The P450-Monooxygenase Activity and CYP6D1 Expression in the Chlorfenapyr-Resistant Strain of Musca domestica L.
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Assay of P450-Activities
2.3. Determination of CYP6D1 Expression Level via Real Time PCR
2.4. DNA Preparation and PCR-RFLP Analysis of CYP6D1
2.5. Data Analysis
3. Results
3.1. Cytochrome P450 Monooxygenase Activity
3.2. Analysis of CYP6D1 Gene Expression
3.3. CYP6D1 Genotyping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gul, H.; Gadratagi, B.G.; Güncan, A.; Tyagi, S.; Ullah, F.; Desneux, N.; Liu, X. Fitness costs of resistance to insecticides in insects. Front. Physiol. 2023, 14, 1238111. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Zhang, L.; Song, J.; Zhang, L.; Zhen, C.; Gao, X. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. Int. J. Biol. Macromol. 2023, 236, 123399. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, J.A.; Fan, R.; Naz, H.; Bamisile, B.S.; Hafeez, M.; Ghani, M.I.; Wei, Y.; Xu, Y.; Chen, X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front. Physiol. 2023, 13, 1112278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Qu, R.; Wang, Y.; Ni, R.; Tian, K.; Yang, C.; Li, M.; Kristensen, M.; Qiu, X. Up-regulation of CYP6G4 mediated by a CncC/maf binding-site-containing insertion confers resistance to multiple classes of insecticides in the house fly Musca domestica. Int. J. Biol. Macromol. 2023, 253, 127024. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Lavine, L.; O’neal, S.; Lavine, M.; Foss, C.; Walsh, D. Insecticide Resistance and Management Strategies in Urban Ecosystems. Insects 2016, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.J.; Leong, Y.Q.; bin Barhanuddin, M.F.H.; Wong, S.T.; Wong, S.F.; Mak, J.W.; Ahmad, R.B. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasites Vectors 2021, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Pichler, V.; Giammarioli, C.; Bellini, R.; Veronesi, R.; Arnoldi, D.; Rizzoli, A.; Lia, R.P.; Otranto, D.; Ballardini, M.; Cobre, P.; et al. First evidence of pyrethroid resistance in Italian populations of West Nile virus vector Culex pipiens. Med. Veter-Èntomol. 2022, 36, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.L.; Selland, E.K.; Willett, B.C.; Carew, J.W.; Vidoudez, C.; Singh, N.; Catteruccia, F. Selection for insecticide resistance can promote Plasmodium falciparum infection in Anopheles. PLoS Pathog. 2023, 19, e1011448. [Google Scholar] [CrossRef]
- Lu, K.; Li, Y.; Xiao, T.; Sun, Z. The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17. Ecotoxicol. Environ. Saf. 2022, 241, 113738. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Wakil, W.; Arif, M.J.; Sahi, S.T.; Saeed, N.A.; Russell, D.A. Multiple Resistances Against Formulated Organophosphates, Pyrethroids, and Newer-Chemistry Insecticides in Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan. J. Econ. Èntomol. 2015, 108, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Basit, M. Status of insecticide resistance in Bemisia tabaci: Resistance, cross-resistance, stability of resistance, genetics and fitness costs. Phytoparasitica 2019, 47, 207–225. [Google Scholar] [CrossRef]
- Diouf, E.H.; Niang, E.H.A.; Samb, B.; Diagne, C.T.; Diouf, M.; Konaté, A.; Dia, I.; Faye, O.; Konaté, L. Multiple insecticide resistance target sites in adult field strains of An. gambiae (s.l.) from southeastern Senegal. Parasites Vectors 2020, 13, 567. [Google Scholar] [CrossRef] [PubMed]
- Abadi, Y.S.; Sanei-Dehkordi, A.; Paksa, A.; Gorouhi, M.A.; Vatandoost, H. Monitoring and Mapping of Insecticide Resistance in Medically Important Mosquitoes (Diptera: Culicidae) in Iran (2000–2020): A Review. J. Arthropod-Borne Dis. 2021, 15, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Song, Y.; Zeng, R. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr. Opin. Insect Sci. 2021, 43, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Nkya, T.E.; Akhouayri, I.; Kisinza, W.; David, J.-P. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochem. Mol. Biol. 2013, 43, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annu. Rev. Èntomol. 2007, 52, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Feyereisen, R. Insect CYP genes and P450 enzymes. In Insect Molecular Biology and Biochemistry; Gilbert, L.I., Ed.; Academic Press: London, UK, 2012; pp. 236–316. [Google Scholar] [CrossRef]
- Durand, R.; Bouvresse, S.; Berdjane, Z.; Izri, A.; Chosidow, O.; Clark, J. Insecticide resistance in head lice: Clinical, parasitological and genetic aspects. Clin. Microbiol. Infect. 2012, 18, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Mao, K.; Liao, X.; Xu, P.; Li, Z.; Ali, E.; Wan, H.; Li, J. Overexpression of CYP6ER1 associated with clothianidin resistance in Nilaparvata lugens (Stål). Pestic. Biochem. Physiol. 2019, 154, 39–45. [Google Scholar] [CrossRef]
- Wang, L.; Tao, S.; Zhang, Y.; Jia, Y.; Wu, S.; Gao, C. Mechanism of metabolic resistance to pymetrozine in Nilaparvata lugens: Over-expression of cytochrome P450 CYP6CS1 confers pymetrozine resistance. Pest Manag. Sci. 2021, 77, 4128–4137. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. Pestic. Biochem. Physiol. 2020, 170, 104687. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, T.; Feng, X.; Li, M.; Liu, S.; Liu, N. Multiple cytochrome P450 genes: Conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Sci. Rep. 2021, 11, 9041. [Google Scholar] [CrossRef] [PubMed]
- Feyereisen, R. Insect P450 inhibitors and insecticides: Challenges and opportunities. Pest Manag. Sci. 2014, 71, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Bass, C.; Feyereisen, R.; Vontas, J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Èntomol. 2022, 67, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.-P.; et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, M.; Gong, Y.; Liu, F.; Li, T. Cytochrome P450s—Their expression, regulation, and role in insecticide resistance. Pestic. Biochem. Physiol. 2015, 120, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Yan, X.; Yu, B.; He, X.; Lu, L.; Ren, Y. A Comprehensive Review of the Current Knowledge of Chlorfenapyr: Synthesis, Mode of Action, Resistance, and Environmental Toxicology. Molecules 2023, 28, 7673. [Google Scholar] [CrossRef] [PubMed]
- Kouassi, B.L.; Edi, C.; Tia, E.; Konan, L.Y.; Akré, M.A.; Koffi, A.A.; Ouattara, A.F.; Tanoh, A.M.; Zinzindohoue, P.; Kouadio, B.; et al. Susceptibility of Anopheles gambiae from Côte d’Ivoire to insecticides used on insecticide-treated nets: Evaluating the additional entomological impact of piperonyl butoxide and chlorfenapyr. Malar. J. 2020, 19, 454. [Google Scholar] [CrossRef] [PubMed]
- Eremina, O.Y. Chlorfenapyr–perspective pyrrole insecticide for combating resistant synanthropic insects. Pest Manag. 2017, 1, 41–49. (In Russian) [Google Scholar]
- Chien, S.-C.; Su, Y.-J. A fatal case of chlorfenapyr poisoning and a review of the literature. J. Int. Med. Res. 2022, 50, 1–7. [Google Scholar] [CrossRef]
- Wang, Q.; Rui, C.; Wang, L.; Nahiyoon, S.A.; Huang, W.; Zhu, J.; Ji, X.; Yang, Q.; Yuan, H.; Cui, L. Field-evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag. Sci. 2021, 77, 5086–5095. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, R.L.; Sato, M.E.; Arthur, V.; da Silva, M.Z. Chlorfenapyr resistance in the spider mite Tetranychus urticae: Stability, cross-resistance and monitoring of resistance. Phytoparasitica 2013, 41, 503–513. [Google Scholar] [CrossRef]
- Ullah, S.; Shah, R.M.; Shad, S.A. Genetics, realized heritability and possible mechanism of chlorfenapyr resistance in Oxycarenus hyalinipennis (Lygaeidae: Hemiptera). Pestic. Biochem. Physiol. 2016, 133, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yuan, J.; Wang, J.; Hua, D.; Zheng, X.; Tao, M.; Zhang, Z.; Wan, Y.; Wang, S.; Zhang, Y.; et al. Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China. Crop Prot. 2021, 153, 105886. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Stillatus, V.; Tirry, L. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol. 2004, 32, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, K.; Xia, X. Resistance selection by meilingmycin and chlorfenapyr and activity changes of detoxicated enzymes in Tetranychus urticae. Acta Phytophylacica Sin. 2005, 32, 309–313. [Google Scholar]
- Ahmad, M.; Hollingworth, R.M. Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Manag. Sci. 2004, 60, 465–473. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Cao, X.; Wang, F.; Yang, Y.; Wu, S.; Wu, Y. Long-term monitoring and characterization of resistance to chlorfenapyr in Plutella xylostella (Lepidoptera: Plutellidae) from China. Pest Manag. Sci. 2018, 75, 591–597. [Google Scholar] [CrossRef]
- Shao, Y.; Xin, X.-D.; Liu, Z.-X.; Wang, J.; Zhang, R.; Gui, Z.-Z. Transcriptional response of detoxifying enzyme genes in Bombyx mori under chlorfenapyr exposure. Pestic. Biochem. Physiol. 2021, 177, 104899. [Google Scholar] [CrossRef]
- Vandenhole, M.; Lu, X.; Tsakireli, D.; Mermans, C.; De Rouck, S.; De Beer, B.; Simma, E.; Pergantis, S.A.; Jonckheere, W.; Vontas, J.; et al. Contrasting roles of cytochrome P450s in amitraz and chlorfenapyr resistance in the crop pest Tetranychus urticae. Insect Biochem. Mol. Biol. 2024, 164, 104039. [Google Scholar] [CrossRef]
- Yunta, C.; Ooi, J.M.F.; Oladepo, F.; Grafanaki, S.; Pergantis, S.A.; Tsakireli, D.; Ismail, H.M.; Paine, M.J.I. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci. Rep. 2023, 13, 14124. [Google Scholar] [CrossRef] [PubMed]
- Tchouakui, M.; Assatse, T.; Tazokong, H.R.; Oruni, A.; Menze, B.D.; Nguiffo-Nguete, D.; Mugenzi, L.M.J.; Kayondo, J.; Watsenga, F.; Mzilahowa, T.; et al. Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa. Sci. Rep. 2023, 13, 2363. [Google Scholar] [CrossRef]
- Qiu, X.; Pan, J.; Li, M.; Li, Y. PCR-RFLP methods for detection of insecticide resistance-associated mutations in the house fly (Musca domestica). Pestic. Biochem. Physiol. 2012, 104, 201–205. [Google Scholar] [CrossRef]
- Ranian, K.; Zahoor, M.K.; Rizvi, H.; Rasul, A.; Majeed, H.N.; Jabeen, F.; Sarfraz, I.; Zulhussnain, M.; Riaz, B.; Ullah, A. Evaluation of Resistance to Some Pyrethroid and Organophosphate Insecticides and Their Underlying Impact on the Activity of Esterases and Phosphatases in House Fly, Musca domestica (Diptera: Muscidae). Pol. J. Environ. Stud. 2021, 30, 327–336. [Google Scholar] [CrossRef]
- Ahmadi, E.; Khajehali, J. Dichlorvos Resistance in the House Fly Populations, Musca domestica, of Iranian Cattle Farms. J. Arthropod-Borne Dis. 2021, 14, 344–352. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Shan, C.; Xin, J.; Li, J.; Ma, Z.; Zhang, Y.; Zeng, X.; Gao, X. Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Sci. Rep. 2020, 10, 8400. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Li, Z.; Yin, Y.; Na, N.; Gao, X. Time of Day-Specific Changes in Metabolic Detoxification and Insecticide Tolerance in the House Fly, Musca domestica L. Front. Physiol. 2022, 12, 803682. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Yuan, J. Status and preliminary mechanism of resistance to insecticides in a field strain of housefly (Musca domestica, L). Rev. Bras. Èntomol. 2018, 62, 311–314. [Google Scholar] [CrossRef]
- Neupane, S.; Nayduch, D.; Zurek, L. House Flies (Musca domestica) Pose a Risk of Carriage and Transmission of Bacterial Pathogens Associated with Bovine Respiratory Disease (BRD). Insects 2019, 10, 358. [Google Scholar] [CrossRef]
- Neupane, S.; Talley, J.L.; Taylor, D.B.; Nayduch, D. Bacterial communities and prevalence of antibiotic resistance genes carried within house flies (Diptera: Muscidae) associated with beef and dairy cattle farms. J. Med. Èntomol. 2023, 60, 1388–1397. [Google Scholar] [CrossRef]
- Qu, R.; Zhu, J.; Li, M.; Jashenko, R.; Qiu, X. Multiple Genetic Mutations Related to Insecticide Resistance are Detected in Field Kazakhstani House Flies (Muscidae: Diptera). J. Med. Èntomol. 2021, 58, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Riaz, B.; Zahoor, M.K.; Malik, K.; Ahmad, A.; Majeed, H.N.; Jabeen, F.; Zulhussnain, M.; Ranian, K. Frequency of Pyrethroid Insecticide Resistance kdr Gene and Its Associated Enzyme Modulation in Housefly, Musca domestica L. Populations From Jhang, Pakistan. Front. Environ. Sci. 2022, 9, 806456. [Google Scholar] [CrossRef]
- Freeman, J.C. A Bulked Segregant Analysis of Pyrethroid Resistance in Musca domestica. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2020; 105p. Available online: https://ecommons.cornell.edu/items/e4613828-7263-486f-b7f9-382c626ffaeb (accessed on 2 May 2024).
- Liu, N.; Tomita, T.; Scott, J.G. Allele-specific PCR reveals thatCYP6D1 is on chromosome 1 in the house fly, Musca domestica. Experientia. 1995, 51, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Scott, J.G. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem. Genet. 1996, 34, 133–148. [Google Scholar] [CrossRef]
- Kasai, S.; Scott, J.G. Overexpression of Cytochrome P450 CYP6D1 Is Associated with Monooxygenase-Mediated Pyrethroid Resistance in House Flies from Georgia. Pestic. Biochem. Physiol. 2000, 68, 34–41. [Google Scholar] [CrossRef]
- Markussen, M.D.; Kristensen, M. Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the house fly Musca domestica L. Pestic. Biochem. Physiol. 2010, 98, 50–58. [Google Scholar] [CrossRef]
- Højland, D.H.; Kristensen, M. Analysis of Differentially Expressed Genes Related to Resistance in Spinosad- and Neonicotinoid-Resistant Musca domestica L. (Diptera: Muscidae) Strains. PLoS ONE 2017, 12, e0170935. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Feng, X.; Reid, W.R.; Tang, F.; Liu, N. Multiple-P450 Gene Co-Up-Regulation in the Development of Permethrin Resistance in the House Fly, Musca domestica. Int. J. Mol. Sci. 2023, 24, 3170. [Google Scholar] [CrossRef]
- Research report on the RFBR project 19-016-00059 A. In The Study of the Cross-Resistance Development in Insects (by Example, the Housefly Musca Domestica L.); ASRIVEA—Branch of Tyumen Scientific Centre SB RAS: Tyumen, Russia, 2021. (In Russian)
- Ministry of Health of Brazil. Quantification Methodology for Enzyme Activity Related to Insecticide Resistance in Aedes aegypti; Ministry of Health of Brazil: Brasília, Brazil; Fundação Oswaldo Cruz, Ministério da Saúde: Brasília, Brazil, 2006; 128p, ISBN 85-334-1291-6.
- Bender, W.; Spierer, P.; Hogness, D.S.; Chambon, P. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J. Mol. Biol. 1983, 168, 17–33. [Google Scholar] [CrossRef]
- Rinkevich, F.D.; Zhang, L.; Hamm, R.L.; Brady, S.G.; Lazzaro, B.P.; Scott, J.G. Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Mol. Biol. 2006, 15, 157–167. [Google Scholar] [CrossRef]
- Silivanova, E.; Shumilova, P.; Levchenko, M. Activities of detoxifying enzymes in adults of houseflies Musca domestica L. selected with chlorfenapyr. Biomics 2020, 12, 492–503. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Iqbal, J.; Naeem-Ullah, U. Thiamethoxam Resistance in the House Fly, Musca domestica L.: Current Status, Resistance Selection, Cross-Resistance Potential and Possible Biochemical Mechanisms. PLoS ONE 2015, 10, e0125850. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Zhang, L.; Gao, X. Characterization of imidacloprid resistance in the housefly Musca domestica (Diptera: Muscidae). Pestic. Biochem. Physiol. 2012, 102, 109–114. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ma, Z.; Zhai, D.; Gao, X.; Shi, X. Cytochrome P450 monooxygenases-mediated sex-differential spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Pestic. Biochem. Physiol. 2019, 157, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Højland, D.H.; Jensen, K.-M.V.; Kristensen, M. Expression of Xenobiotic Metabolizing Cytochrome P450 Genes in a Spinosad-Resistant Musca domestica L. Strain. PLoS ONE 2014, 9, e103689. [Google Scholar] [CrossRef]
- Gao, J.; Scott, J.G. Role of the transcriptional repressor mdGfi-1 in CYP6D1v1-mediated insecticide resistance in the house fly, Musca domestica. Insect Biochem. Mol. Biol. 2006, 36, 387–395. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krestonoshina, K.; Melnichuk, A.; Kinareikina, A.; Maslakova, K.; Yangirova, L.; Silivanova, E. The P450-Monooxygenase Activity and CYP6D1 Expression in the Chlorfenapyr-Resistant Strain of Musca domestica L. Insects 2024, 15, 461. https://doi.org/10.3390/insects15060461
Krestonoshina K, Melnichuk A, Kinareikina A, Maslakova K, Yangirova L, Silivanova E. The P450-Monooxygenase Activity and CYP6D1 Expression in the Chlorfenapyr-Resistant Strain of Musca domestica L. Insects. 2024; 15(6):461. https://doi.org/10.3390/insects15060461
Chicago/Turabian StyleKrestonoshina, Kseniya, Anastasia Melnichuk, Anna Kinareikina, Kseniya Maslakova, Liana Yangirova, and Elena Silivanova. 2024. "The P450-Monooxygenase Activity and CYP6D1 Expression in the Chlorfenapyr-Resistant Strain of Musca domestica L." Insects 15, no. 6: 461. https://doi.org/10.3390/insects15060461