau, L.; Hindricks, G.; Dagres, N.; Sossalla, S.; Schramm, R.; et al. Catheter Ablation in End-Stage Heart Failure with Atrial Fibrillation. N. Engl. J. Med. 2023, 389, 1380–1389. [Google Scholar] [CrossRef]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Steinberg, J.S.; Glotzer, T.V.; Hawkins, N.M.; Khairy, P.; Aguilar, M. Healthcare Utilization and Quality of Life for Atrial Fibrillation Burden: The CIRCA-DOSE Study. Eur. Heart J. 2023, 44, 765–776. [Google Scholar] [CrossRef]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.-H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. EP Eur. 2018, 20, e1–e160. [Google Scholar] [CrossRef]
- Brahier, M.S.; Friedman, D.J.; Bahnson, T.D.; Piccini, J.P. Repeat Catheter Ablation for Atrial Fibrillation. Heart Rhythm. 2024, 21, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.J.; Dixit, S.; Santangeli, P. Mechanisms and Clinical Significance of Early Recurrences of Atrial Arrhythmias after Catheter Ablation for Atrial Fibrillation. World J. Cardiol. 2016, 8, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Erhard, N.; Metzner, A.; Fink, T. Late Arrhythmia Recurrence after Atrial Fibrillation Ablation: Incidence, Mechanisms and Clinical Implications. Herzschrittmacherther. Elektrophysiol. 2022, 33, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, F.; Antz, M.; Ernst, S.; Hachiya, H.; Mavrakis, H.; Deger, F.T.; Schaumann, A.; Chun, J.; Falk, P.; Hennig, D.; et al. Recovered Pulmonary Vein Conduction as a Dominant Factor for Recurrent Atrial Tachyarrhythmias after Complete Circular Isolation of the Pulmonary Veins. Circulation 2005, 111, 127–135. [Google Scholar] [CrossRef]
- Ko, J.S.; Kim, S.S.; Jeong, H.K.; Kim, N.H. Decision-Making for Recurrent Atrial Fibrillation after Catheter Ablation. Cardiovasc. Prev. Pharmacother. 2023, 5, 102–112. [Google Scholar] [CrossRef]
- Dretzke, J.; Chuchu, N.; Agarwal, R.; Herd, C.; Chua, W.; Fabritz, L.; Bayliss, S.; Kotecha, D.; Deeks, J.J.; Kirchhof, P.; et al. Predicting Recurrent Atrial Fibrillation after Catheter Ablation: A Systematic Review of Prognostic Models. EP Eur. 2020, 22, 748–760. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Corleto, A.; Biondi-Zoccai, G.; Anselmino, M.; Ferraris, F.; di Biase, L.; Natale, A.; Hunter, R.J.; Schilling, R.J.; Miyazaki, S.; et al. Which Are the Most Reliable Predictors of Recurrence of Atrial Fibrillation after Transcatheter Ablation?: A Meta-Analysis. Int. J. Cardiol. 2013, 167, 1984–1989. [Google Scholar] [CrossRef]
- Ng, C.Y.; Liu, T.; Shehata, M.; Stevens, S.; Chugh, S.S.; Wang, X. Meta-Analysis of Obstructive Sleep Apnea as Predictor of Atrial Fibrillation Recurrence after Catheter Ablation. Am. J. Cardiol. 2011, 108, 47–51. [Google Scholar] [CrossRef]
- Kornej, J.; Hindricks, G.; Kosiuk, J.; Arya, A.; Sommer, P.; Husser, D.; Rolf, S.; Richter, S.; Huo, Y.; Piorkowski, C.; et al. Comparison of CHADS2, R2CHADS2, and CHA2DS2-VASC Scores for the Prediction of Rhythm Outcomes after Catheter Ablation of Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2014, 7, 281–287. [Google Scholar] [CrossRef]
- Hussein, A.A.; Saliba, W.I.; Martin, D.O.; Shadman, M.; Kanj, M.; Bhargava, M.; Dresing, T.; Chung, M.; Callahan, T.; Baranowski, B.; et al. Plasma B-Type Natriuretic Peptide Levels and Recurrent Arrhythmia after Successful Ablation of Lone Atrial Fibrillation. Circulation 2011, 123, 2077–2082. [Google Scholar] [CrossRef]
- Kurotobi, T.; Iwakura, K.; Inoue, K.; Kimura, R.; Okamura, A.; Koyama, Y.; Toyoshima, Y.; Ito, N.; Fujii, K. A Pre-Existent Elevated C-Reactive Protein Is Associated with the Recurrence of Atrial Tachyarrhythmias after Catheter Ablation in Patients with Atrial Fibrillation. EP Eur. 2010, 12, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Ngo, C.; Akoum, N. Imaging Modality Selection in Cardiac Ablation. J. Innov. Card. Rhythm. Manag. 2022, 13, 4968–4980. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Xu, M.; Zhang, C.; Liu, H.; Shao, X.; Wang, Y.; Yang, J. An Echocardiographic Model for Predicting the Recurrence of Paroxysmal Atrial Fibrillation after Circumferential Pulmonary Vein Ablation. Clin. Cardiol. 2021, 44, 1506–1515. [Google Scholar] [CrossRef] [PubMed]
- Kosich, F.; Schumacher, K.; Potpara, T.; Lip, G.Y.; Hindricks, G.; Kornej, J. Clinical Scores Used for the Prediction of Negative Events in Patients Undergoing Catheter Ablation for Atrial Fibrillation. Clin. Cardiol. 2019, 42, 320–329. [Google Scholar] [CrossRef]
- Mujović, N.; Marinković, M.; Marković, N.; Shantsila, A.; Lip, G.Y.H.; Potpara, T.S. Prediction of Very Late Arrhythmia Recurrence after Radiofrequency Catheter Ablation of Atrial Fibrillation: The MB-LATER Clinical Score. Sci. Rep. 2017, 7, 40828. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, U.; Aytemir, K.; Yorgun, H.; Şahiner, L.; Kaya, E.B.; Oto, A. A Proposal for a New Scoring System in the Prediction of Catheter Ablation Outcomes: Promising Results from the Turkish Cryoablation Registry. Int. J. Cardiol. 2013, 169, 201–206. [Google Scholar] [CrossRef]
- Wójcik, M.; Berkowitsch, A.; Greiss, H.; Zaltsberg, S.; Pajitnev, D.; Deubner, N.; Hamm, C.W.; Pitschner, H.F.; Kuniss, M.; Neumann, T. Repeated Catheter Ablation of Atrial Fibrillation. Circ. J. 2013, 77, 2271–2279. [Google Scholar] [CrossRef]
- Kornej, J.; Hindricks, G.; Shoemaker, M.B.; Husser, D.; Arya, A.; Sommer, P.; Rolf, S.; Saavedra, P.; Kanagasundram, A.; Whalen, S.P.; et al. The APPLE Score: A Novel and Simple Score for the Prediction of Rhythm Outcomes after Catheter Ablation of Atrial Fibrillation. Clin. Res. Cardiol. 2015, 104, 871–876. [Google Scholar] [CrossRef]
- Winkle, R.A.; Jarman, J.W.E.; Mead, R.H.; Engel, G.; Kong, M.H.; Fleming, W.; Patrawala, R.A. Predicting Atrial Fibrillation Ablation Outcome: The CAAP-AF Score. Heart Rhythm. 2016, 13, 2119–2125. [Google Scholar] [CrossRef]
- Mesquita, J.; Ferreira, A.M.; Cavaco, D.; Moscoso Costa, F.; Carmo, P.; Marques, H.; Morgado, F.; Mendes, M.; Adragão, P. Development and Validation of a Risk Score for Predicting Atrial Fibrillation Recurrence after a First Catheter Ablation Procedure—ATLAS Score. EP Eur. 2018, 20, f428–f435. [Google Scholar] [CrossRef]
- Bisbal, F.; Alarcón, F.; Ferrero-de-Loma-Osorio, A.; González-Ferrer, J.J.; Alonso, C.; Pachón, M.; Tizón, H.; Cabanas-Grandío, P.; Sanchez, M.; Benito, E.; et al. Left Atrial Geometry and Outcome of Atrial Fibrillation Ablation: Results from the Multicentre LAGO-AF Study. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Suzuki, S.; Arita, T.; Yagi, N.; Ikeda, T.; Yamashita, T. A Novel and Simple Scoring System for Assessing the Indication for Catheter Ablation in Patients with Atrial Fibrillation: The HEAL-AF Score. J. Arrhythm. 2020, 36, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Boyalla, V.; Jarman, J.W.E.; Markides, V.; Hussain, W.; Wong, T.; Mead, R.H.; Engel, G.; Kong, M.H.; Patrawala, R.A.; Winkle, R.A. Internationally Validated Score to Predict the Outcome of Non-Paroxysmal Atrial Fibrillation Ablation: The ‘FLAME Score’. Open Heart 2021, 8, e001653. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, Y.; Sha, R.; Liu, H.; Liu, A.; Maduray, K.; Ge, J.; Ma, C.; Zhong, J. A Prediction Model of Atrial Fibrillation Recurrence after First Catheter Ablation by a Nomogram: HASBLP Score. Front. Cardiovasc. Med. 2022, 9, 934664. [Google Scholar] [CrossRef]
- Levent, F.; Kanat, S.; Tutuncu, A. Predictive Value of C2HEST Score for Atrial Fibrillation Recurrence Following Successful Cryoballoon Pulmonary Vein Isolation in Paroxysmal Atrial Fibrillation. Angiology 2023, 74, 273–281. [Google Scholar] [CrossRef]
- Nastasă, A.; Bogdan, Ș.; Iorgulescu, C.; Radu, A.D.; Craițoiu-Nirlu, L.; Vătășescu, R.G. New Score for Predicting Results after Catheter Ablation for Atrial Fibrillation: VAT-DHF. J. Clin. Med. 2023, 13, 61. [Google Scholar] [CrossRef]
- Waranugraha, Y.; Hsu, J.-C.; Lin, T.-T.; Ho, L.-T.; Yu, C.-C.; Liu, Y.-B.; Lin, L.-Y. Novel Scoring System Derived from Meta-Analysis and Validated in Cohort Population for Predicting 1-Year Atrial Fibrillation Recurrence after Cryoballoon Catheter Ablation: The HeLPS-Cryo Score. Pacing Clin. Electrophysiol. 2024, 47, 462–473. [Google Scholar] [CrossRef]
- Lyu, Y.; Bennamoun, M.; Sharif, N.; Lip, G.Y.H.; Dwivedi, G. Artificial Intelligence in the Image-Guided Care of Atrial Fibrillation. Life 2023, 13, 1870. [Google Scholar] [CrossRef]
- Andrew, C.Y.; Klein, A.L. Role of Echocardiography in Atrial Fibrillation Ablation. J. Atr. Fibrillation 2011, 4, 397. [Google Scholar] [CrossRef]
- Cameli, M.; Mandoli, G.E.; Loiacono, F.; Sparla, S.; Iardino, E.; Mondillo, S. Left Atrial Strain: A Useful Index in Atrial Fibrillation. Int. J. Cardiol. 2016, 220, 208–213. [Google Scholar] [CrossRef]
- Mouselimis, D.; Tsarouchas, A.S.; Pagourelias, E.D.; Bakogiannis, C.; Theofilogiannakos, E.K.; Loutradis, C.; Fragakis, N.; Vassilikos, V.P.; Papadopoulos, C.E. Left Atrial Strain, Intervendor Variability, and Atrial Fibrillation Recurrence after Catheter Ablation: A Systematic Review and Meta-Analysis. Hell. J. Cardiol. 2020, 61, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-X.; Boldt, L.-H.; Zhang, Y.-L.; Zhu, M.-R.; Hu, B.; Parwani, A.; Belyavskiy, E.; Radha Krishnan, A.K.; Krisper, M.; Köhncke, C.; et al. Clinical Relevance of Left Atrial Strain to Predict Recurrence of Atrial Fibrillation after Catheter Ablation: A Meta-Analysis. Echocardiography 2016, 33, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Gan, G.C.H.; Ferkh, A.; Boyd, A.; Thomas, L. Left Atrial Function: Evaluation by Strain Analysis. Cardiovasc. Diagn. Ther. 2018, 8, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.L.; Cunha, P.S.; Jacinto, A.S.; Portugal, G.; Laranjo, S.; Valente, B.; Lousinha, A.; Cruz, M.C.; Delgado, A.S.; Brás, M.; et al. Epicardial Adipose Tissue Volume Assessed by Cardiac CT as a Predictor of Atrial Fibrillation Recurrence Following Catheter Ablation. Clin. Imaging 2024, 110, 110170. [Google Scholar] [CrossRef] [PubMed]
- Elmahdy, M.; Sebro, R. Radiomics Analysis in Medical Imaging Research. J. Med. Radiat. Sci. 2023, 70, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Cao, Q.; Xu, Z.; Ge, Y.; Li, S.; Yan, F.; Yang, W. Development and Validation of a Machine Learning-Based Radiomics Model on Cardiac Computed Tomography of Epicardial Adipose Tissue in Predicting Characteristics and Recurrence of Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 813085. [Google Scholar] [CrossRef]
- Firouznia, M.; Feeny, A.K.; LaBarbera, M.A.; McHale, M.; Cantlay, C.; Kalfas, N.; Schoenhagen, P.; Saliba, W.; Tchou, P.; Barnard, J.; et al. Machine Learning–Derived Fractal Features of Shape and Texture of the Left Atrium and Pulmonary Veins from Cardiac Computed Tomography Scans Are Associated with Risk of Recurrence of Atrial Fibrillation Postablation. Circ. Arrhythmia Electrophysiol. 2021, 14, e009265. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation: The DECAAF Study. JAMA 2014, 311, 498–506. [Google Scholar] [CrossRef]
- Regmi, M.R.; Bhattarai, M.; Parajuli, P.; Botchway, A.; Tandan, N.; Abdelkarim, J.; Labedi, M. Prediction of Recurrence of Atrial Fibrillation Post-Ablation Based on Atrial Fibrosis Seen on Late Gadolinium Enhancement MRI: A Meta-Analysis. Curr. Cardiol. Rev. 2023, 19, E051222211571. [Google Scholar] [CrossRef]
- Szilveszter, B.; Nagy, A.I.; Vattay, B.; Apor, A.; Kolossváry, M.; Bartykowszki, A.; Simon, J.; Drobni, Z.D.; Tóth, A.; Suhai, F.I.; et al. Left Ventricular and Atrial Strain Imaging with Cardiac Computed Tomography: Validation against Echocardiography. J. Cardiovasc. Comput. Tomogr. 2020, 14, 363–369. [Google Scholar] [CrossRef]
- Cau, R.; Bassareo, P.; Suri, J.S.; Pontone, G.; Saba, L. The Emerging Role of Atrial Strain Assessed by Cardiac MRI in Different Cardiovascular Settings: An up-to-Date Review. Eur. Radiol. 2022, 32, 4384–4394. [Google Scholar] [CrossRef] [PubMed]
- Jaltotage, B.; Ihdayhid, A.R.; Lan, N.S.R.; Pathan, F.; Patel, S.; Arnott, C.; Figtree, G.; Kritharides, L.; Shamsul Islam, S.M.; Chow, C.K.; et al. Artificial Intelligence in Cardiology: An Australian Perspective. Heart Lung Circ. 2023, 32, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Jaltotage, B.; Sukudom, S.; Ihdayhid, A.R.; Dwivedi, G. Enhancing Risk Stratification on Coronary Computed Tomography Angiography: The Role of Artificial Intelligence. Clin. Ther. 2023, 45, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Koulaouzidis, G.; Jadczyk, T.; Iakovidis, D.K.; Koulaouzidis, A.; Bisnaire, M.; Charisopoulou, D. Artificial Intelligence in Cardiology—A Narrative Review of Current Status. J. Clin. Med. 2022, 11, 3910. [Google Scholar] [CrossRef]
- Sardar, P.; Abbott, J.D.; Kundu, A.; Aronow, H.D.; Granada, J.F.; Giri, J. Impact of Artificial Intelligence on Interventional Cardiology. JACC Cardiovasc. Interv. 2019, 12, 1293–1303. [Google Scholar] [CrossRef]
- Karatzia, L.; Aung, N.; Aksentijevic, D. Artificial Intelligence in Cardiology: Hope for the Future and Power for the Present. Front. Cardiovasc. Med. 2022, 9, 945726. [Google Scholar] [CrossRef]
- Jaltotage, B.; Lu, J.; Dwivedi, G. Use of Artificial Intelligence Including Multimodal Systems to Improve the Management of Cardiovascular Disease. Can. J. Cardiol. 2024. [Google Scholar] [CrossRef]
- Sehly, A.; Jaltotage, B.; He, A.; Maiorana, A.; Ihdayhid, A.R.; Rajwani, A.; Dwivedi, G. Artificial Intelligence in Echocardiography: The Time Is Now. Rev. Cardiovasc. Med. 2022, 23, 256. [Google Scholar] [CrossRef]
- Lallah, P.N.; Laite, C.; Bangash, A.B.; Chooah, O.; Jiang, C. The Use of Artificial Intelligence for Detecting and Predicting Atrial Arrhythmias Post Catheter Ablation. Rev. Cardiovasc. Med. 2023, 24, 215. [Google Scholar] [CrossRef]
- Horde, G.W.; Ayyala, D.; Maddux, P.; Gopal, A.; White, W.; Berman, A.E. Creation and Validation of an Algorithm for Predicting the Recurrence of Atrial Fibrillation Following Pulmonary Vein Isolation by Utilizing Real-World Data and Ensemble Modeling Techniques. Cureus 2023, 15, e43234. [Google Scholar] [CrossRef]
- Huang, J.; Ling, C.X. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On Evaluation Metrics for Medical Applications of Artificial Intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef] [PubMed]
- Abbasian Ardakani, A.; Airom, O.; Khorshidi, H.; Bureau, N.J.; Salvi, M.; Molinari, F.; Acharya, U.R. Interpretation of Artificial Intelligence Models in Healthcare. J. Ultrasound. Med. 2024, 43, 1789–1818. [Google Scholar] [CrossRef] [PubMed]
- Shade, J.K.; Ali, R.L.; Basile, D.; Popescu, D.; Akhtar, T.; Marine, J.E.; Spragg, D.D.; Calkins, H.; Trayanova, N.A. Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation. Circ. Arrhythmia Electrophysiol. 2020, 13, e008213. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, Y.; Oh, G.-H.; Kim, S.H.; Choi, Y.; Hwang, Y.; Kim, T.-S.; Kim, S.-H.; Kim, J.-H.; Jang, S.-W.; et al. A Deep Learning Model to Predict Recurrence of Atrial Fibrillation after Pulmonary Vein Isolation. Int. J. Arrhythmia 2020, 21, 19. [Google Scholar] [CrossRef]
- Hwang, Y.-T.; Lee, H.-L.; Lu, C.-H.; Chang, P.-C.; Wo, H.-T.; Liu, H.-T.; Wen, M.-S.; Lin, F.-C.; Chou, C.-C. A Novel Approach for Predicting Atrial Fibrillation Recurrence after Ablation Using Deep Convolutional Neural Networks by Assessing Left Atrial Curved M-Mode Speckle-Tracking Images. Front. Cardiovasc. Med. 2021, 7, 605642. [Google Scholar] [CrossRef]
- Atta-Fosu, T.; LaBarbera, M.; Ghose, S.; Schoenhagen, P.; Saliba, W.; Tchou, P.J.; Lindsay, B.D.; Desai, M.Y.; Kwon, D.; Chung, M.K.; et al. A New Machine Learning Approach for Predicting Likelihood of Recurrence Following Ablation for Atrial Fibrillation from CT. BMC Med. Imaging 2021, 21, 45. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kwon, O.-S.; Shim, J.; Lee, J.; Han, H.-J.; Yu, H.T.; Kim, T.-H.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; et al. Left Atrial Wall Stress and the Long-Term Outcome of Catheter Ablation of Atrial Fibrillation: An Artificial Intelligence-Based Prediction of Atrial Wall Stress. Front. Physiol. 2021, 12, 686507. [Google Scholar] [CrossRef]
- Labarbera, M.A.; Atta-Fosu, T.; Feeny, A.K.; Firouznia, M.; Mchale, M.; Cantlay, C.; Roach, T.; Axtell, A.; Schoenhagen, P.; Barnard, J.; et al. New Radiomic Markers of Pulmonary Vein Morphology Associated with Post-Ablation Recurrence of Atrial Fibrillation. IEEE J. Transl. Eng. Health Med. 2021, 10, 1–9. [Google Scholar] [CrossRef]
- Zhou, X.; Nakamura, K.; Sahara, N.; Takagi, T.; Toyoda, Y.; Enomoto, Y.; Hara, H.; Noro, M.; Sugi, K.; Moroi, M.; et al. Deep Learning-Based Recurrence Prediction of Atrial Fibrillation after Catheter Ablation. Circ. J. 2022, 86, 299–308. [Google Scholar] [CrossRef]
- Roney, C.H.; Sim, I.; Yu, J.; Beach, M.; Mehta, A.; Alonso Solis-Lemus, J.; Kotadia, I.; Whitaker, J.; Corrado, C.; Razeghi, O.; et al. Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models. Circ. Arrhythm. Electrophysiol. 2022, 15, e010253. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Razeghi, O.; Kapoor, R.; Alhusseini, M.I.; Fazal, M.; Rogers, A.J.; Rodrigo Bort, M.; Clopton, P.; Wang, P.J.; Rubin, D.L.; et al. Machine Learning–Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes. Circ. Arrhythmia Electrophysiol. 2022, 15, e010850. [Google Scholar] [CrossRef] [PubMed]
- Saglietto, A.; Gaita, F.; Blomstrom-Lundqvist, C.; Arbelo, E.; Dagres, N.; Brugada, J.; Maggioni, A.P.; Tavazzi, L.; Kautzner, J.; De Ferrari, G.M.; et al. AFA-Recur: An ESC EORP AFA-LT Registry Machine-Learning Web Calculator Predicting Atrial Fibrillation Recurrence after Ablation. EP Eur. 2023, 25, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Warminski, G.; Kalinczuk, L.; Orczykowski, M.; Urbanek, P.; Bodalski, R.; Zielinski, K.; Gandor, M.; Palka, F.; Jaworski, M.; Mintz, G.S.; et al. Artificial Intelligence Analysis of ECG Signals to Predict Arrhythmia Recurrence after Cryoballoon Ablation of Atrial Fibrillation. Eur. Heart J. 2022, 43, ehac544.559. [Google Scholar] [CrossRef]
- Lee, D.-I.; Park, M.-J.; Choi, J.-W.; Park, S. Deep Learning Model for Predicting Rhythm Outcomes after Radiofrequency Catheter Ablation in Patients with Atrial Fibrillation. J. Healthc. Eng. 2022, 2022, e2863495. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, D.; Xu, J.; Pang, H.; Hu, M.; Li, J.; Zhou, S.; Guo, L.; Yi, F. Explainable Machine Learning Model Reveals Its Decision-Making Process in Identifying Patients with Paroxysmal Atrial Fibrillation at High Risk for Recurrence after Catheter Ablation. BMC Cardiovasc. Disord. 2023, 23, 91. [Google Scholar] [CrossRef]
- Jiang, J.; Deng, H.; Liao, H.; Fang, X.; Zhan, X.; Wei, W.; Wu, S.; Xue, Y. An Artificial Intelligence-Enabled ECG Algorithm for Predicting the Risk of Recurrence in Patients with Paroxysmal Atrial Fibrillation after Catheter Ablation. J. Clin. Med. 2023, 12, 1933. [Google Scholar] [CrossRef]
- Razeghi, O.; Kapoor, R.; Alhusseini, M.I.; Fazal, M.; Tang, S.; Roney, C.H.; Rogers, A.J.; Lee, A.; Wang, P.J.; Clopton, P.; et al. Atrial Fibrillation Ablation Outcome Prediction with a Machine Learning Fusion Framework Incorporating Cardiac Computed Tomography. J. Cardiovasc. Electrophysiol. 2023, 34, 1164–1174. [Google Scholar] [CrossRef]
- Brahier, M.S.; Zou, F.; Abdulkareem, M.; Kochi, S.; Migliarese, F.; Thomaides, A.; Ma, X.; Wu, C.; Sandfort, V.; Bergquist, P.J.; et al. Using Machine Learning to Enhance Prediction of Atrial Fibrillation Recurrence after Catheter Ablation. J. Arrhythmia 2023, 39, 868–875. [Google Scholar] [CrossRef]
- Budzianowski, J.; Kaczmarek-Majer, K.; Rzeźniczak, J.; Słomczyński, M.; Wichrowski, F.; Hiczkiewicz, D.; Musielak, B.; Grydz, Ł.; Hiczkiewicz, J.; Burchardt, P. Machine Learning Model for Predicting Late Recurrence of Atrial Fibrillation after Catheter Ablation. Sci. Rep. 2023, 13, 15213. [Google Scholar] [CrossRef]
- Sun, S.; Wang, L.; Lin, J.; Sun, Y.; Ma, C. An Effective Prediction Model Based on XGBoost for the 12-Month Recurrence of AF Patients after RFA. BMC Cardiovasc. Disord. 2023, 23, 561. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, K.; He, L.; Luo, F.; Wang, X.; Hu, Y.; Zhao, J.; Zhu, K.; Chen, X.; Zhang, Y.; et al. Data-Driven Classification of Left Atrial Morphology and Its Predictive Impact on Atrial Fibrillation Catheter Ablation. J. Cardiovasc. Electrophysiol. 2024, 35, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Doshi, A.; Amos, Y.; Tsoref, L.; Amit, M.; Yungher, D.; Khanna, R.; Coplan, P.M. Does Radiofrequency Ablation Procedural Data Improve the Accuracy of Identifying Atrial Fibrillation Recurrence? PLoS ONE 2024, 19, e0300309. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Chen, W.-S.; Chang, S.-L.; Hsieh, Y.-C.; Hsu, Y.-H.; Chang, H.-X.; Lin, Y.-J.; Lo, L.-W.; Hu, Y.-F.; Chung, F.-P.; et al. Use of Artificial Intelligence and I-Score for Prediction of Recurrence before Catheter Ablation of Atrial Fibrillation. Int. J. Cardiol. 2024, 402, 131851. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Soltan, A.A.S.; Clifton, D.A. Machine Learning Generalizability across Healthcare Settings: Insights from Multi-Site COVID-19 Screening. npj Digit. Med. 2022, 5, 69. [Google Scholar] [CrossRef]
- Carluccio, E.; Cameli, M.; Rossi, A.; Dini, F.L.; Biagioli, P.; Mengoni, A.; Jacoangeli, F.; Mandoli, G.E.; Pastore, M.C.; Maffeis, C.; et al. Left Atrial Strain in the Assessment of Diastolic Function in Heart Failure: A Machine Learning Approach. Circ. Cardiovasc. Imaging 2023, 16, e014605. [Google Scholar] [CrossRef]
- Lewin, S.; Chetty, R.; Ihdayhid, A.R.; Dwivedi, G. Ethical Challenges and Opportunities in Applying Artificial Intelligence to Cardiovascular Medicine. Can. J. Cardiol. 2024. [Google Scholar] [CrossRef]
- Jaltotage, B.; Dwivedi, G. Essentials for AI Research in Cardiology: Challenges and Mitigations. CJC Open 2024. [Google Scholar] [CrossRef]
- Ntalianis, E.; Sabovčik, F.; Cauwenberghs, N.; Kouznetsov, D.; Daels, Y.; Claus, P.; Kuznetsova, T. Unsupervised Time-Series Clustering of Left Atrial Strain for Cardiovascular Risk Assessment. J. Am. Soc. Echocardiogr. 2023, 36, 778–787. [Google Scholar] [CrossRef]
- Sarvari, S.I.; Haugaa, K.H.; Stokke, T.M.; Ansari, H.Z.; Leren, I.S.; Hegbom, F.; Smiseth, O.A.; Edvardsen, T. Strain Echocardiographic Assessment of Left Atrial Function Predicts Recurrence of Atrial Fibrillation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 660–667. [Google Scholar] [CrossRef]
- Longo, L.; Goebel, R.; Lecue, F.; Kieseberg, P.; Holzinger, A. Explainable Artificial Intelligence: Concepts, Applications, Research Challenges and Visions. In Proceedings of the Machine Learning and Knowledge Extraction; Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar]
- Kooli, C.; Al Muftah, H. Artificial Intelligence in Healthcare: A Comprehensive Review of Its Ethical Concerns. Technol. Sustain. 2022, 1, 121–131. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal Biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.R.; Arden, C.; Beresford-Hulme, L.; Camm, A.J.; Clifton, D.; Davies, D.W.; Farooqui, U.; Gordon, J.; Groves, L.; Hurst, M.; et al. Identification of Undiagnosed Atrial Fibrillation Patients Using a Machine Learning Risk Prediction Algorithm and Diagnostic Testing (PULsE-AI): Study Protocol for a Randomised Controlled Trial. Contemp. Clin. Trials 2020, 99, 106191. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Bisson, A.; Bennamoun, M.; Zheng, Y.; Sanfilippo, F.M.; Hung, J.; Briffa, T.; McQuillan, B.; Stewart, J.; Figtree, G.; et al. Predicting Multifaceted Risks Using Machine Learning in Atrial Fibrillation: Insights from GLORIA-AF Study. Eur. Heart J. Digit. Health 2024, 5, 235–246. [Google Scholar] [CrossRef]
Scoring System (Year) [Reference] | Scoring Components | AUROC |
---|---|---|
ALARMEc (2013) [37] | AF type (non-paroxysmal) Normalised LA area Renal insufficiency Metabolic syndrome Cardiomyopathy | 0.66 |
BASE-AF2 (2013) [36] | Body mass index Atrial dilatation Smoking Early recurrence of AF AF duration AF type (non-paroxysmal) | 0.94 |
CHADS2 (2014) [29] | Congestive heart failure Hypertension Age (>75 years) Diabetes mellitus Prior stroke/TIA/TE | N/A |
CHA2DS2-VASc (2014) [29] | Congestive heart failure Hypertension Age (>75 years) Diabetes mellitus Prior stroke/TIA/TE Vascular disease Age (>65 years) Sex category (Female) | 0.55 |
APPLE (2015) [38] | Age (>65 years) Persistent AF Impaired eGFR LA diameter LVEF | 0.63 |
CAAP-AF (2016) [39] | Coronary artery disease LA diameter Age Persistent or long-standing persistent AF Number of AADs failed Female sex | 0.65 |
MB-LATER (2017) [35] | Male gender Bundle branch block LA diameter AF type Early recurrence of AF | 0.78 |
ATLAS (2018) [40] | Age (>60 years) AF type (non-paroxysmal) LA volume indexed Sex category (Female) Smoking | N/A |
LAGO * (2018) [41] | AF type (non-paroxysmal) Structural heart disease CHA2DS2-VASc LA diameter LA sphericity | 0.69 |
HEAL-AF (2020) [42] | Heart failure Elderly (>75 years) Asymptomatic AF Long-standing persistent AF Atrial dilation Female sex | 0.72 |
FLAME (2021) [43] | Female Long-lasting persistent AF Atrial (left) diameter Mitral regurgitation Extreme comorbidities | 0.69 |
HASBLP (2022) [44] | History of AF Age Snoring Body mass index Anteroposterior LA diameter Persistent AF | 0.78 |
C2HEST (2023) [45] | Congestive heart failure Chronic obstructive pulmonary disease Hypertension Elderly (age ≥ 75) Systolic heart failure Thyroid disease | 0.88 |
VAT-DHF (2023) [46] | Volume AF type Diabetes Height F waves | 0.87 |
HeLPS-Cryo (2024) [47] | Heart failure Left atrial diameter > 40mm Persistent AF Stroke | 0.89 |
Publication (Year) [Reference] | Sample Size | AI Model(s) Used | Data Source(s) Used | Key Model Features | AUROC |
---|---|---|---|---|---|
Shade et al. (2020) [74] | n = 32 Single centre | QDA | CMR | Simulated features a (reentry and pacing locations) | 0.82 |
Kim et al. (2020) [75] | n = 527 Single centre | CNN | Clinical | 3D LA reconstructions, LA volume | 0.61 |
Hwang et al. (2020) [76] | n = 606 Single centre | LR, CNN | Clinical, TTE | LA diameter, LA ejection fraction, LA strain | 0.80 |
Firouznia et al. (2021) [57] | n = 203 Single centre | RF | Clinical, CCT | Radiomic features b of LA and PVs, AF type | 0.81 |
Atta-Fosu et al. (2021) [77] | n = 68 Single centre | XGB and CNN | Clinical, CCT | LVEF, age | 0.78 |
Lee et al. (2021) [78] | n = 2881 Multi-centre (primarily single centre) | CNN | Clinical, CCT | LA wall stress, AF type | 0.73 |
Miao et al. (2021) [33] | n = 403 Single centre | LASSO, LR | Clinical, TTE | AF duration, LA volume indexed, LA expansion index, LA emptying percentage index | 0.88 |
Labarbera et al. (2021) [79] | n = 66 Single centre | LDA, QDA, SVM, RF | Clinical, CCT | Age, hypertension, radiomic features of LA and PVs | 0.70 |
Zhou et al. (2022) [80] | n = 310 Single centre | CNN | Clinical, CCT, TTE | NT-proBNP, AF type, LA appendage volume, LA volume | 0.76 |
Roney et al. (2022) [81] | n = 100 Single centre | kNN, SVM, RF, LR | Clinical, CMR | Simulation features a, visual fibrosis score of PVs | 0.85 |
Yang et al. (2022) [56] | n = 314 Single centre | RF, LR | Clinical, CCT | Radiomic features b of LA and LA epicardial adipose tissue, LA epicardial adipose tissue volume | 0.85 |
Tang et al. (2022) [82] | n = 156 Single centre | CatBoost, CNN, MMFF | Clinical, ECG, electrogram | LVEF, BMI, LA surface area, LA volume | 0.86 |
Saglietto et al. (2022) [83] | n = 3128 Multi-centre | RF, DT, AdaBoost, kNN | Clinical | Left ventricular end diastolic volume, eGFR, BMI, Age, LA diameter | 0.72 |
Warminski et al. (2022) [84] | n = 250 Single centre | CNN | Clinical, ECG | ECG analysis, LA volume, LVEF | 0.76 |
Lee et al. (2022) [85] | n = 177 Single centre | LR, XGB, SVM, MLP | Clinical, TTE, biochemical | AF duration, Left ventricular mass indexed, eGFR | 0.77 |
Ma et al. (2023) [86] | n = 471 Single centre | RF | Clinical | ERAF, hypertension, AF duration, LA diameter, age | 0.67 |
Jiang et al. (2023) [87] | n = 1618 Single centre | CNN | Clinical, ECG | LA enlargement, ERAF, ECG analysis | 0.84 |
Razeghi et al. (2023) [88] | n = 321 Single centre | LR, SVM, RF, CNN | Clinical, CCT | Radiomic features b of LA and PVs, history of prior ablation, hypertension | 0.82 |
Brahier et al. (2023) [89] | n = 653 Single centre | RSF, MVST | Clinical, CCT | LA volume indexed, ERAF | N/A |
Horde et al. (2023) [70] | n = 476 Single centre | LR | Clinical | Atrial flutter, renal disease, LVEF, valvular heart disease | N/A |
Budzianowski et al. (2023) [90] | n = 201 Single centre | DT, LR, RF, XGB, SVM | Clinical, biochemical | ERAF, TSH | 0.75 |
Sun et al. (2023) [91] | n = 349 Single centre | XGB, LR, SVM, RF | Clinical, TOE | LA appendage ejection fraction, NT-proBNP, LA appendage global peak longitudinal strain | 0.87 |
Li et al. (2024) [92] | n = 509 Multi-centre | RF, kMC, DT | Clinical, CCT | Morphological grouping from CCT, age, BMI, AF type | 0.79 |
Peng et al. (2024) [93] | n = 306 Multi-centre | AutoGluon-Tabular | Clinical, procedural | AF type, ablation duration, number of ablation lesions | 0.78 |
Liu et al. (2024) [94] | n = 638 Multi-centre | LR, SVM, CatBoost | Clinical, CCT | I-Score combined variables c | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, E.T.; Lyu, Y.; Ihdayhid, A.R.; Lan, N.S.R.; Dwivedi, G. Beyond Clinical Factors: Harnessing Artificial Intelligence and Multimodal Cardiac Imaging to Predict Atrial Fibrillation Recurrence Post-Catheter Ablation. J. Cardiovasc. Dev. Dis. 2024, 11, 291. https://doi.org/10.3390/jcdd11090291
Truong ET, Lyu Y, Ihdayhid AR, Lan NSR, Dwivedi G. Beyond Clinical Factors: Harnessing Artificial Intelligence and Multimodal Cardiac Imaging to Predict Atrial Fibrillation Recurrence Post-Catheter Ablation. Journal of Cardiovascular Development and Disease. 2024; 11(9):291. https://doi.org/10.3390/jcdd11090291
Chicago/Turabian StyleTruong, Edward T., Yiheng Lyu, Abdul Rahman Ihdayhid, Nick S. R. Lan, and Girish Dwivedi. 2024. "Beyond Clinical Factors: Harnessing Artificial Intelligence and Multimodal Cardiac Imaging to Predict Atrial Fibrillation Recurrence Post-Catheter Ablation" Journal of Cardiovascular Development and Disease 11, no. 9: 291. https://doi.org/10.3390/jcdd11090291