Visualising Business Data: A Survey
Abstract
:1. Introduction and Motivation
- The first Business Visualisation survey of its kind to our knowledge;
- An overview and classification of 70 published visualisation business papers;
- A novel categorisation of Business Visualisation literature supported by related literature sources;
- A reference for businesses looking to explore their datasets with visualisation; and
- The identification of both mature and immature research directions in this rapidly evolving field.
1.1. Literature Classification
- Business Intelligence
- Business Ecosystem
- Customer Centric
1.1.1. Business Intelligence (BI)
“The main task of business intelligence (BI) is providing decision support for business activities based on empirical information.”—Grossman [15]
Internal Intelligence (II)
External Intelligence (EI)
1.1.2. Business Ecosystem (BE)
“An economic community supported by a foundation of interacting organisations and individuals—the organisms of the business world. The economic community produces goods and services of value to customers, who are themselves members of the ecosystem. The member organisms also include suppliers, lead producers, competitors, and other stakeholders.”—Moore [86]
“A capitalist economy can best be comprehended as a living ecosystem. Key phenomena observed in nature—competition, specialisation, co-operation, exploitation, learning, growth, and several others are also central to business life.”—Rothschild [87]
1.1.3. Customer Centric (CC)
Customer Behaviour (CB)
Customer Feedback (CF)
1.1.4. Business Finance
1.2. Justification of Classification: Turning Data into Profit
“A business ecosystem can also be conceived as a network of interdependent niches that in turn are occupied organisations. These niches can be said to be more or less open, to the degree to which they embrace alternative contributors. One of the most exciting ideas in business today is that business ecosystems can be “opened up” to the entire world of potential contributions and creative participants.”—Moore [98]
1.3. Data Classification
Primary:
- Intentional, Active Digital Collection
- Intentional, Active Research Study Data
Secondary:
- A Priori Databases
- Business Processes
- Business By-product
Hybrid:
1.4. Literature Search Methodology
- IEEE Xplore
- ACM Digital Library
- Google Scholar
- References of collected papers
1.5. Survey Scope
1.5.1. Out of Scope
1.5.2. In Scope
1.6. Organisation of Survey
2. Related Surveys
- R1: Provide sufficient information to deduce basic patterns including historical and context data.
- R2: Automated techniques for pattern detection, trends and anomalies.
- R3: User interaction with the system. Enabling data resolution selection (drill-down), and data comparison.
- R4: Statical analysis of trends and anomalies identifying “statistically significant” trends.
- R5: Forecasting for future trends based on currently available data.
- R6: Additional functions for data cleansing, customisation and presentation.
- R7: Clear visualisations that avoid occlusion as well as supporting R6 and R3 functionality.
3. Business Visualisation Articles
3.1. Business Intelligence (BI)
3.1.1. Internal Intelligence (II)
- Case Study 1: AutobahnVis. The AutobahnVis software provides an overview and navigation of error detection in network communication logs. The challenges that arose while developing the software were largely the complexity of the data and the specialised skill required to interpret it. It had to be acquired from busy staff members within the company, resulting in a large time cost and expense to the project. The complexity of the project is reflected in the design, and therefore presented several challenges along the way.
- Case Study 2: MostVis. The MostVis software is designed as an alternative visual access to auxiliary information. It presents large hierarchical data related to the bus systems of car models. The visual hierarchy tree runs from left to right and shows complex information about a car’s auxiliary data. Company stakeholders accepted the resulting software research and provided funding to expand further, highlighting the importance of stakeholder support in visualisation research.
- The Function perspective distinguishes functions of visualisations based on the desired outcome; i.e., if the goal is to create new insight, recall the data, produce motivation, elaboration etc.
- The Knowledge perspective identifies the type of knowledge that is required to be transferred, i.e., what, who, where, why, and how?
- The Recipient perspective highlights the target group recipient, i.e., individual worker, team leader, senior management, workgroup etc.
- The Visualisation type perspective examines the type of visual design suitable for the above context. i.e., sketches, diagrams, maps, images, interactive visualisations, stories.
- Fixed Income Management: In this case study, a dataset of financial portfolios is depicted using 3D line graphs. Emphasis is placed on the 3D nature of the visual design as it enables thousands of data points to be plotted compared to a smaller number in 2D. The more holistic view enables investors to quickly see the state of their portfolio or compare multiple 2D visual designs.
- Derivatives Risk Management: The software conveys the risk involved in options trading. A virtual environment contains multiple visual representations including a virtual screen showing the yield curve, a surface plot mapping the current profit and loss, and a grid map that shows the relative profit and loss. Users can interact by adjusting the extraneous variables such as interest rates to change the forecast visual designs.
- Management Decision Support: A geospatial map is used to display the locations of a chain of businesses and then 3D bar charts are overlaid on top to show the metric values used to analyse the businesses. This enables managers to evaluate and balance multiple business locations.
- Credit Scoring: This design uses a geospatial map to display credit scores in the United States. The software enables the market risk of permitting loans to be analysed.
- Retail Sales Analysis: Again using geospatial maps, this enables the user to compare the retail value of stores across the U.S. both individually or aggregately in each state. Three-dimensional bar charts or raised map tiles are used to show the sales from each sector or store.
- Management Reporting: This managerial software uses a virtual environment and 3D bar charts to show the portfolios of a business. The portfolios are grouped into asset classes and represent the main axis of data. A virtual screen shows 60 scenarios that would affect the portfolios and users can select each to see the effect. Another virtual screen shows the currency conversion rates which change with the scenario.
3.1.2. External Intelligence (EI)
3.2. Business Ecosystem (BE)
3.3. Customer Centric Literature
3.3.1. Customer Behaviour (CB)
3.3.2. Customer Feedback (CF)
Hybrid Web-scrape (CF)
4. Discussion and Observations
5. Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, R.; Laramee, R.; Brookes, P.; Smith, G.A.; D’Cruze, T.; Roach, M.J. A Tale of Two Visions—Exploring the Dichotomy of Interest between Academia and Industry in Visualisation. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications—Volume 3: IVAPP, Funchal, Portugal, 27–29 January 2018; SciTePress: Setúbal, Portugal, 2018; pp. 319–326. [Google Scholar] [CrossRef]
- Gentile, B. The Top 5 Business Benefits of Using Data Visualization. 2014. Available online: http://data-informed.com/top-5-business-benefits-using-data-visualization/ (accessed on 10 September 2018 ).
- Simon, P. The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions, 1st ed.; Wiley Publishing: Hoboken, NJ, USA, 2014. [Google Scholar]
- Buja, A.; Cook, D.; Swayne, D.F. Interactive high-dimensional data visualization. J. Comput. Graph. Stat. 1996, 5, 78–99. [Google Scholar]
- Stimpert, J.L.; Duhaime, I.M. Seeing the big picture: The influence of industry, diversification, and business strategy on performance. Acad. Manag. J. 1997, 40, 560–583. [Google Scholar]
- Basole, R.; Drucker, S.; Kohlhammer, J.; Wijk, J.V.; Business. IEEE VIS. 2014. Available online: http://entsci.gatech.edu/businessvis14/ (accessed on 13 November 2018).
- Basole, R.; Drucker, S.; Kohlhammer, J.; Wijk, J.V. From Data to Actionable Business Insights. IEEE VIS. 2015. Available online: http://entsci.gatech.edu/businessvis15/ (accessed on 13 November 2018).
- CG&A, I. Business Intelligence Analytics - [Front cover]. IEEE Comput. Graph. Appl. 2014, 34, c1. [Google Scholar] [CrossRef]
- CG&A, I. New Department: Art on Graphics - IEEE CGA Call for Articles. IEEE Comput. Graph. Appl. 2014, 34, c2. [Google Scholar] [CrossRef]
- Murray, D.G. Tableau Your Data!: Fast and Easy Visual Analysis with Tableau Software; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sisense. 2004. Available online: https://www.sisense.com/?source=capterra/ (accessed on 13 November 2018).
- Gartner. Gartner Says Business Intelligence and Analytics Need to Scale up to Support Explosive Growth in Data Sources. 2013. Available online: http://www.gartner.com/newsroom/id/2313915 (accessed on 13 November 2018).
- Etzkowitz, H.; Webster, A.; Healey, P. Capitalizing Knowledge: New Intersections of Industry and Academia; Suny Press: Albany, NY, USA, 1998. [Google Scholar]
- Ko, S.; Cho, I.; Afzal, S.; Yau, C.; Chae, J.; Malik, A.; Beck, K.; Jang, Y.; Ribarsky, W.; Ebert, D.S. A Survey on Visual Analysis Approaches for Financial Data. Comput. Graph. Forum 2016, 35, 599–617. [Google Scholar] [CrossRef]
- Grossmann, W.; Rinderle-Ma, S. Fundamentals of Business Intelligence; Springer: New York, NY, USA, 2015. [Google Scholar]
- Sherman, R. The Business Demand for Data, Information, and Analytics. In Business Intelligence Guidebook; Sherman, R., Ed.; Morgan Kaufmann: Boston, MA, USA, 2015; Chapter 1; pp. 3–19. [Google Scholar] [CrossRef]
- Jourdan, Z.; Rainer, R.K.; Marshall, T.E. Business intelligence: An analysis of the literature. Inf. Syst. Manag. 2008, 25, 121–131. [Google Scholar] [CrossRef]
- Kandel, S.; Paepcke, A.; Hellerstein, J.M.; Heer, J. Enterprise data analysis and visualization: An interview study. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.C.; Keim, D.A.; Dayal, U. VisBiz: A Simplified Visualization of Business Operation. In Proceedings of the IEEE Visualization 2004, Austin, TX, USA, 10–15 October 2004. [Google Scholar] [CrossRef]
- Otsuka, R.; Yano, K.; Sato, N. An organization topographic map for visualizing business hierarchical relationships. In Proceedings of the 2009 IEEE Pacific Visualization Symposium, Beijing, China, 20–23 April 2009; pp. 25–32. [Google Scholar]
- Yaeli, A.; Bak, P.; Feigenblat, G.; Nadler, S.; Roitman, H.; Saadoun, G.; Ship, H.J.; Cohen, D.; Fuchs, O.; Ofek-Koifman, S.; et al. Understanding customer behavior using indoor location analysis and visualization. IBM J. Res. Dev. 2014, 58, 1–12. [Google Scholar] [CrossRef]
- Nagaoka, H.; Nakamura, T.; Nakagawa, T.; Kaneda, M. Development of Methods for Visualizing Customer Value in Terms of People and Management. Hitachi Rev. 2016, 65, 841. [Google Scholar]
- Burkhard, R.A. Strategy visualization: A new research focus in knowledge visualization and a case study. In Proceedings of the I-KNOW, Graz, Austria, 29 June–1 July 2005; Volume 5. [Google Scholar]
- Sedlmair, M.; Isenberg, P.; Baur, D.; Butz, A. Information visualization evaluation in large companies: Challenges, experiences and recommendations. Inf. Vis. 2011, 10, 248–266. [Google Scholar] [CrossRef] [Green Version]
- Aigner, W. Current Work Practice and Users’ Perspectives on Visualization and Interactivity in Business Intelligence. In Proceedings of the 2013 17th International Conference on Information Visualisation, London, UK, 16–18 July 2013; pp. 299–306. [Google Scholar] [CrossRef]
- Lafon, S.; Bouali, F.; Guinot, C.; Venturini, G. 3D and immersive interfaces for Business Intelligence: The case of OLAP. In Proceedings of the 2013 17th International Conference on Information Visualisation, London, UK, 16–18 July 2013; pp. 272–277. [Google Scholar]
- Bresciani, S.; Eppler, M.J. Beyond knowledge visualization usability: Toward a better understanding of business diagram adoption. In Proceedings of the 2009 13th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 474–479. [Google Scholar]
- Bertschi, S. Knowledge visualization and business analysis: meaning as media. In Proceedings of the 2009 13th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 480–485. [Google Scholar]
- Keahey, A. Feeding the Needs of Diverse Stakeholders for Enterprise Visualisation Systems. Keynote Talk at the Business Visualization Workshop held in conjunction with the IEEE VIS 2015 Conference, Chicago, IL, USA, 25 October 2015. [Google Scholar]
- Merino, C.S.; Sips, M.; Keim, D.A.; Panse, C.; Spence, R. Task-at-hand interface for change detection in stock market data. In Proceedings of the Working Conference on Advanced Visual Interfaces, Venezia, Italy, 23–26 May 2006; ACM: New York, NY, USA, 2006; pp. 420–427. [Google Scholar]
- Basole, R.C.; Huhtamäki, J.; Still, K.; Russell, M.G. Visual decision support for business ecosystem analysis. Expert Syst. Appl. 2016, 65, 271–282. [Google Scholar] [CrossRef]
- Dou, W.; Cho, I.; ElTayeby, O.; Choo, J.; Wang, X.; Ribarsky, W. DemographicVis: Analyzing demographic information based on user generated content. In Proceedings of the 2015 IEEE Conference on Visual Analytics Science and Technology (VAST), Chicago, IL, USA, 25–30 October 2015; pp. 57–64. [Google Scholar]
- Brodbeck, D.; Girardin, L. Visualization of large-scale customer satisfaction surveys using a parallel coordinate tree. In Proceedings of the IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714), Seattle, WA, USA, 19–21 October 2003; pp. 197–201. [Google Scholar] [CrossRef]
- Ramesh, G.; Rajinikanth, T.; Vasumathi, D. Explorative Data Visualization Using Business Intelligence and Data Mining Techniques. Int. J. Appl. Eng. Res. 2017, 12, 14008–14013. [Google Scholar]
- Lu, Y.; Wang, F.; Maciejewski, R. Business intelligence from social media: A study from the VAST box office challenge. IEEE Comput. Graph. Appl. 2014, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wu, Y.; Liu, S.; Zhou, H.; Qu, H. LoyalTracker: Visualizing Loyalty Dynamics in Search Engines. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1733–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijtsma, B.; Qvarfordt, P.; Chen, F. Tweetviz: Visualizing tweets for business intelligence. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, 17–21 July 2016; ACM: New York, NY, USA, 2016; pp. 1153–1156. [Google Scholar]
- Chen, C.; Ibekwe-SanJuan, F.; SanJuan, E.; Weaver, C. Visual analysis of conflicting opinions. In Proceedings of the 2006 IEEE Symposium On Visual Analytics Science And Technology, Baltimore, MD, USA, 31 October– 2 November 2006; pp. 59–66. [Google Scholar]
- Ziegler, C.N.; Skubacz, M.; Viermetz, M. Mining and exploring unstructured customer feedback data using language models and treemap visualizations. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology—Volume 01, Sydney, Australia, 9–12 December 2008; pp. 932–937. [Google Scholar]
- Oelke, D.; Hao, M.; Rohrdantz, C.; Keim, D.A.; Dayal, U.; Haug, L.E.; Janetzko, H. Visual opinion analysis of customer feedback data. In Proceedings of the EEE Symposium on Visual Analytics Science and Technology, Atlantic City, NJ, USA, 12–13 October 2009; pp. 187–194. [Google Scholar]
- Wu, Y.; Wei, F.; Liu, S.; Au, N.; Cui, W.; Zhou, H.; Qu, H. OpinionSeer: Interactive Visualization of Hotel Customer Feedback. IEEE Trans. Vis. Comput. Graph. 2010, 16, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.C.; Rohrdantz, C.; Janetzko, H.; Keim, D.A.; Dayal, U.; Haug, L.E.; Hsu, M.; Stoffel, F. Visual sentiment analysis of customer feedback streams using geo-temporal term associations. Inf. Vis. 2013, 12, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, F. Visualization of online customer reviews and evaluations based on Self-organizing Map. In Proceedings of the 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 176–181. [Google Scholar]
- Fayoumi, A.; Jackson, C.; Lewis, C.; Straw, J.; Sharpe, J.; Nicol, D. What They Are Tweeting About Me? Social Media Data Analytics with Geographical Visualisation. Available online: https://www.researchgate.net/publication/314237420_What_They_Are_Tweeting_About_Me_Social_Media_Data_Analytics_with_Geographical_Visualisation (accessed on 17 November 2018).
- Haleem, M.; Sobeih, T.; Liu, Y.; Soroka, A.; Han, L. An Automated Cloud-based Big Data Analytics Platform for Customer Insights. In Proceedings of the Conference on International Conference on Cyber, Physical and Social Computing (CPSCom), Exeter, UK, 21–23 June 2018; pp. 287–292. [Google Scholar]
- Saga, R.; Yagi, T. Network visualization of customer expectation using Web in coffee service. Artif. Life Robot. 2018, 23, 213–217. [Google Scholar] [CrossRef]
- Wright, W. Business visualization applications. IEEE Comput. Graph. Appl. 1997, 17, 66–70. [Google Scholar] [CrossRef]
- Vliegen, R.; van Wijk, J.J.; Van der Linden, E.J. Visualizing business data with generalized treemaps. IEEE Trans. Vis. Comput. Graph. 2006, 12, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; White, D.; Sundaram, D. Context adaptive visualization for effective business intelligence. In Proceedings of the 2013 15th IEEE International Conference on Communication Technology (ICCT), Guilin, China, 17–19 November 2013; pp. 786–790. [Google Scholar]
- Nicholas, M.; Archambault, D.; Laramee, R.S. Interactive Visualisation of Automotive Warranty Data Using Novel Extensions of Chord Diagrams. Comput. Graph. Forum 2014. [Google Scholar] [CrossRef]
- Roberts, R.C.; Tong, C.; Laramee, R.S.; Smith, G.A.; Brookes, P.; D’Cruze, T. Interactive Analytical Treemaps for Visualisation of Call Centre Data. In Proceedings of the Smart Tools and Apps for Graphics-Eurographics Italian Chapter Conference, Genova, Italy, 3–4 October 2016; Pintore, G., Stanco, F., Eds.; The Eurographics Association: Aire-la-Ville, Switzerland, 2016. [Google Scholar] [CrossRef]
- Kumar, S.; Belwal, M. Performance dashboard: Cutting-edge business intelligence and data visualization. In Proceedings of the 2017 International Conference on Smart Technologies For Smart Nation (SmartTechCon), Bangalore, India, 17–19 August 2017; pp. 1201–1207. [Google Scholar]
- Roberts, R.; Laramee, R.S.; Smith, G.A.; Brookes, P.; D’Cruze, T. Smart Brushing for Parallel Coordinates. IEEE Trans. Vis. Comput. Graph. 2018. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.; Poco, J.; Vo, H.T.; Freire, J.; Silva, C.T. Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, M. Visualizing the stock market. In Proceedings of the CHI’99 Extended Abstracts on Human Factors in Computing Systems, Pittsburgh, PA, USA, 15–20 May 1999; ACM: New York, NY, USA, 1999; pp. 188–189. [Google Scholar]
- Wu, E.; Phillips, P. Financial Markets in Motion: Visualising stock price and news interactions during the 2008 global financial crisis. Procedia Comput. Sci. 2010, 1, 1765–1773. [Google Scholar] [CrossRef]
- Basole, R.C.; Hu, M.; Patel, P.; Stasko, J.T. Visual Analytics for Converging-Business-Ecosystem Intelligence. IEEE Comput. Graph. Appl. 2012, 32, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Basole, R.C.; Clear, T.; Hu, M.; Mehrotra, H.; Stasko, J. Understanding interfirm relationships in business ecosystems with interactive visualization. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2526–2535. [Google Scholar] [CrossRef] [PubMed]
- Deligiannidis, L.; Noyes, E. Interactive Visualization of Business Births and Deaths in the US Economy using a Novel Visualization Technique Called HiFi Pie. In Proceedings of the International Conference on Information and Knowledge Engineering (IKE), Las Vegas, NV, USA, 21–24 July 2014. [Google Scholar]
- Basole, R.C.; Russell, M.G.; Huhtamäki, J.; Rubens, N.; Still, K.; Park, H. Understanding business ecosystem dynamics: A data-driven approach. ACM Trans. Manag. Inf. Syst. 2015, 6, 6. [Google Scholar] [CrossRef]
- Iyer, B.R.; Basole, R.C. Visualization to understand ecosystems. Commun. ACM 2016, 59, 27–30. [Google Scholar] [CrossRef]
- Schotter, A.P.; Buchel, O.; Vashchilko, T. Interactive visualization for research contextualization in international business. J. World Bus. 2017, 53, 356–372. [Google Scholar] [CrossRef]
- Basole, R.C.; Srinivasan, A.; Park, H.; Patel, S. Ecoxight: Discovery, Exploration, and Analysis of Business Ecosystems Using Interactive Visualization. ACM Trans. Manag. Inf. Syst. 2018, 9, 6. [Google Scholar] [CrossRef]
- Woo, J.Y.; Bae, S.M.; Park, S.C. Visualization method for customer targeting using customer map. Expert Syst. Appl. 2005, 28, 763–772. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Mirzazadeh, M. Visualizing market segmentation using self-organizing maps and Fuzzy Delphi method—ADSL market of a telecommunication company. Expert Syst. Appl. 2011, 38, 198–205. [Google Scholar] [CrossRef]
- Kameoka, Y.; Yagi, K.; Munakata, S.; Yamamoto, Y. Customer segmentation and visualization by combination of self-organizing map and cluster analysis. In Proceedings of the 2015 13th International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 18–20 November 2015; pp. 19–23. [Google Scholar]
- Wu, W.; Xu, J.; Zeng, H.; Zheng, Y.; Qu, H.; Ni, B.; Yuan, M.; Ni, L.M. TelCoVis: Visual Exploration of Co-occurrence in Urban Human Mobility Based on Telco Data. IEEE Trans. Vis. Comput. Graph. 2016, 22, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Sathiyanarayanan, M.; Turkay, C.; Fadahunsi, O. Design and implementation of small multiples matrix-based visualisation to monitor and compare email socio-organisational relationships. In Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 643–648. [Google Scholar]
- Kang, S.; Kim, E.; Shim, J.; Cho, S.; Chang, W.; Kim, J. Mining the relationship between production and customer service data for failure analysis of industrial products. Comput. Ind. Eng. 2017, 106, 137–146. [Google Scholar] [CrossRef]
- Du, X.; Gu, C.; Zhu, N. A survey of business process simulation visualization. In Proceedings of the 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), Chengdu, China, 15–18 June 2012; pp. 43–48. [Google Scholar]
- Broeksema, B.; Baudel, T.; Telea, A.; Crisafulli, P. Decision exploration lab: A visual analytics solution for decision management. IEEE Trans. Vis. Comput. Graph. 2013, 19, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
- Ghooshchi, N.G.; Van Beest, N.; Governatori, G.; Olivieri, F.; Sattar, A. Visualisation of compliant declarative business processes. In Proceedings of the 2017 IEEE 21st International Enterprise Distributed Object Computing Conference (EDOC), Quebec City, QC, Canada, 10–13 October 2017; pp. 89–94. [Google Scholar]
- Bachhofner, S.; Kis, I.; Di Ciccio, C.; Mendling, J. Towards a Multi-parametric Visualisation Approach for Business Process Analytics. In International Conference on Advanced Information Systems Engineering; Springer: Cham, Switzerland, 2017; pp. 85–91. [Google Scholar]
- Lea, B.R.; Yu, W.B.; Min, H. Data visualization for assessing the biofuel commercialization potential within the business intelligence framework. J. Clean. Prod. 2018, 188, 921–941. [Google Scholar] [CrossRef]
- Hao, M.C.; Keim, D.A.; Dayal, U.; Schneidewind, J. Business process impact visualization and anomaly detection. Inf. Vis. 2006, 5, 15–27. [Google Scholar] [CrossRef]
- Basole, R.C. Visual Business Ecosystem Intelligence: Lessons from the Field. IEEE Comput. Graph. Appl. 2014, 34, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Basole, R.C.; Bellamy, M.A. Visual analysis of supply network risks: Insights from the electronics industry. Decis. Support Syst. 2014, 67, 109–120. [Google Scholar] [CrossRef]
- Gresh, D.L.; Kelton, E.I. Visualization, optimization, business strategy: A case study. In Proceedings of the IEEE Visualization (VIS 2003), Seattle, WA, USA, 19–24 October 2003; pp. 531–538. [Google Scholar]
- Eick, S.G. eBusiness Click Stream Analysis. In Data Visualization; Springer: Boston, MA, USA, 2003; pp. 185–199. [Google Scholar]
- Keim, D.A.; Hao, M.C.; Dayal, U.; Lyons, M. Value-Cell Bar Charts for Visualizing Large Transaction Data Sets. IEEE Trans. Vis. Comput. Graph. 2007, 13, 822–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Weng, D.; Li, Y.; Bao, J.; Zheng, Y.; Qu, H.; Wu, Y. SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations. IEEE Trans. Vis. Comput. Graph. 2016, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Otjacques, B.; Cornil, M.; Feltz, F. Using ellimaps to visualize business data in a local administration. In Proceedings of the 2009 13th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 235–240. [Google Scholar]
- Ko, S.; Maciejewski, R.; Jang, Y.; Ebert, D.S. MarketAnalyzer: An Interactive Visual Analytics System for Analyzing Competitive Advantage Using Point of Sale Data. Comput. Graph. Forum 2012, 31, 1245–1254. [Google Scholar] [CrossRef]
- Rodden, K. Applying a Sunburst Visualization to Summarize User Navigation Sequences. IEEE Comput. Graph. Appl. 2014, 34, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.G.; Abdulla, N.; Gazzali, Z.A.M.; Khade, A.; Nair, S.G.; Abdulla, N.; Gazzali, Z.A.M.; Khade, A. Measure Customer Behaviour Using C4. 5 Decision Tree Mapreduce Implementation in Big Data Analytics and Data Visualization. Int. J. 2015, 1, 228–235. [Google Scholar]
- Moore, J.F. The Death of Competition: Leadership and Strategy in the Age of Business Ecosystems; HarperCollins Publishers: New York, NY, USA, 1996. [Google Scholar]
- Rothschild, M. Bionomics: Economy as Business Ecosystem; Beard Books: Washington, DC, USA, 2004. [Google Scholar]
- Homburg, C.; Workman, J.P.; Jensen, O. Fundamental changes in marketing organization: The movement toward a customer-focused organizational structure. J. Acad. Mark. Sci. 2000, 28, 459–478. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kaczmarek, P. Visualizing Financial Data; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- LeHung, H.; Howard, C.; Gaughan, D.; Logan, D. Building a Digital Business Technology Platform; Technical Report. Available online: https://www.gartner.com/binaries/content/assets/events/keywords/symposium/esc28/esc28_digitalbusiness.pdf (accessed on 15 November 2018).
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.J.; Barton, D. Big data: The management revolution. Harvard Bus. Rev. 2012, 90, 60–68. [Google Scholar]
- Bean, R. How Companies Say They’re Using Big Data. 2017. Available online: https://hbr.org/2017/04/how-companies-say-theyre-using-big-data (accessed on 13 November 2018).
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Buluswar, M. How Companies Are Using Big Data and Analytics. 2016. Available online: https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/how-companies-are-using-big-data-and-analytics (accessed on 13 November 2018).
- Delmater, R.; Hancock, M.; Hankcock, M. Data Mining Explained: A Manager’s Guide to Customer-Centric Business Intelligence; Digital Press Woburn: Boston, MA, USA, 2001. [Google Scholar]
- Linoff, G.S.; Berry, M.J. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Cohn, D.; Hull, R. Business artifacts: A data-centric approach to modeling business operations and processes. IEEE Data Eng. Bull. 2009, 32, 3–9. [Google Scholar]
- Moore, J.F. Business ecosystems and the view from the firm. Antitrust Bull. 2006, 51, 31–75. [Google Scholar] [CrossRef]
- Hox, J.J.; Boeije, H.R. Data collection, primary vs. secondary. Encycl. Soc. Meas. 2005, 1, 593–599. [Google Scholar]
- Isenberg, P.; Heimerl, F.; Koch, S.; Isenberg, T.; Xu, P.; Stolper, C.; Sedlmair, M.; Chen, J.; Möller, T.; Stasko, J. Visualization Publication Dataset. 2015. Available online: http://vispubdata.org/ (accessed on 13 November 2018).
- Laramee, R.S. How to read a visualization research paper: Extracting the essentials. IEEE Comput. Graph. Appl. 2011, 31, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Khan, S.A. Visualizations-based analysis of Telco data for business intelligence. In Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 September 2015; pp. 242–246. [Google Scholar]
- Nagai, A.; Tsuboi, T.; Ito, T. Prototype of New Business Process Visualization Tool. In Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology—Volume 03, Macau, China, 4–7 December 2012; pp. 367–372. [Google Scholar]
- Wu, Y.; Liu, S.; Yan, K.; Liu, M.; Wu, F. Opinionflow: Visual analysis of opinion diffusion on social media. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Wanner, F.; Stoffel, A.; Jäckle, D.; Kwon, B.; Weiler, A.; Keim, D.A. State-of-the-Art Report of Visual Analysis for Event Detection in Text Data Streams. In Proceedings of the EuroVis 2014: The Eurographics Conference on Visualization, Swansea, UK, 9–13 June 2014; Eurographics Association: Aire-la-Ville, Switzerland, 2014; pp. 125–139. [Google Scholar] [CrossRef]
- McNabb, L.; Laramee, R.S. Survey of Surveys (SoS)—Mapping The Landscape of Survey Papers in Information Visualization. Comput. Graph. Forum 2017, 36, 589–617. [Google Scholar] [CrossRef]
- Zhang, L.; Stoffel, A.; Behrisch, M.; Mittelstadt, S.; Schreck, T.; Pompl, R.; Weber, S.; Last, H.; Keim, D. Visual analytics for the big data era—A comparative review of state-of-the-art commercial systems. In Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, USA, 14–19 October 2012; pp. 173–182. [Google Scholar]
- Thomas, J.J.; Cook, K.A. A visual analytics agenda. IEEE Comput. Graph. Appl. 2006, 26, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Keim, D.; Kohlhammer, J.; Ellis, G.; Mansmann, F. Mastering the Information Age Solving Problems with Visual Analytics; Eurographics Associatio: Goslar, Germany, 2010; Volume 2, p. 5. [Google Scholar]
- Jankun-Kelly, T.; Ma, K.L. MoireGraphs: Radial focus+ context visualization and interaction for graphs with visual nodes. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS 2003), Seattle, WA, USA, 19–21 October 2003; pp. 59–66. [Google Scholar]
- Furnas, G.W.; Zacks, J. Multitrees: Enriching and reusing hierarchical structure. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994; ACM: New York, NY, USA, 1994; pp. 330–336. [Google Scholar]
- Robertson, G.G.; Mackinlay, J.D.; Card, S.K. Cone trees: Animated 3D visualizations of hierarchical information. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 27 April–2 May 1991; ACM: New York, NY, USA, 1991; pp. 189–194. [Google Scholar]
- Adar, E. GUESS: A language and interface for graph exploration. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montréal, QC, Canada, 22–27 April 2006; ACM: New York, NY, USA, 2006; pp. 791–800. [Google Scholar]
- Heer, J.; Boyd, D. Vizster: Visualizing online social networks. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS 2005), Minneapolis, MN, USA, 23–25 October 2005; pp. 32–39. [Google Scholar]
- Tory, M.; Staub-French, S. Qualitative analysis of visualization: A building design field study. In Proceedings of the 2008 Workshop on BEyond Time and Errors: Novel Evaluation Methods for Information Visualization, Florence, Italy, 5 April 2008; ACM: New York, NY, USA, 2008; p. 7. [Google Scholar]
- González, V.; Kobsa, A. A workplace study of the adoption of information visualization systems. In Proceedings of the I-KNOW, Graz, Austria, 2003; Volume 3, pp. 92–102. [Google Scholar]
- González, V.; Kobsa, A. Benefits of information visualization systems for administrative data analysts. In Proceedings of the Seventh International Conference on Information Visualization (IV 2003), London, UK, 18 July 2003; pp. 331–336. [Google Scholar] [Green Version]
- chul Kwon, B.; Fisher, B.; Yi, J.S. Visual analytic roadblocks for novice investigators. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), Providence, RI, USA, 23–28 October 2011; pp. 3–11. [Google Scholar]
- Chin, G., Jr.; Kuchar, O.A.; Wolf, K.E. Exploring the analytical processes of intelligence analysts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; ACM: New York, NY, USA, 2009; pp. 11–20. [Google Scholar]
- Kang, Y.a.; Gorg, C.; Stasko, J. Evaluating visual analytics systems for investigative analysis: Deriving design principles from a case study. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST 2009), Atlantic City, NJ, USA, 12–13 October 2009; pp. 139–146. [Google Scholar]
- Kaplan, R.S.; Norton, D.P. Strategy Maps: Converting Intangible Assets Into Tangible Outcomes; Harvard Business Press: Cambridge, MA, USA, 2004. [Google Scholar]
- La Rooy, G. Charting Performance. NZ Business 2000, 14, 14–17. Available online: https://search-proquest-com.openathens-proxy.swan.ac.uk/docview/204494978?accountid=14680 (accessed on 17 November 2018).
- Harris, R.L. Information Graphics: A Comprehensive Illustrated Reference; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Johnson, B.; Shneiderman, B. Tree-maps: A space-filling approach to the visualization of hierarchical information structures. In Proceedings of the IEEE Conference on Visualization’91, San Diego, CA, USA, 22–25 October 1991; pp. 284–291. [Google Scholar]
- Balzer, M.; Deussen, O.; Lewerentz, C. Voronoi treemaps for the visualization of software metrics. In Proceedings of the 2005 ACM Symposium on Software Visualization, St. Louis, MO, USA, 14–15 May 2005; ACM: New York, NY, USA, 2005; pp. 165–172. [Google Scholar]
- Bruls, M.; Huizing, K.; van Wijk, J. Squarified Treemaps. In Data Visualization; de Leeuw, W., van Liere, R., Eds.; Springer: Vienna, Austria, 2000; pp. 33–42. [Google Scholar] [CrossRef]
- Bederson, B.B.; Shneiderman, B.; Wattenberg, M. Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Trans. Graph. 2002, 21, 833–854. [Google Scholar] [CrossRef] [Green Version]
- Bostock, M.; Ogievetsky, V.; Heer, J. D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- Kerren, A.; Jusufi, I. A novel radial visualization approach for undirected hypergraphs. In Proceedings of the Eurographics Conference on Visualisation (EuroVis’13), Leipzig, Germany, 17–21 Jun 2013; Short Paper. The Eurographics Association: Leipzig, Germany, 2013. [Google Scholar]
- Raja, A.; Mohsin, W.; Ehsan, N.; Mirza, E.; Saud, M. Impact of Emotional Intelligence and Work Attitude on Quality of Service in the Call Centre Industry of Pakistan. In Proceedings of the 2010 IEEE International Conference on Management of Innovation and Technology (ICMIT), Singapore, 2–5 June 2010; pp. 402–407. [Google Scholar]
- Bennington, L.; Cummane, J.; Conn, P. Customer satisfaction and call centers: An Australian study. Int. J. Serv. Ind. Manag. 2000, 11, 162–173. [Google Scholar] [CrossRef]
- Blanch, R.; Lecolinet, E. Browsing zoomable treemaps: Structure-aware multi-scale navigation techniques. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Zizi, M.; Beaudouin-Lafon, M. Accessing hyperdocuments through interactive dynamic maps. In Proceedings of the 1994 ACM European Conference on Hypermedia Technology, Edinburgh, UK, 19–23 September 1994; ACM: New York, NY, USA, 1994; pp. 126–135. [Google Scholar]
- Savikhin, A.; Lam, H.C.; Fisher, B.; Ebert, D.S. An experimental study of financial portfolio selection with visual analytics for decision support. In Proceedings of the 2011 44th Hawaii International Conference on System Sciences (HICSS), Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [Google Scholar]
- Savikhin, A.; Maciejewski, R.; Ebert, D.S. Applied visual analytics for economic decision-making. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, VAST’08, Columbus, OH, USA, 19–24 October 2008; pp. 107–114. [Google Scholar]
- Stolte, C.; Tang, D.; Hanrahan, P. Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Vis. Comput. Graph. 2002, 8, 52–65. [Google Scholar] [CrossRef]
- Bosch, R.; Stolte, C.; Tang, D.; Gerth, J.; Rosenblum, M.; Hanrahan, P. Rivet: A flexible environment for computer systems visualization. ACM SIGGRAPH Comput. Graph. 2000, 34, 68–73. [Google Scholar] [CrossRef]
- Keim, D.; Kriegel, H.P. VisDB: Database exploration using multidimensional visualization. IEEE Comput. Graph. Appl. 1994, 14, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Keim, D.; Hao, M.C.; Ladisch, J.; Hsu, M.; Dayal, U. Pixel bar charts: a new technique for visualizing large multi-attribute data sets without aggregation. In Proceedings of the IEEE Symposium on Information Visualization 2001, San Diego, CA, USA, 22–23 October 2001; pp. 113–120. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Xiong, H.; Tuzhilin, A.; Xiao, K.; Gruteser, M.; Pazzani, M. An energy-efficient mobile recommender system. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; ACM: New York, NY, USA, 2010; pp. 899–908. [Google Scholar] [Green Version]
- Peng, C.; Jin, X.; Wong, K.C.; Shi, M.; Liò, P. Collective human mobility pattern from taxi trips in urban area. PLoS ONE 2012, 7, e34487. [Google Scholar]
- Phan, D.; Xiao, L.; Yeh, R.; Hanrahan, P. Flow map layout. In Proceedings of the IEEE Symposium on Information Visualization 2005, Minneapolis, MN, USA, 23–25 October 2005; pp. 219–224. [Google Scholar]
- Wood, J.; Dykes, J.; Slingsby, A. Visualisation of origins, destinations and flows with OD maps. Cartogr. J. 2010, 47, 117–129. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Lu, L.; Liu, S.; Qu, H.; Ni, L.M. Visual analysis of route diversity. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology, Providence, RI, USA, 23–28 October 2011; pp. 171–180. [Google Scholar]
- Huang, X.; Zhao, Y.; Ma, C.; Yang, J.; Ye, X.; Zhang, C. TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Trans. Vis. Comput. Graph. 2016, 22, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Guo, F.; Wang, F.Y. A survey of traffic data visualization. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2970–2984. [Google Scholar] [CrossRef]
- Keim, D.A. Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 2002, 8, 1–8. [Google Scholar] [CrossRef]
- Zhou, M.X.; Feiner, S.K. Visual task characterization for automated visual discourse synthesis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Los Angeles, CA, USA, 18–23 April 1998; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1998; pp. 392–399. [Google Scholar]
- IMDb—Internet Movie Database. Available online: https://www.imdb.com/ (accessed on 27 October 2018).
- Simonoff, J.S.; Sparrow, I.R. Predicting movie grosses: Winners and losers, blockbusters and sleepers. Chance 2000, 13, 15–24. [Google Scholar] [CrossRef]
- Zhang, W.; Skiena, S. Improving movie gross prediction through news analysis. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology—Volume 01, Milan, Italy, 15–18 September 2009; pp. 301–304. [Google Scholar]
- Asur, S.; Huberman, B. Predicting the future with social media. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Toronto, ON, Canada, 31 August–3 September 2010; Volume 1, pp. 492–499. [Google Scholar]
- Lux, M. Visualization of financial information. In Proceedings of the 1997 Workshop on New Paradigms in Information Visualization and Manipulation, Las Vegas, NV, USA, 10–14 November 1997; ACM: New York, NY, USA, 1997; pp. 58–61. [Google Scholar]
- Keim, D.A.; Nietzschmann, T.; Schelwies, N.; Schneidewind, J.; Schreck, T.; Ziegler, H. A Spectral Visualization System for Analyzing Financial Time Series Data. In Proceedings of the Eighth Joint Eurographics/IEEE VGTC Conference on Visualization, EUROVIS’06, Lisbon, Portugal, 8–10 May 2006; Eurographics Association: Aire-la-Ville, Switzerland, 2006; pp. 195–202. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. ICWSM 2009, 8, 361–362. [Google Scholar]
- Suntinger, M.; Obweger, H.; Schiefer, J.; Gröller, M.E. The event tunnel: Interactive visualization of complex event streams for business process pattern analysis. In Proceedings of the 2008 Visualization Symposium, PacificVIS’08, Kyoto, Japan, 5–7 March 2008; pp. 111–118. [Google Scholar]
- Burkhard, R.A. Towards a framework and a model for knowledge visualization: Synergies between information and knowledge visualization. In Knowledge and Information Visualization; Springer: Berlin/Heidelberg, Germany, 2005; pp. 238–255. [Google Scholar]
- Chung, W.; Chen, H.; Nunamaker, J. A visual knowledge map framework for the discovery of business intelligence on the web. J. Manag. Inf. Syst. 2005, 21, 57–84. [Google Scholar] [CrossRef]
- Lam, H.; Bertini, E.; Isenberg, P.; Plaisant, C.; Carpendale, S. Empirical studies in information visualization: Seven scenarios. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1520–1536. [Google Scholar] [CrossRef] [PubMed]
- Airoldi, E.M.; Bai, X.; Carley, K.M. Network sampling and classification: An investigation of network model representations. Decis. Support Syst. 2011, 51, 506–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, A.; Russell, R. AWSM: Allocation of workflows utilizing social network metrics. Decis. Support Syst. 2010, 50, 191–202. [Google Scholar] [CrossRef]
- Kiss, C.; Bichler, M. Identification of influencers—Measuring influence in customer networks. Decis. Support Syst. 2008, 46, 233–253. [Google Scholar] [CrossRef]
- Kuhlman, C.J.; Kumar, V.A.; Marathe, M.V.; Ravi, S.; Rosenkrantz, D.J. Finding critical nodes for inhibiting diffusion of complex contagions in social networks. In Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2010; pp. 111–127. [Google Scholar]
- Basole, R.C.; Bellamy, M.A. Global supply network health: Analysis and visualization. Manuf. Glob. Enterp. 2012, 11, 59–76. [Google Scholar]
- Edwards, R.D.; Magee, J.; Bassetti, W. Technical Analysis of Stock Trends; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Murphy, J.J. Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications; New York Institute of Finance: New York, NY, USA, 1999. [Google Scholar]
- Keim, D.A. Designing pixel-oriented visualization techniques: Theory and applications. IEEE Trans. Vis. Comput. Graph. 2000, 6, 59–78. [Google Scholar] [CrossRef]
- Borgo, R.; Proctor, K.; Chen, M.; Jänicke, H.; Murray, T.; Thornton, I.M. Evaluating the impact of task demands and block resolution on the effectiveness of pixel-based visualization. IEEE Trans. Vis. Comput. Graph. 2010, 16, 963–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yada, K. String analysis technique for shopping path in a supermarket. J. Intell. Inf. Syst. 2011, 36, 385–402. [Google Scholar] [CrossRef]
- Takai, K.; Yada, K. A framework for analysis of the effect of time on shopping behavior. J. Intell. Inf. Syst. 2013, 41, 91–107. [Google Scholar] [CrossRef]
- Kosara, R.; Bendix, F.; Hauser, H. Parallel sets: Interactive exploration and visual analysis of categorical data. IEEE Trans. Vis. Comput. Graph. 2006, 12, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.; Wang, X.; Chang, R.; Ribarsky, W. Paralleltopics: A probabilistic approach to exploring document collections. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), Providence, RI, USA, 23–28 October 2011; pp. 231–240. [Google Scholar]
- Munroe, R. A History of United States Congress. 2018. Available online: https://xkcd.com/1127/ (accessed on 6 November 2018).
- Card, S.K.; Pirolli, P.; Van Der Wege, M.; Morrison, J.B.; Reeder, R.W.; Schraedley, P.K.; Boshart, J. Information scent as a driver of Web behavior graphs: Results of a protocol analysis method for Web usability. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seattle, WA, USA, 2001; pp. 498–505. [Google Scholar]
- Pitkow, J.; Bharat, K.A. Webviz: A Tool For World-Wide Web Access Log Analysis. In Proceedings of the First International World-Wide Web Conference, Geneva, Switzerland, 1994; pp. 271–277. [Google Scholar]
- Waterson, S.J.; Hong, J.I.; Sohn, T.; Landay, J.A.; Heer, J.; Matthews, T. What did they do? understanding clickstreams with the WebQuilt visualization system. In Proceedings of the Working Conference on Advanced Visual Interfaces, Trento, Italy, 22–24 May 2002; ACM: New York, NY, USA, 2002; pp. 94–102. [Google Scholar]
- Guo, Q.; White, R.W.; Zhang, Y.; Anderson, B.; Dumais, S.T. Why searchers switch: understanding and predicting engine switching rationales. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 24–28 July 2011; ACM: New York, NY, USA, 2011; pp. 335–344. [Google Scholar]
- White, R.W.; Kapoor, A.; Dumais, S.T. Modeling Long-Term Search Engine Usage. In User Modeling, Adaptation, and Personalization; De Bra, P., Kobsa, A., Chin, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 28–39. [Google Scholar]
- Diakopoulos, N.; Naaman, M.; Kivran-Swaine, F. Diamonds in the rough: Social media visual analytics for journalistic inquiry. In Proceedings of the 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), Salt Lake City, UT, USA, 25–26 October 2010; pp. 115–122. [Google Scholar]
- O’Connor, B.; Krieger, M.; Ahn, D. TweetMotif: Exploratory Search and Topic Summarization for Twitter. In Proceedings of the ICWSM, Washington, DC, USA, 23–26 May 2010; pp. 384–385. [Google Scholar]
- Deboeck, G.; Kohonen, T. Visual Explorations in Finance: With Self-Organizing Maps; Springer Science & Business Media: Berlin, Germany, 1998. [Google Scholar]
- Iacobucci, D.; Calder, B.J. Kellogg on Integrated Marketing; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Okoli, C.; Pawlowski, S.D. The Delphi method as a research tool: an example, design considerations and applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krisp, J.M. Planning fire and rescue services by visualizing mobile phone density. J. Urban Technol. 2010, 17, 61–69. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, M.; Yuan, X.; Zhang, J.; Van De Wetering, H. Visual traffic jam analysis based on trajectory data. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Inselberg, A.; Dimsdale, B. Parallel coordinates. In Human-Machine Interactive Systems; Springer: New York, NY, USA, 1991; pp. 199–233. [Google Scholar]
- Kleiberg, E.; van de Wetering, H.; Van Wijk, J.J. Botanical Visualization of Huge Hierarchies. In Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01), San Diego, CA, USA, 22–23 October 2001; IEEE Computer Society: Washington, DC, USA, 2001; p. 87. [Google Scholar]
- Becker, R.A.; Cleveland, W.S. Brushing scatterplots. Technometrics 1987, 29, 127–142. [Google Scholar] [CrossRef]
- Ponte, J.M.; Croft, W.B. A language modeling approach to information retrieval. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia, 24–28 August 1998; ACM: New York, NY, USA, 1998; pp. 275–281. [Google Scholar] [Green Version]
- Gamon, M.; Aue, A.; Corston-Oliver, S.; Ringger, E. Pulse: Mining customer opinions from free text. In Advances in Intelligent Data Analysis VI; Springer: Berlin/Heidelberg, Germany, 2005; pp. 121–132. [Google Scholar]
- Gregory, M.L.; Chinchor, N.; Whitney, P.; Carter, R.; Hetzler, E.; Turner, A. User-directed sentiment analysis: Visualizing the affective content of documents. In Proceedings of the Workshop on Sentiment and Subjectivity in Text, Sydney, Australia, 22 July 2006; Association for Computational Linguistics: Stroudsburg, PA, USA, 2006; pp. 23–30. [Google Scholar]
- Liu, B.; Hu, M.; Cheng, J. Opinion Observer: Analyzing and Comparing Opinions on the Web. In Proceedings of the 14th International Conference on World Wide Web, WWW ’05, Chiba, Japan, 10–14 May 2005; ACM: New York, NY, USA, 2005; pp. 342–351. [Google Scholar] [CrossRef]
- Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2008, 2, 1–135. [Google Scholar] [CrossRef] [Green Version]
- Rohrdantz, C.; Hao, M.C.; Dayal, U.; Haug, L.E.; Keim, D.A. Feature-based visual sentiment analysis of text document streams. ACM Trans. Intell. Syst. Technol. 2012, 3, 26. [Google Scholar] [CrossRef]
- Bifet, A.; Frank, E. Sentiment knowledge discovery in twitter streaming data. In International Conference on Discovery Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–15. [Google Scholar]
- Ding, X.; Liu, B.; Yu, P.S. A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, CA, USA, 11–12 February 2008; ACM: New York, NY, USA, 2008; pp. 231–240. [Google Scholar]
- Popescu, A.M.; Etzioni, O. Extracting product features and opinions from reviews. In Natural Language Processing and Text Mining; Springer: London, UK, 2007; pp. 9–28. [Google Scholar]
- Ng, V.; Dasgupta, S.; Arifin, S. Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In Proceedings of the COLING/ACL on Main Conference Poster Sessions, Sydney, Australia, 17–18 July 2006; Association for Computational Linguistics: Stroudsburg, PA, USA, 2006; pp. 611–618. [Google Scholar] [Green Version]
- Kisilevich, S.; Rohrdantz, C.; Keim, D. ’Beautiful picture of an ugly place”. Exploring photo collections using opinion and sentiment analysis of user comments. In Proceedings of the International Multiconference on Computer Science and Information Technology, Wisla, Poland, 18–20 October 2010; pp. 419–428. [Google Scholar] [CrossRef]
- Mok, E.; Retscher, G.; Wen, C. Initial test on the use of GPS and sensor data of modern smartphones for vehicle tracking in dense high rise environments. In Proceedings of the 2012 Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS), Helsinki, Finland, 3–4 October 2012; pp. 1–7. [Google Scholar] [CrossRef]
- Hwang, S.; Yu, D. GPS localization improvement of smartphones using built-in sensors. Int. J. Smart Home 2012, 6, 1–8. [Google Scholar]
- Granello, D.H.; Wheaton, J.E. Online data collection: Strategies for research. J. Couns. Dev. 2004, 82, 387–393. [Google Scholar] [CrossRef]
- Kaisler, S.; Armour, F.; Espinosa, J.A.; Money, W. Big Data: Issues and Challenges Moving Forward. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 995–1004. [Google Scholar] [CrossRef]
- Johnson, T.; Dasu, T. Data Quality and Data Cleaning: An Overview. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, San Diego, CA, USA, 9–12 June 2003; ACM: New York, NY, USA, 2003; p. 681. [Google Scholar] [CrossRef]
- Hansen, C.; Laramee, R.S.; Miksch, S.; Meuller, K.; Preim, B.; Ware, C. 2D vs 3D [Panel]. Panel at IEEE VIS, 9–14 November 2014. Available online: http://ieeevis.org/year/2014/info/overview-amp-topics/accepted-panels (accessed on 15 November 2018).
- Viegas, F.B.; Wattenberg, M.; Van Ham, F.; Kriss, J.; McKeon, M. Manyeyes: A site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Venkatesh, V. Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Q. 2005, 29, 399–426. [Google Scholar] [CrossRef]
Type | Source | Business Intelligence | Business Ecosystem | Customer Centric | ||
---|---|---|---|---|---|---|
Internal Intelligence | External Intelligence | Business Ecosystem | Customer Behaviour | Customer Feedback | ||
Primary Data | Intentional, Active, Digital Collection | Otsuka et al. [20] | Yaeli et al. [21] Nagaoka et al. [22] | |||
Intentional, Active, Research Study Data | Burkhard [23] Sedlmair et al. [24] Kandel et al. [18] Aigner [25] Lafon et al. [26] | Bresciani and Eppler [27] Bertschi [28] Keahey [29] | Merino et al. [30] Basole et al. [31] | Dou et al. [32] | Brodbeck and Girardin [33] | |
Hybrid Data | WebScrape | Ramesh et al. [34] | Lu et al. [35] | Shi et al. [36] Sijtsma et al. [37] | Chen et al. [38] Ziegler et al. [39] Oelke et al. [40] Wu et al. [41] Hao et al. [42] Saitoh [43] Fayoumi et al. [44] Haleem et al. [45] Saga and Yagi [46] | |
Secondary Data | A Priori Database | Wright [47] Vliegen et al. [48] Bai et al. [49] Nicholas et al. [50] Roberts et al. [51] Kumar and Belwal [52] Roberts et al. [53] | Ferreira et al. [54] | Wattenberg [55] Wu and Phillips [56] Basole et al. [57] Basole et al. [58] Deligiannidis and Noyes [59] Basole et al. [60] Iyer and Basole [61] Schotter et al. [62] Basole et al. [63] | Woo et al. [64] Hanafizadeh and Mirzazadeh [65] Kameoka et al. [66] Wu et al. [67] Sathiyanarayanan et al. [68] | Kang et al. [69] |
Business Process | Du et al. [70] Broeksema et al. [71] Ghooshchi et al. [72] Bachhofner et al. [73] Lea et al. [74] | Hao et al. [19] Hao et al. [75] | Basole [76] Basole and Bellamy [77] | |||
Business By-product | Gresh and Kelton [78] Eick [79] Keim et al. [80] | Liu et al [81] | Otjacques et al. [82] Ko et al. [83] | Rodden [84] Nair et al. [85] |
First Term | Second Term |
---|---|
Business | Visualisation |
Customer | Visual Analytics |
Market | Visual Analysis |
Economic | Visual Intelligence |
Finance | |
Corporate | |
Commercial |
Conference/Journal | Count |
---|---|
IEEE Transactions on Visualization and Computer Graphics | 13 |
The IEEE Information Visualisation Conference (IV) | 6 |
IEEE Transactions on Visualization and Computer Graphics | 5 |
IEEE Visual Analytics Science and Technology (VAST) | 3 |
The Annual EuroVis Conference | 3 |
Information Visualisation Journal (SAGE) | 3 |
The Annual PacificVis Conference | 1 |
VIS Business Visualisation Workshop | 1 |
Other | 34 |
total | 69 |
Classification | Paper Ref | Access | Description | |
---|---|---|---|---|
Business Intelligence | Internal Intelligence | Wright [47] | Proprietary | Case Study from portfolio management, derivatives management, customer credit scores |
Gresh and Kelton [78] | Proprietary | Private IBM business by-product data | ||
Eick [79] | Proprietary | Log data from web servers used to analyse the efficiency of their website | ||
Burkhard [23] | Proprietary | Case study from Swiss Federal Institute of Technology using business strategy data | ||
Vliegen et al. [48] | Proprietary | Unspecified business data | ||
Keim et al. [80] | Proprietary | Transaction datasets | ||
Otsuka et al. [20] | Proprietary | Digital nametags collect employee interaction data | ||
Sedlmair et al. [24] | Survey | Existing software evaluation | ||
Kandel et al. [18] | Proprietary | Interview Study with industry experts | ||
Du et al. [70] | Survey | A survey of business process visualisation literature | ||
Aigner [25] | Proprietary | Text from interview study | ||
Broeksema et al. [71] | Proprietary | Decision model data | ||
Bai et al. [49] | Proprietary | Geospatial data for utility network coverage | ||
Lafon et al. [26] | Proprietary | User Study of unspecified business data visualisation | ||
Nicholas et al. [50] | Proprietary | Private customer survey database from automotive company | ||
Roberts et al. [51] | Proprietary | Private call centre interaction database | ||
Ghooshchi et al. [72] | Proprietary | Business Processes from undefined source | ||
Kumar and Belwal [52] | Public | Multiple public data sources looking at different aspects of a business | ||
Bachhofner et al. [73] | Proprietary | Business processes from industry contacts | ||
Lea et al. [74] | Proprietary | Business process data was used alongside simulated data to test prototypes | ||
Roberts et al. [53] | Proprietary | Call centre event data from industry partner | ||
External Intelligence | Hao et al. [19] | Proprietary | Case study data from financial transactions, service contracts data | |
Hao et al. [75] | Proprietary | Case Study Data: Financial transactions, service contracts data | ||
Bresciani and Eppler [27] | Public/Proprietary | Case study from Gartner, Argument Map, Five Forces Process | ||
Bertschi [28] | N/a | Critical Discussion of knowledge visualisation in business. No data used | ||
Ferreira et al. [54] | Proprietary | Data provided by Taxi and Limousine Commission of New York City | ||
Keahey [29] | Proprietary | Expert opinion data | ||
Liu et al [81] | Proprietary | GPS trajectory data | ||
Ramesh et al. [34] | Public | Data mined from “various sources”. Presented for insight into the external operations of a business | ||
Business Intelligence | Business Ecosystem | Wattenberg [55] | Public | Public stock market data |
Merino et al. [30] | Public | Stock market data | ||
Otjacques et al. [82] | Proprietary | Human resources data | ||
Wu and Phillips [56] | Public | Public Dow Jones 30 data | ||
Basole et al. [57] | Proprietary | Business ecosystem data | ||
Ko et al. [83] | Proprietary | Generic Point of Sale data | ||
Basole et al. [58] | Commercially and Publicly Available | The Thomson Reuters SDC Platinum database and Capital IQ Compustat database | ||
Basole [76] | Proprietary | Case study: global supply chain data, competitive dynamics data, venture capital network data | ||
Deligiannidis and Noyes [59] | Proprietary | Data obtained from US Department of Commerce Census Bureau | ||
Basole and Bellamy [77] | Proprietary | Supply network Structure data | ||
Lu et al. [35] | Public | Twitter data + IMDb | ||
Basole et al. [60] | Proprietary | Three commercial datasets are used that cover finance, relationships, and public opinion | ||
Iyer and Basole [61] | Proprietary | The visualisations use IoT data to show the “big players” in the technology industry | ||
Basole et al. [31] | Proprietary | User study generated data looking at the effectiveness of different visual designs for decision support | ||
Schotter et al. [62] | Proprietary | Investment data is used alongside geospatial data | ||
Basole et al. [63] | Proprietary | Combination of multiple proprietary datasets including geospatial and commercial data | ||
Customer Centric | Customer Behaviour | Woo et al. [64] | Proprietary | Audio data from customers in call centre |
Hanafizadeh and Mirzazadeh [65] | Proprietary | Six-dimensional vector customer dataset | ||
Shi et al. [36] | Proprietary | Generic search engine data | ||
Rodden [84] | Proprietary | Private Youtube site navigation data | ||
Yaeli et al. [21] | Proprietary | Digitally collected customer path tracking data | ||
Dou et al. [32] | Proprietary | Survey conducted on Reddit.com | ||
Kameoka et al. [66] | Proprietary | Dataset provided by industry parnter—supermarket PoS data | ||
Nair et al. [85] | Proprietary | Large customer behaviour dataset—unspecified origin | ||
Wu et al. [67] | Proprietary | Telco data obtained from China’s largest telecommunications operator | ||
Nagaoka et al. [22] | Proprietary | Customer behaviour collected from digital devices | ||
Sijtsma et al. [37] | Public | Twitter data mined to collect the customer experience and expectation of various retail stores | ||
Sathiyanarayanan et al. [68] | Public | Email exchange at company level | ||
Customer Centric | Customer Feedback | Brodbeck and Girardin [33] | Proprietary | Questionnaires distributed to customer of the public transport network |
Chen et al. [38] | Public | Amazon.com reviews | ||
Ziegler et al. [39] | Proprietary | Unspecified textual customer feedback data | ||
Oelke et al. [40] | Public | Amazon.com reviews | ||
Wu et al. [41] | Public | TripAdvisor data used | ||
Hao et al. [42] | Public | Twitter data | ||
Saitoh [43] | Proprietary | Web scraped customer review data | ||
Kang et al. [69] | Proprietary | Combination of production and customer service data direct from manufacturer | ||
Fayoumi et al. [44] | Proprietary | Web scraped social media data from Twitter | ||
Haleem et al. [45] | Proprietary | Web scraped customer reviews | ||
Saga and Yagi [46] | Public | Customer feedback collected from web crawler using specified keywords about the examined product |
Business Intelligence | Business Ecosystem | Customer Centric | |||
---|---|---|---|---|---|
Internal Intelligence | External Intelligence | Business Ecosystem | Customer Behaviour | Customer Feedback | |
1997 | Wright [47] | ||||
1999 | Wattenberg [55] | ||||
2003 | Gresh and Kelton [78] Eick [79] | Brodbeck and Girardin [33] | |||
2004 | Hao et al. [19] | ||||
2005 | Burkhard [23] | Woo et al. [64] | |||
2006 | Vliegen et al. [48] | Hao et al. [75] | Merino et al. [30] | Chen et al. [38] | |
2007 | Keim et al. [80] | ||||
2008 | Ziegler et al. [39] | ||||
2009 | Otsuka et al. [20] | Bresciani and Eppler [27] Bertschi [28] | Otjacques et al. [82] | Oelke et al. [40] | |
2010 | Wu and Phillips [56] | Wu et al. [41] | |||
2011 | Sedlmair et al. [24] | Basole et al. [57] | Hanafizadeh and Mirzazadeh [65] | ||
2012 | Kandel et al. [18] Du et al. [70] | Ko et al. [83] | |||
2013 | Aigner [25] Broeksema et al. [71] Bai et al. [49] Lafon et al. [26] | Ferreira et al. [54] | Basole et al. [58] | Hao et al. [42] | |
2014 | Nicholas et al. [50] | Basole [76] Deligiannidis and Noyes [59] Basole and Bellamy [77] Lu et al. [35] | Shi et al. [36] Rodden [84] Yaeli et al. [21] | Saitoh [43] | |
2015 | Keahey [29] | Basole et al. [60] | Dou et al. [32] Kameoka et al. [66] Nair et al. [85] | ||
2016 | Roberts et al. [51] | Liu et al [81] | Iyer and Basole [61] Basole et al. [31] | Wu et al. [67] Nagaoka et al. [22] Sijtsma et al. [37] | |
2017 | Ghooshchi et al. [72] Kumar and Belwal [52] Bachhofner et al. [73] | Ramesh et al. [34] | Schotter et al. [62] | Kang et al. [69] Fayoumi et al. [44] | |
2018 | Lea et al. [74] Roberts et al. [53] | Basole et al. [63] | Sathiyanarayanan et al. [68] | Haleem et al. [45] Saga and Yagi [46] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, R.C.; Laramee, R.S. Visualising Business Data: A Survey. Information 2018, 9, 285. https://doi.org/10.3390/info9110285
Roberts RC, Laramee RS. Visualising Business Data: A Survey. Information. 2018; 9(11):285. https://doi.org/10.3390/info9110285
Chicago/Turabian StyleRoberts, Richard C., and Robert S. Laramee. 2018. "Visualising Business Data: A Survey" Information 9, no. 11: 285. https://doi.org/10.3390/info9110285