A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers
Abstract
:1. Introduction
2. Related Work in Crime Events Video Detection
3. Novel Low Computational Cost Method for Criminal Activities Detection Using One-Frame Processing Object Detector
3.1. Video Detection and Classification System (VD&CS)
3.1.1. Region Proposal Network
3.1.2. Fast Region-Based Convolutional Network
3.1.3. Faster Region-Based Convolutional Network
3.2. VD&CS: Training Process
3.2.1. Train RPN Initialized with AlexNet Using a New Dataset
3.2.2. Train Fast R-CNN as a Detector Initialized with AlexNet Using the Region Proposal Extracted from the First Stage
3.2.3. RPN Fine Training Using Weights Obtained with Fast R-CNN Trained in the Second Stage
3.2.4. Fast R-CNN Fine Training Using Updated RPN
3.3. VD&CS: Testing
3.3.1. Real-Time Video Testing
3.3.2. Computational Cost Comparation
3.4. VD&CS: Final System
4. Low Processing Time System Applied to Colombian National Police Command and Control Citizen Security Center
4.1. Decentralized Low Processing Time System for Criminal Activities Detection based on Real-time Video Analysis Applied to the Colombian National Police Command and Control Citizen Security Center
4.2. Centralized Low Processing Time System to Criminal Activities Detection Based on Real-Time Video Analysis Applied to Colombian National Police Command and Control Citizen Security Center
5. Possible Implementation and Limitations
6. Discussion and Future Application
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Bank United Nations. Perspectives of Global Urbanization; Command and Control and Cyber Research Portal (CCRP): Washington, DC, USA, 2019. [Google Scholar]
- Alberts, D.S.; Hayes, R.E. Understanding Command and Control the Future of Command and Control; Command and Control and Cyber Research Portal (CCRP): Washington, DC, USA, 2006. [Google Scholar]
- Esteve, M.; Perez-Llopis, I.; Hernandez-Blanco, L.E.; Palau, C.E.; Carvajal, F. SIMACOP: Small Units Management C4ISR System. In Proceedings of the IEEE International Conference Multimedia and Expo, Beijing, China, 2–5 July 2007; pp. 1163–1166. [Google Scholar]
- Wang, L.; Rodriguez, R.M.; Wang, Y.-M. A dynamic multi-attribute group emergency decision making method considering experts’ hesitation. Int. J. Comput. Intell. Syst. 2017, 11, 163. [Google Scholar] [CrossRef]
- Esteve, M.; Perez-Llopis, I.; Palau, C.E. Friendly force tracking COTS solution. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 14–21. [Google Scholar] [CrossRef]
- Esteve, M.; Pérez-Llopis, I.; Hernández-Blanco, L.; Martinez-Nohales, J.; Palau, C.E. Video sensors integration in a C2I system. In Proceedings of the IEEE Military Communications Conference MILCOM, Boston, MA, USA, 18–21 October 2009; pp. 1–7. [Google Scholar]
- Spagnolo, P.; D’Orazio, T.; Leo, M.; Distante, A. Advances in background updating and shadow removing for motion detection algorithms. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the 11th International Conference on Computer Analysis of Images and Patterns, CAIP 2005, Versailles, France, 5–8 September 2005; Springer: Versailles, France, 2005; Volume 3691, pp. 398–406. [Google Scholar]
- Nieto, M.; Varona, L.; Senderos, O.; Leskovsky, P.; Garcia, J. Real-time video analytics for petty crime detection. In Proceedings of the 7th International Conference on Imaging for Crime Detection and Prevention (ICDP 2016), Madrid, Spain, 23–25 November 2017; pp. 23–26. [Google Scholar]
- Senst, T.; Eiselein, V.; Kuhn, A.; Sikora, T. Crowd Violence Detection Using Global Motion-Compensated Lagrangian Features and Scale-Sensitive Video-Level Representation. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2945–2956. [Google Scholar] [CrossRef]
- Machaca Arceda, V.; Gutierrez, J.C.; Fernandez Fabian, K. Real Time Violence Detection in Video. In Proceedings of the International Conference on Pattern Recognition Systems (ICPRS-16), Talca, Chile, 20–22 April 2016; pp. 6–7. [Google Scholar]
- Bilinski, P.; Bremond, F. Human violence recognition and detection in surveillance videos. In Proceedings of the 13th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2016, Colorado Springs, CO, USA, 23–26 August 2016; pp. 30–36. [Google Scholar]
- Xue, F.; Ji, H.; Zhang, W.; Cao, Y. Action Recognition Based on Dense Trajectories and Human Detection. In Proceedings of the IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 16–18 November 2018; pp. 340–343. [Google Scholar]
- Shi, Y.; Tian, Y.; Wang, Y.; Huang, T. Sequential Deep Trajectory Descriptor for Action Recognition with Three-Stream CNN. IEEE Trans. Multimed. 2017, 19, 1510–1520. [Google Scholar] [CrossRef]
- Dasari, R.; Chen, C.W. MPEG CDVS Feature Trajectories for Action Recognition in Videos. In Proceedings of the IEEE 1th International Conference on Multimedia Information Processing and Retrieval, Miami, FL, USA, 10–12 April 2018; pp. 301–304. [Google Scholar]
- Arunnehru, J.; Chamundeeswari, G.; Bharathi, S.P. Human Action Recognition using 3D Convolutional Neural Networks with 3D Motion Cuboids in Surveillance Videos. Procedia Comput. Sci. 2018, 133, 471–477. [Google Scholar] [CrossRef]
- Kamel, A.; Sheng, B.; Yang, P.; Li, P.; Shen, R.; Feng, D.D. Deep Convolutional Neural Networks for Human Action Recognition Using Depth Maps and Postures. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 1–14. [Google Scholar] [CrossRef]
- Ren, J.; Reyes, N.H.; Barczak, A.L.C.; Scogings, C.; Liu, M. Towards 3D human action recognition using a distilled CNN model. In Proceedings of the IEEE 3rd International Conference Signal and Image Processing (ICSIP), Shenzhen, China, 13–15 July 2018; pp. 7–12. [Google Scholar]
- Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-Time Action Recognition with Deeply Transferred Motion Vector CNNs. IEEE Trans. Image Process. 2018, 27, 2326–2339. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Washington, DC, USA, 3–7 December 2015; pp. 1440–1448. [Google Scholar]
- Suarez-Paez, J.; Salcedo-Gonzalez, M.; Esteve, M.; Gómez, J.A.; Palau, C.; Pérez-Llopis, I. Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. Int. J. Comput. Intell. Syst. 2018, 12, 123. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Hao, S.; Wang, P.; Hu, Y. Haze image recognition based on brightness optimization feedback and color correction. Information 2019, 10, 81. [Google Scholar] [CrossRef]
- Jiang, H.; Learned-Miller, E. Face Detection with the Faster R-CNN. In Proceedings of the 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017—1st International Workshop on Adaptive Shot Learning for Gesture Understanding and Production, ASL4GUP 2017, Washington, DC, USA, 3 June 2017; pp. 650–657. [Google Scholar]
- Peng, M.; Wang, C.; Chen, T.; Liu, G. NIRFaceNet: A convolutional neural network for near-infrared face identification. Information 2016, 7, 61. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L. Using Popular Object Detection Methods for Real Time Forest Fire Detection. In Proceedings of the 11th International Symposium on Computational Intelligence and Design, ISCID, Hangzhou, China, 8–9 December 2018; pp. 280–284. [Google Scholar]
- Chen, J.; Miao, X.; Jiang, H.; Chen, J.; Liu, X. Identification of autonomous landing sign for unmanned aerial vehicle based on faster regions with convolutional neural network. In Proceedings of the Chinese Automation Congress, CAC, Jinan, China, 20–22 October 2017; pp. 2109–2114. [Google Scholar]
- Xu, W.; He, J.; Zhang, H.L.; Mao, B.; Cao, J. Real-time target detection and recognition with deep convolutional networks for intelligent visual surveillance. In Proceedings of the 9th International Conference on Utility and Cloud Computing—UCC ‘16, New York, NY, USA, 23–26 February 2016; pp. 321–326. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia—MM ‘14, New York, NY, USA, 18–19 June 2014; pp. 675–678. [Google Scholar]
- Nvidia Corporation. NVIDIA CUDA® Deep Neural Network library (cuDNN). Available online: https://developer.nvidia.com/cuda-downloads (accessed on 24 November 2019).
- Song, D.; Qiao, Y.; Corbetta, A. Depth driven people counting using deep region proposal network. In Proceedings of the IEEE International Conference on Information and Automation, ICIA 2017, Macau SAR, China, 18–20 July 2017; pp. 416–421. [Google Scholar]
- Saikia, S.; Fidalgo, E.; Alegre, E.; Fernández-Robles, L. Object Detection for Crime Scene Evidence Analysis Using Deep Learning. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the International Conference on Mobile and Wireless Technology, ICMWT 2017, Kuala Lumpur, Malaysia, 26–29 June 2017; Springer: Cham, Switzerland, 2017; pp. 14–24. [Google Scholar]
- Sutanto, R.E.; Pribadi, L.; Lee, S. 3D integral imaging based augmented reality with deep learning implemented by faster R-CNN. In Proceedings of the Lecture Notes in Electrical Engineering, Proceedings of the International Conference on Mobile and Wireless Technology, ICMWT 2017, Kuala Lumpur, Malaysia, 26–29 June 2017; Springer: Singapore, 2018; pp. 241–247. [Google Scholar]
- Wu, X.; Lu, X.; Leung, H. A video based fire smoke detection using robust AdaBoost. Sensors 2018, 18, 3780. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.; Yun, S.; Kim, H.; Kim, W.-T.; Park, J.H.; Lee, S.; Yun, S.; Kim, H.; Kim, W.-T. Dependable Fire Detection System with Multifunctional Artificial Intelligence Framework. Sensors 2019, 19, 2025. [Google Scholar] [CrossRef]
- García-Retuerta, D.; Bartolomé, Á.; Chamoso, P.; Corchado, J.M. Counter-Terrorism Video Analysis Using Hash-Based Algorithms. Algorithms 2019, 12, 110. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, B.; Tang, L.; Han, Y.; Wang, W. Deep spatial-temporal joint feature representation for video object detection. Sensors 2018, 18, 774. [Google Scholar] [CrossRef]
- He, Z.; He, H. Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks. Symmetry 2018, 10, 375. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Zhang, L.; Yang, Y.; Kang, Q.; Sun, D.; Zhang, H.; Zhang, Z.; Zhang, L.; Yang, Y.; et al. Object Tracking for a Smart City Using IoT and Edge Computing. Sensors 2019, 19, 1987. [Google Scholar] [CrossRef]
- Mazzeo, P.L.; Giove, L.; Moramarco, G.M.; Spagnolo, P.; Leo, M. HSV and RGB color histograms comparing for objects tracking among non overlapping FOVs, using CBTF. In Proceedings of the 8th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2011, Washington, DC, USA, 30 August–2 September 2011; pp. 498–503. [Google Scholar]
- Leo, M.; Mazzeo, P.L.; Mosca, N.; D’Orazio, T.; Spagnolo, P.; Distante, A. Real-time multiview analysis of soccer matches for understanding interactions between ball and players. In Proceedings of the International Conference on Content-based Image and Video Retrieval, Niagara Falls, ON, Canada, 7–9 July 2008; pp. 525–534. [Google Scholar]
- Muhammad, K.; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, S.W. Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Trans. Ind. Inform. 2018, 14, 3679–3689. [Google Scholar] [CrossRef]
- Barthélemy, J.; Verstaevel, N.; Forehead, H.; Perez, P. Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City. Sensors 2019, 19, 2048. [Google Scholar] [CrossRef]
- Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and GPUs. Sensors 2019, 19, 2206. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zou, S.; Han, Y.; Qu, Y. Study on the availability of 4T-APS as a video monitor and radiation detector in nuclear accidents. Sustainability 2018, 10, 2172. [Google Scholar] [CrossRef]
- Plageras, A.P.; Psannis, K.E.; Stergiou, C.; Wang, H.; Gupta, B.B. Efficient IoT-based sensor BIG Data collection—Processing and analysis in smart buildings. Futur. Gener. Comput. Syst. 2018, 82, 349–357. [Google Scholar] [CrossRef]
- Jha, S.; Dey, A.; Kumar, R.; Kumar-Solanki, V. A Novel Approach on Visual Question Answering by Parameter Prediction using Faster Region Based Convolutional Neural Network. Int. J. Interact. Multimed. Artif. Intell. 2019, 5, 30. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, C.; Han, W. A modified faster region-based convolutional neural network approach for improved vehicle detection performance. Multimed. Tools Appl. 2019, 78, 29431–29446. [Google Scholar] [CrossRef]
- Cho, S.; Baek, N.; Kim, M.; Koo, J.; Kim, J.; Park, K. Face Detection in Nighttime Images Using Visible-Light Camera Sensors with Two-Step Faster Region-Based Convolutional Neural Network. Sensors 2018, 18, 2995. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, W.; Xing, M.; Sun, G. Terahertz Image Detection with the Improved Faster Region-Based Convolutional Neural Network. Sensors 2018, 18, 2327. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, H.; Chen, J.; Chen, J.; Zhuang, S.; Miao, X. Insulator Detection in Aerial Images Based on Faster Regions with Convolutional Neural Network. In Proceedings of the IEEE International Conference on Control and Automation, ICCA, Anchorage, AK, USA, 12–15 June 2018; pp. 1082–1086. [Google Scholar]
- Bakheet, S.; Al-Hamadi, A. A discriminative framework for action recognition using f-HOL features. Information 2016, 7, 68. [Google Scholar] [CrossRef]
- Al-Gawwam, S.; Benaissa, M. Robust eye blink detection based on eye landmarks and Savitzky-Golay filtering. Information 2018, 9, 93. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2014; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June –1 July 2016; pp. 770–778. [Google Scholar]
- Hou, R.; Chen, C.; Shah, M. Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5823–5832. [Google Scholar]
- Kalogeiton, V.; Weinzaepfel, P.; Ferrari, V.; Schmid, C. Action Tubelet Detector for Spatio-Temporal Action Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4415–4423. [Google Scholar]
- Zolfaghari, M.; Oliveira, G.L.; Sedaghat, N.; Brox, T. Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2923–2932. [Google Scholar]
- Nvidia Corporation. Jetson Embedded Development Kit|NVIDIA. Available online: https://developer.nvidia.com/embedded-computing (accessed on 24 November 2019).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Nvidia Corporation. NVIDIA TensorRT|NVIDIA Developer. Available online: https://developer.nvidia.com/tensorrt (accessed on 24 November 2019).
- Nvidia Corporation. NVIDIA DeepStream SDK|NVIDIA Developer. Available online: https://developer.nvidia.com/deepstream-sdk (accessed on 24 November 2019).
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Suárez-Albela, M.; Castedo, L.; González-López, M. A Review on Internet of Things for Defense and Public Safety. Sensors 2016, 16, 1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, C.A.; Shami, A.; Wang, X. Machine learning aided scheme for load balancing in dense IoT networks. Sensors 2018, 18, 3779. [Google Scholar] [CrossRef] [Green Version]
- AMD Embedded RadeonTM. Available online: https://www.amd.com/en/products/embedded-graphics (accessed on 24 November 2019).
Object Detector Model | Average Accuracy | Average Processing Time | Model Deployment Level (Number of Works Related) |
---|---|---|---|
R-CNN | High | High | Medium |
Fast R-CNN | High | Medium | Medium |
Faster R-CNN | Very High | Very Low | Very High |
SSD | Very High | Very Low | Very High |
YOLO | Very High | Very Low | Very High |
Item Tested | Results Test 1 | Results Test 2 |
---|---|---|
Crime Event Detections | 355 | 367 |
Failures | 145 | 133 |
Undetected | 87 | 80 |
False positive | 58 | 53 |
Average processing time | 0.03 s | 0.03 s |
FPS (Frames per second) | 33 FPS | 33 FPS |
Undetected event rate | 17.4% | 16% |
False positive rate | 11.6% | 10.6% |
Accuracy | 71% | 73.4% |
Predictions | ||
---|---|---|
Observations | 49.6% (True Positive) | 11.6% (False Positive) |
17.4% (False Negative) | 21.4% (True Negative) |
Model | Average Processing Time | GPU | GPU Performance (Float 32) | Resolution (Pixels) |
---|---|---|---|---|
VD&CS (AlexNET) | 0.03 s | Nvidia GTX 1070 MXM | 6.738 TFLOPS | 704 × 544 |
VD&CS (VGG-16) | 0.23 s | Nvidia GTX 1070 MXM | 6.738 TFLOPS | 704 × 544 |
VD&CS (VGG-19) | 0.28 s | Nvidia GTX 1070 MXM | 6.738 TFLOPS | 704 × 544 |
T-CNN | 0.9 s | Nvidia GTX Titan X | 6.691 TFLOPS | 300 × 400 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez-Paez, J.; Salcedo-Gonzalez, M.; Climente, A.; Esteve, M.; Gómez, J.A.; Palau, C.E.; Pérez-Llopis, I. A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information 2019, 10, 365. https://doi.org/10.3390/info10120365
Suarez-Paez J, Salcedo-Gonzalez M, Climente A, Esteve M, Gómez JA, Palau CE, Pérez-Llopis I. A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information. 2019; 10(12):365. https://doi.org/10.3390/info10120365
Chicago/Turabian StyleSuarez-Paez, Julio, Mayra Salcedo-Gonzalez, Alfonso Climente, Manuel Esteve, Jon Ander Gómez, Carlos Enrique Palau, and Israel Pérez-Llopis. 2019. "A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers" Information 10, no. 12: 365. https://doi.org/10.3390/info10120365