Response of Chironomidae (Diptera) to DDT, Mercury, and Arsenic Legacy Pollution in Sediments of the Toce River (Northern Italy)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Insect Collection
2.3. Water Quality and Sediment Chemical Analyses
2.4. Data Analysis
3. Results
Compartment | Parameter | Unit | Abbreviation | Min | Max | Mean |
---|---|---|---|---|---|---|
Altitude | m a.s.l. | alt | 196 | 236 | 217 | |
Distance from the source | km | dist | 49 | 72 | 59 | |
Sediments | Fine sediments | % | sed | 0.2 | 27 | 7 |
Organic carbon | % d.w. | sostorg | 0.47 | 3.7 | 1.4 | |
DDT | µg kg−1 1% OC | DDT | 0.4 | 15.7 | 6.2 | |
Hg | mg kg−1 d.w. | Hg | 0.02 | 0.197 | 0.081 | |
As | mg kg−1 d.w. | As | 3.6 | 55.7 | 16.6 | |
Cd | mg kg−1 d.w. | Cd | 0.1 | 0.3 | 0.2 | |
Cu | mg kg−1 d.w. | Cu | 13.7 | 55.9 | 28.7 | |
Ni | mg kg−1 d.w. | Ni | 12.3 | 47.2 | 31.5 | |
Pb | mg kg−1 d.w. | Pb | 8.7 | 17.7 | 13.4 | |
Water | Sampling depth | cm | depth | 5 | 50 | 24 |
Current velocity | cm s−1 | velcorr | 1 | 100 | 20 | |
Water temperature | °C | temp | 7 | 15.7 | 10.9 | |
Conductivity | µS cm−1 | cond | 122 | 269 | 181 | |
Alkalinity | mg L−1 CaCO3 | alcal | 36 | 102 | 68 | |
pH | pH unit | pH | 7.1 | 8 | 7.5 | |
N-NO3 | mg L−1 | NO3 | <0.01 | 0.5 | 0.4 | |
N-NH4 | mg L−1 | NH4 | <0.01 | 0.03 | 0.015 | |
dissolved DDT | ng L−1 | - | <2 | <2 | <2 | |
dissolved Hg | ng L−1 | - | <20 | <20 | <20 | |
dissolved As | µg L−1 | - | <3 | 4 | <3 | |
Total Phosphorus | mg L−1 | TP | <0.005 | <0.005 | <0.005 | |
Oxygen saturation | % | O2 | 96 | 124 | 102 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossaro, B.; Marziali, L.; Montagna, M.; Magoga, G.; Zaupa, S.; Boggero, A. Factors Controlling Morphotaxa Distributions of Diptera Chironomidae in Freshwaters. Water 2022, 14, 1014. [Google Scholar] [CrossRef]
- Armitage, P.D.; Cranston, P.S.; Pinder, L.C.V. The Chironomidae; Springer: Dordrecht, The Netherlands, 1995; ISBN 978-94-010-4308-3. [Google Scholar]
- Pillot, H.K.M.M. Chironomidae Larvae, Vol. 2: Chironomini: Biology and Ecology of the Chironomini; KNNV Publishing: Leiden, The Netherlands, 2009; ISBN 978-90-04-27804-2. [Google Scholar]
- Pillot, H.K.M.M. Chironomidae Larvae, Vol. 3: Orthocladiinae: Biology and Ecology of the Aquatic Orthocladiinae; KNNV Publishing: Leiden, The Netherlands, 2014; ISBN 978-90-04-27805-9. [Google Scholar]
- Vallenduuk, H.J.; Pillot, H.K.M.M. Chironomidae Larvae, Vol. 1: Tanypodinae: General Ecology and Tanypodinae; KNNV Publishing: Leiden, The Netherlands, 2014; ISBN 978-90-04-27803-5. [Google Scholar]
- Di Veroli, A.; Goretti, E.; Paumen, M.L.; Kraak, M.H.S.; Admiraal, W. Induction of Mouthpart Deformities in Chironomid Larvae Exposed to Contaminated Sediments. Environ. Pollut. 2012, 166, 212–217. [Google Scholar] [CrossRef]
- Di Veroli, A.; Santoro, F.; Pallottini, M.; Selvaggi, R.; Scardazza, F.; Cappelletti, D.; Goretti, E. Deformities of Chironomid Larvae and Heavy Metal Pollution: From Laboratory to Field Studies. Chemosphere 2014, 112, 9–17. [Google Scholar] [CrossRef]
- Arambourou, H.; Llorente, L.; Moreno-Ocio, I.; Herrero, Ó.; Barata, C.; Fuertes, I.; Delorme, N.; Méndez-Fernández, L.; Planelló, R. Exposure to Heavy Metal-Contaminated Sediments Disrupts Gene Expression, Lipid Profile, and Life History Traits in the Midge Chironomus riparius. Water Res. 2020, 168, 115165. [Google Scholar] [CrossRef]
- Stefani, F.; Rusconi, M.; Valsecchi, S.; Marziali, L. Evolutionary Ecotoxicology of Perfluoralkyl Substances (PFASs) Inferred from Multigenerational Exposure: A Case Study with Chironomus riparius (Diptera, Chironomidae). Aquat. Toxicol. 2014, 156, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Azevedo-Pereira, H.M.V.S.; Soares, A.M.V.M. Effects of Mercury on Growth, Emergence, and Behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Arch. Environ. Contam. Toxicol. 2010, 59, 216–224. [Google Scholar] [CrossRef]
- Planelló, R.; Servia, M.J.; Gómez-Sande, P.; Herrero, Ó.; Cobo, F.; Morcillo, G. Transcriptional Responses, Metabolic Activity and Mouthpart Deformities in Natural Populations of Chironomus riparius Larvae Exposed to Environmental Pollutants. Environ. Toxicol. 2015, 30, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Choung, C.B.; Hyne, R.V.; Stevens, M.M.; Hose, G.C. The Ecological Effects of a Herbicide–Insecticide Mixture on an Experimental Freshwater Ecosystem. Environ. Pollut. 2013, 172, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, A.; Lami, A.; Musazzi, S.; Massaferro, J.; Langone, L.; Guilizzoni, P. Lake Maggiore (N. Italy) Trophic History: Fossil Diatom, Plant Pigments, and Chironomids, and Comparison with Long-Term Limnological Data. Quat. Int. 2004, 113, 97–110. [Google Scholar] [CrossRef]
- Armstrong, I.; Moir, K.E.; Ridal, J.J.; Cumming, B.F. Subfossil Chironomid Assemblages as Indicators of Remedial Efficacy in the Historically Contaminated St. Lawrence River at Cornwall, Ontario. Arch. Environ. Contam. Toxicol. 2023, 85, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Ruse, L.P.; Ruse, L.R.; Herrmann, S.J.; Sublette, J.E. Chironomidae (Diptera) Species Distribution Related to Environmental Characteristics of the Metal-Polluted Arkansas River, Colorado. West. N. Am. Nat. 2000, 60, 34–56. [Google Scholar]
- Wright, I.A.; Burgin, S. Effects of Organic and Heavy Metal Pollution on Chironomids within a Pristine Upland Catchment. Hydrobiologia 2009, 635, 15–25. [Google Scholar] [CrossRef]
- Marziali, L.; Rosignoli, F.; Drago, A.; Pascariello, S.; Valsecchi, L.; Rossaro, B.; Guzzella, L. Toxicity Risk Assessment of Mercury, DDT and Arsenic Legacy Pollution in Sediments: A Triad Approach under Low Concentration Conditions. Sci. Total Environ. 2017, 593–594, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Marziali, L.; Guzzella, L.; Salerno, F.; Marchetto, A.; Valsecchi, L.; Tasselli, S.; Roscioli, C.; Schiavon, A. Twenty-Year Sediment Contamination Trends in Some Tributaries of Lake Maggiore (Northern Italy): Relation with Anthropogenic Factors. Environ. Sci. Pollut. Res. 2021, 28, 38193–38208. [Google Scholar] [CrossRef] [PubMed]
- Marziali, L.; Roscioli, C.; Valsecchi, L. Mercury Bioaccumulation in Benthic Invertebrates: From Riverine Sediments to Higher Trophic Levels. Toxics 2021, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Tasselli, S.; Marziali, L.; Roscioli, C.; Guzzella, L. Legacy Dichlorodiphenyltrichloroethane (DDT) Pollution in a River Ecosystem: Sediment Contamination and Bioaccumulation in Benthic Invertebrates. Sustainability 2023, 15, 6493. [Google Scholar] [CrossRef]
- Spitale, D. Performance of the STAR_ICMi Macroinvertebrate Index and Implications for Classification and Biomonitoring of Rivers. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 20. [Google Scholar] [CrossRef]
- Liess, M.; Liebmann, L.; Vormeier, P.; Weisner, O.; Altenburger, R.; Borchardt, D.; Brack, W.; Chatzinotas, A.; Escher, B.; Foit, K.; et al. Pesticides Are the Dominant Stressors for Vulnerable Insects in Lowland Streams. Water Res. 2021, 201, 117262. [Google Scholar] [CrossRef]
- Malaj, E.; Grote, M.; Schäfer, R.B.; Brack, W.; Von Der Ohe, P.C. Physiological Sensitivity of Freshwater Macroinvertebrates to Heavy Metals. Environ. Toxicol. Chem. 2012, 31, 1754–1764. [Google Scholar] [CrossRef]
- Ma, P.; Li, H.; You, J. Full–Life Cycle Toxicity Assessment of Sediment-Bound DDT and Its Degradation Products on Chironomus dilutus. Environ. Toxicol. Chem. 2019, 38, 2698–2707. [Google Scholar] [CrossRef]
- Rakotondravelo, M.L.; Anderson, T.D.; Charlton, R.E.; Zhu, K.Y. Sublethal Effects of Three Pesticides on Larval Survivorship, Growth, and Macromolecule Production in the Aquatic Midge, Chironomus tentans (Diptera: Chironomidae). Arch. Environ. Contam. Toxicol. 2006, 51, 352–359. [Google Scholar] [CrossRef]
- Gremyatchikh, V.A.; Tomilina, I.I.; Grebenyuk, L.P. The Effect of Mercury Chloride on Morphofunctional Parameters in Chironomus riparius Meigen (Diptera, Chironomidae) Larvae. Inland Water Biol. 2009, 2, 89–95. [Google Scholar] [CrossRef]
- Martinez, E.A.; Moore, B.C.; Schaumloffel, J.; Dasgupta, N. The Potential Association Between Menta Deformities and Trace Elements in Chironomidae (Diptera) Taken from a Heavy Metal Contaminated River. Arch. Environ. Contam. Toxicol. 2002, 42, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Diggins, T.P.; Stewart, K.M. Chironomid Deformities, Benthic Community Composition, and Trace Elements in the Buffalo River (New York) Area of Concern. J. N. Am. Benthol. Soc. 1998, 17, 311–323. [Google Scholar] [CrossRef]
- Vignati, D.A.L.; Guilizzoni, P. Metalli Nel Lago Maggiore: Livelli Naturali e Antropici. Acqua Aria 2011, 1, 22–27. [Google Scholar]
- Pfeifer, H.-R.; Derron, M.-H.; Rey, D.; Schlegel, C.; Atteia, O.; Piazza, R.D.; Dubois, J.-P.; Mandia, Y. Chapter 2 Natural Trace Element Input to the Soil-Sediment-Water-Plant System: Examples of Background and Contaminated Situations in Switzerland, Eastern France and Northern Italy. In Trace Metals in the Environment; Elsevier: Amsterdam, The Netherlands, 2000; Volume 4, pp. 33–86. ISBN 978-0-444-50532-3. [Google Scholar]
- Andersen, T.; Cranston, P.S.; Epler, J.H. The Larvae of Chironomidae (Diptera) of the Holarctic Region—Keys and Diagnoses; Cederholm, L., Ed.; Insect Systematics & Evolution: Lund, Sweden, 2013; Volume 66. [Google Scholar]
- Wiederholm, T. Chironomidae of the Holarctic Region: Pupae; Chironomidae of the Holarctic Region: Keys and Diagnoses; Entomologica Scandinavica: Lund, Sweden, 1983. [Google Scholar]
- Wiederholm, T. Chironomidae of the Holarctic Region: Adult Males; Chironomidae of the Holarctic Region: Keys and Diagnoses; Entomologica Scandinavica: Lund, Sweden, 1983. [Google Scholar]
- Bettinetti, R.; Colombo, S.; Rossaro, B. Cytogenetic Characteristics of Different Populations of Chironomus riparius Meigen, 1804. SIL Proc. 1922–2010 2000, 27, 2363–2366. [Google Scholar] [CrossRef]
- CIPAIS Indagini Sulle Sostanze Pericolose nell’Ecosistema del Lago Maggiore. Programma 2019–2021. Rapporto Annuale 2019 2020. Available online: www.cipais.org/net (accessed on 10 January 2024).
- US-EPA. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; US Environmental Protection Agency, Ecological Risk Assessment Support Center, Office of Research and Development NCEA-C-1282, EMASC-001: Washington, DC, USA, 2002.
- Ter Braak, C.J.F.; Prentice, I.C. A Theory of Gradient Analysis. In Advances in Ecological Research; Begon, M., Fitter, A.H., Ford, E.D., Macfadyen, A., Eds.; Academic Press: Cambridge, MA, USA, 1988; Volume 18, pp. 271–317. ISBN 0065-2504. [Google Scholar]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Use R! 2nd ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-71403-5. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.; Solymos, P.; Stevens, H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.2-1, 2015. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 10 January 2024).
- Giraudel, J.L.; Lek, S. A Comparison of Self-Organizing Map Algorithm and Some Conventional Statistical Methods for Ecological Community Ordination. Ecol. Model. 2001, 146, 329–339. [Google Scholar] [CrossRef]
- Park, Y.-S.; Céréghino, R.; Compin, A.; Lek, S. Applications of Artificial Neural Networks for Patterning and Predicting Aquatic Insect Species Richness in Running Waters. Ecol. Model. 2003, 160, 265–280. [Google Scholar] [CrossRef]
- Lek, S.; Guégan, J.-F. Artificial Neuronal Networks; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 978-3-642-63116-0. [Google Scholar]
- Wehrens, R.; Kruisselbrink, J. Flexible Self-Organizing Maps in Kohonen 3.0. J. Stat. Soft 2018, 87, 1–18. [Google Scholar] [CrossRef]
- Breard, G. Evaluating Self-Organizing Map Quality Measures as Convergence Criteria; University of Rhode Island: Kingston, RI, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 January 2024).
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organizing Maps; Springer Series in Information Sciences; Springer: Berlin/Heidelberg, Germany, 2001; Volume 30, ISBN 978-3-540-67921-9. [Google Scholar]
- Boelaert, J.; Ollion, E.; Megdoud, M.; Naji, O.; Lemba Kote, A.; Renoud, T.; Hym, S. aweSOM: Interactive Self-Organizing Maps, R. R Package Version 1.3; 2022. Available online: https://CRAN.R-project.org/package=aweSOM (accessed on 10 January 2024).
- Ivanova, A.; Wiberg, K.; Ahrens, L.; Zubcov, E.; Dahlberg, A.-K. Spatial Distribution of Legacy Pesticides in River Sediment from the Republic of Moldova. Chemosphere 2021, 279, 130923. [Google Scholar] [CrossRef]
- Janssen, S.E.; Tate, M.T.; Krabbenhoft, D.P.; DeWild, J.F.; Ogorek, J.M.; Babiarz, C.L.; Sowers, A.D.; Tuttle, P.L. The Influence of Legacy Contamination on the Transport and Bioaccumulation of Mercury within the Mobile River Basin. J. Hazard. Mater. 2021, 404, 124097. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Rimondi, V.; Costagliola, P.; Lattanzi, P.; Morelli, G.; Cara, G.; Cencetti, C.; Fagotti, C.; Fredduzzi, A.; Marchetti, G.; Sconocchia, A.; et al. A 200 Km-Long Mercury Contamination of the Paglia and Tiber Floodplain: Monitoring Results and Implications for Environmental Management. Environ. Pollut. 2019, 255, 113191. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.; Anawar, H.M.; Takuwa, D.T.; Chibua, I.T.; Singh, G.S.; Sichilongo, K. Environmental Assessment of Fate, Transport and Persistent Behavior of Dichlorodiphenyltrichloroethanes and Hexachlorocyclohexanes in Land and Water Ecosystems. Int. J. Environ. Sci. Technol. 2015, 12, 2741–2756. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Rosso, J.J.; Schenone, N.F.; Pérez Carrera, A.; Fernández Cirelli, A. Concentration of Arsenic in Water, Sediments and Fish Species from Naturally Contaminated Rivers. Environ. Geochem. Health 2013, 35, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Groppali, R. Atlante Della Biodiversità Del Parco Adda Sud. Primo Elenco Delle Specie Viventi Nell’area Protetta; Conoscere il parco; Parco Adda Sud: Lodi, Italy, 2006. [Google Scholar]
- Marziali, L.; Casalegno, C.; Rossaro, B. The First Record of the Subfamily Buchonomyiinae (Diptera, Chironomidae) from Italy. Ital. J. Zool. 2004, 71, 341–345. [Google Scholar] [CrossRef]
- Lencioni, V.; Moubayed-Breil, J. Urban Chironomid Fauna (Diptera: Chironomidae) Visiting the Streets of Verona along the Adige River Banks and Adjacent Spring. Stor. Nat. Della Città Di Verona-Mem. Del Mus. Civ. Di Stor. Nat. Di Verona-2. Ser.-Monogr. Nat. 2021, 6, 157–170. Available online: https://museodistorianaturale.comune.verona.it/media/_Musei/_StoriaNaturale/_Allegati/Biblioteca/Memorie%202.%20serie/Memorie%20MN/MSN_Storia_naturale_Verona_2021.pdf (accessed on 10 January 2024).
- Marziali, L.; Armanini, D.G.; Cazzola, M.; Erba, S.; Toppi, E.; Buffagni, A.; Rossaro, B. Responses of Chironomid Larvae (Insecta, Diptera) to Ecological Quality in Mediterranean River Mesohabitats (South Italy). River Res. Appl. 2010, 26, 1036–1051. [Google Scholar] [CrossRef]
- Reiss, F. Ökologische Und Systematische Untersuchungen an Chironomiden (Diptera) Des Bodensees: Ein Beitrag Zur Lakustrischen Chironomidenfauna Des Nördlichen Alpenvorlandes. Arch. Für Hydrobiol. 1968, 64, 176–323. [Google Scholar]
- Ringe, F. Chironomiden-Emergenz 1970 in Breitenbach Und Rohrwiesenbach. Schlitzer Produktionsbiologische Studien (10). Arch. Für Hydrobiol./Suppl. 1974, 45, 212–304. [Google Scholar]
- Lehmann, J. Die Chironomiden Der Fulda (Systematische, Ökologische Und Faunistische Untersuchungen). Arch. Für Hydrobiol. Suppl. 1971, 37, 466–555. [Google Scholar]
- Thienemann, A. Chironomus, Leben, Verbreitung Und Wirtschaftliche-Bedeutung Der Chironomiden; Schweizerbart’s Verlagbuchhandlung: Stuttgart, Germany, 1974. [Google Scholar]
- Serra, S.R.Q.; Cobo, F.; Graça, M.A.S.; Dolédec, S.; Feio, M.J. Synthesising the Trait Information of European Chironomidae (Insecta: Diptera): Towards a New Database. Ecol. Indic. 2016, 61, 282–292. [Google Scholar] [CrossRef]
Contaminant | Unit | Upstream Sites | Downstream Sites | p-Value |
---|---|---|---|---|
DDT | µg kg−1 1% OC | 4.0 ± 3.1 | 7.5 ± 3.9 | <0.0001 |
Hg | mg kg−1 d.w. | 0.05 ± 0.02 | 0.10 ± 0.05 | <0.0001 |
As | mg kg−1 d.w. | 7.2 ± 3.0 | 22.1 ± 9.8 | <0.0001 |
Cd | mg kg−1 d.w. | 0.15 ± 0.04 | 0.17 ± 0.04 | 0.111 |
Cu | mg kg−1 d.w. | 31.2 ± 12.9 | 27.2 ± 8.1 | 0.044 |
Ni | mg kg−1 d.w. | 37.4 ± 5.9 | 28.0 ± 6.2 | <0.0001 |
Pb | mg kg−1 d.w. | 12.6 ± 2.8 | 13.8 ± 2.2 | 0.015 |
Taxa | Authors | Abbreviation | Density (ind m−2) | Frequency (%) |
---|---|---|---|---|
Micropsectra atrofasciata | (Kieffer, 1911) | Matro | 177 | 35 |
Microtendipes pedellus | (De Geer, 1776) | Microt | 169 | 31 |
Polypedilum spp. | Kieffer, 1912 | Polyp | 321 | 31 |
Tvetenia spp. | Kieffer, 1922 | Tvet | 222 | 31 |
Odontomesa fulva | (Kieffer, 1919) | Odont | 2026 | 29 |
Macropelopia spp. | Thienemann, 1916 | Mpelop | 136 | 22 |
Sympotthastia spinifera | Serra-Tosio, 1968 | Symp | 364 | 22 |
Diamesa spp. | Meigen, 1835 | Diam | 160 | 24 |
Conchapelopia pallidula | (Meigen, 1818) | Concha | 81 | 16 |
Prodiamesa olivacea | (Meigen, 1818) | Prod | 102 | 16 |
Eukiefferiella spp. | Thienemann, 1926 | Euk | 229 | 23 |
Paracladopelma spp. | Harnish, 1923 | Pclad | 38 | 13 |
Monodiamesa batyphila | (Kieffer, 1918) | Monod | 91 | 12 |
Orthocladius (Orthocladius) spp. | Van der Wulp, 1874 | Orth | 31 | 12 |
Cricotopus (Cricotopus) tremulus | (Linnaeus, 1756) | Ctrem | 42 | 11 |
Cricotopus (Cricotopus) bicinctus | (Meigen, 1818) | Cbici | 168 | 10 |
Rheocricotopus spp. | Brundin, 1956 | Rheoc | 13 | 10 |
Orthocladius (Euorthocladius) spp. | Thienemann, 1935 | Euorth | 49 | 10 |
Chironomus riparius | Meigen, 1804 | Cripa | 59 | 7 |
Synorthocladius semivirens | (Kieffer, 1909) | Synor | 29 | 6 |
Cardiocladius sp. | Kieffer, 1912 | Cardio | 12 | 5 |
Cricotopus (Paratrichocladius) rufiventris | (Meigen, 1830) | Ptrich | 35 | 5 |
Potthastia longimanus | (Kieffer, 1922) | Potth | 27 | 5 |
Chaetocladius spp. | Kieffer, 1911 | Chaet | 23 | 4 |
Thienemannimyia sp. | Fittkau, 1957 | Thimmyia | 45 | 4 |
Corynoneura spp. | Winnertz, 1846 | Cory | 6 | 4 |
Metriocnemus spp. | van der Wulp, 1874 | Metr | 3 | 3 |
Brillia spp. | Kieffer, 1913 | Bril | 9 | 3 |
Orthocladius (Mesorthocladius) frigidus | (Zetterstedt, 1838) | Ofrig | 11 | 2 |
Psectrocladius sp. | Kieffer, 1906 | Psectr | 5 | 2 |
Tanytarsini spp. | - | Tany | 2 | 2 |
Paratrissocladius excerptus | (Walker, 1856) | Ptriss | 2 | 1 |
Taxa | Ecological Traits |
---|---|
Macropelopia spp. | The genus prefers waters with higher oxygen saturation and moderate water flow. No particular sensitivity to toxicants was observed. It is a predator of other chironomid larvae, or Oligochaetes [5]. |
Conchapelopia pallidula | The species prevails at the downstream stations in the summer. It prefers the pool habitat. It shows no flow type preference and no sensitivity to toxicants in the Toce River. It is a common predator of other chironomid larvae and Oligochaetes [5]. |
Diamesa spp. | The taxon includes Diamesa zernyi and Diamesa tonsa. It prefers running waters with high flow velocity and turbulence, such as upstream riffle habitats with lower water temperatures. It tolerates a moderate organic carbon concentration in sediments and high Hg levels, while it is mostly absent at sites with higher DDT concentrations. |
Potthastia longimanus | This species prefers pool microhabitat, silty sediments, broken standing wave flow type, moderate organic matter content in sediments, and high DDT concentrations, while it is moslty absent at sites with higher Hg concentrations. |
Sympotthastia spinifera | Abundant in February, this species is rare in October and April. It prefers pools rich in submerged macrophytes, but it is present at all microhabitat types and stations. It tolerates high organic carbon content (>3.2%) and is present at sites most contaminated by As and Hg, while it is mostly absent at DDT-contaminated sites. |
Odontomesa fulva | Abundant in April, it is rare in October and February. It prefers pool areas with rippled flow type and sand and mesolithal microhabitats, tolerating organic carbon in sediments. It is present at all stations, including sites with higher Hg and DDT concentrations but lower As levels. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marziali, L.; Pirola, N.; Schiavon, A.; Rossaro, B. Response of Chironomidae (Diptera) to DDT, Mercury, and Arsenic Legacy Pollution in Sediments of the Toce River (Northern Italy). Insects 2024, 15, 148. https://doi.org/10.3390/insects15030148
Marziali L, Pirola N, Schiavon A, Rossaro B. Response of Chironomidae (Diptera) to DDT, Mercury, and Arsenic Legacy Pollution in Sediments of the Toce River (Northern Italy). Insects. 2024; 15(3):148. https://doi.org/10.3390/insects15030148
Chicago/Turabian StyleMarziali, Laura, Niccolò Pirola, Alfredo Schiavon, and Bruno Rossaro. 2024. "Response of Chironomidae (Diptera) to DDT, Mercury, and Arsenic Legacy Pollution in Sediments of the Toce River (Northern Italy)" Insects 15, no. 3: 148. https://doi.org/10.3390/insects15030148