Identification of Phospholipids Relevant to Cancer Tissue Using Differential Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Determination of Phospholipid Detection Threshold
2.2. Binary Classification of Phospholipid Classes
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sample Preparation
4.3. Sampling
4.4. Measurement System
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vance, J.E. Phospholipid Synthesis and Transport in Mammalian Cells. Traffic 2015, 16, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Du, G. Dysregulated lipid metabolism in cancer. World J. Biol. Chem. 2012, 3, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019, 95, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef]
- Levine, A.J.; Puzio-Kuter, A.M. The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes. Science 2010, 330, 1340–1344. [Google Scholar] [CrossRef]
- Vazquez-Martin, A.; Colomer, R.; Brunet, J.; Lupu, R.; Menendez, J.A. Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif. 2008, 41, 59–85. [Google Scholar] [CrossRef]
- Stoica, C.; Ferreira, A.K.; Hannan, K.; Bakovic, M. Bilayer Forming Phospholipids as Targets for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 5266. [Google Scholar] [CrossRef]
- Morita, S.-Y.; Ikeda, Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem. Pharmacol. 2022, 206, 115296. [Google Scholar] [CrossRef]
- Hilvo, M.; Denkert, C.; Lehtinen, L.; Müller, B.; Brockmöller, S.; Seppänen-Laakso, T.; Budczies, J.; Bucher, E.; Yetukuri, L.; Castillo, S.; et al. Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Res. 2011, 71, 3236–3245. [Google Scholar] [CrossRef]
- St John, E.R.; Balog, J.; McKenzie, J.S.; Rossi, M.; Covington, A.; Muirhead, L.; Bodai, Z.; Rosini, F.; Speller, A.V.M.; Shousha, S.; et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: Towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017, 19, 59. Available online: https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-017-0845-2 (accessed on 1 February 2023). [CrossRef]
- Covington, J.A.; van der Schee, M.P.; Edge, A.S.L.; Boyle, B.; Savage, R.S.; Arasaradnam, R.P. The application of FAIMS gas analysis in medical diagnostics. Analyst 2015, 140, 6775–6781. [Google Scholar] [CrossRef] [PubMed]
- Kontunen, A.; Karjalainen, M.; Lekkala, J.; Roine, A.; Oksala, N. Tissue Identification in a Porcine Model by Differential Ion Mobility Spectrometry Analysis of Surgical Smoke. Ann. Biomed. Eng. 2018, 46, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Sutinen, M.; Kontunen, A.; Karjalainen, M.; Kiiski, J.; Hannus, J.; Tolonen, T.; Roine, A.; Oksala, N. Identification of breast tumors from diathermy smoke by differential ion mobility spectrometry. Eur. J. Surg. Oncol. 2019, 45, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Haapala, I.; Karjalainen, M.; Kontunen, A.; Vehkaoja, A.; Nordfors, K.; Haapasalo, H.; Haapasalo, J.; Oksala, N.; Roine, A. Identifying brain tumors by differential mobility spectrometry analysis of diathermy smoke. J. Neurosurg. 2020, 133, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Haapala, I.; Kondratev, A.; Roine, A.; Mäkelä, M.; Kontunen, A.; Karjalainen, M.; Laakso, A.; Koroknay-Pál, P.; Nordfors, K.; Haapasalo, H.; et al. Method for the Intraoperative Detection of IDH Mutation in Gliomas with Differential Mobility Spectrometry. Curr. Oncol. 2022, 29, 3252–3258. [Google Scholar] [CrossRef]
- Montero-Calle, A.; Garranzo-Asensio, M.; Rejas-González, R.; Feliu, J.; Mendiola, M.; Peláez-García, A.; Barderas, R. Benefits of FAIMS to improve the proteome coverage of deteriorated and/or Cross-linked TMT 10-Plex FFPE Tissue and plasma-derived exosomes samples. Proteomes 2023, 11, 35. [Google Scholar] [CrossRef]
- Baker, P.R.S.; Armando, A.M.; Campbell, J.L.; Quehenberger, O.; Dennis, E.A. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J. Lipid Res. 2014, 55, 2432–2442. [Google Scholar] [CrossRef]
- Anttalainen, A.; Mäkelä, M.; Kumpulainen, P.; Vehkaoja, A.; Anttalainen, O.; Oksala, N.; Roine, A. Predicting lecithin concentration from differential mobility spectrometry measurements with linear regression models and neural networks. Talanta 2021, 225, 121926. [Google Scholar] [CrossRef]
- Lindfors, L.; Sioris, P.; Anttalainen, A.; Korelin, K.; Kontunen, A.; Karjalainen, M.; Naakka, E.; Salo, T.; Vehkaoja, A.; Oksala, N.; et al. Detection of cultured breast cancer cells from human tumor-derived matrix by differential ion mobility spectrometry. Anal. Chim. Acta 2022, 1202, 339659. [Google Scholar] [CrossRef]
- Cífková, E.; Holčapek, M.; Lísa, M.; Vrána, D.; Gatěk, J.; Melichar, B. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal. Bioanal. Chem. 2015, 407, 991–1002. [Google Scholar] [CrossRef]
- Azordegan, N.; Fraser, V.; Le, K.; Hillyer, L.M.; Ma, D.W.L.; Fischer, G.; Moghadasian, M.H. Carcinogenesis alters fatty acid profile in breast tissue. Mol. Cell. Biochem. 2013, 374, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta (BBA)—Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- de Freitas Saito, R.; de Sousa Andrade, L.N.; Bustos, S.O.; Chammas, R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front. Immunol. 2022, 13, 768606. [Google Scholar]
- Vidavsky, N.; Kunitake, J.A.M.R.; Diaz-Rubio, M.E.; Chiou, A.E.; Loh, H.-C.; Zhang, S.; Masic, A.; Fischbach, C.; Estroff, L.A. Mapping and Profiling Lipid Distribution in a 3D Model of Breast Cancer Progression. ACS Cent. Sci. 2019, 5, 768–780. [Google Scholar] [CrossRef]
- Mirnezami, R.; Spagou, K.; Vorkas, P.A.; Lewis, M.R.; Kinross, J.; Want, E.; Shion, H.; Goldin, R.D.; Darzi, A.; Takats, Z.; et al. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol. Oncol. 2014, 8, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Cappell, J.; Potočnik, N.O.; Balluff, B.; Hamaide, J.; Van der Linden, A.; Heeren, R.M.A. More from less: High-throughput dual polarity lipid imaging of biological tissues. Analyst 2016, 141, 3832–3841. [Google Scholar] [CrossRef]
- Tsui, F.C.; Ojcius, D.M.; Hubbell, W.L. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 1986, 49, 459–468. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017, 22, 1964. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Priyakumar, U.D. Artificial intelligence: Machine learning for chemical sciences. J. Chem. Sci. 2022, 134, 2. [Google Scholar] [CrossRef]
- Karjalainen, M.; Kontunen, A.; Saari, S.; Rönkkö, T.; Lekkala, J.; Roine, A.; Oksala, N. The characterization of surgical smoke from various tissues and its implications for occupational safety. PLoS ONE 2018, 13, e0195274. [Google Scholar] [CrossRef]
- Popova, N.V.; Jücker, M. The funtional role of extracellular matrix proteins in cancer. Cancers 2022, 14, 238. [Google Scholar] [CrossRef] [PubMed]
PC Amount (mg/g) | Binary Classification Accuracy (%) | Sample Size (n) |
---|---|---|
2.5 | 62 | 85 |
5.0 | 84 | 89 |
7.5 | 90 | 86 |
10 | 96 | 87 |
Phospholipid Class | SVM CA | LDA CA | Sample Size (n) |
---|---|---|---|
PC | 91% | 83% | 60 |
PI | 73% | 66% | 60 |
PE | 66% | 72% | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sioris, P.; Mäkelä, M.; Kontunen, A.; Karjalainen, M.; Vehkaoja, A.; Oksala, N.; Roine, A. Identification of Phospholipids Relevant to Cancer Tissue Using Differential Ion Mobility Spectrometry. Int. J. Mol. Sci. 2024, 25, 11002. https://doi.org/10.3390/ijms252011002
Sioris P, Mäkelä M, Kontunen A, Karjalainen M, Vehkaoja A, Oksala N, Roine A. Identification of Phospholipids Relevant to Cancer Tissue Using Differential Ion Mobility Spectrometry. International Journal of Molecular Sciences. 2024; 25(20):11002. https://doi.org/10.3390/ijms252011002
Chicago/Turabian StyleSioris, Patrik, Meri Mäkelä, Anton Kontunen, Markus Karjalainen, Antti Vehkaoja, Niku Oksala, and Antti Roine. 2024. "Identification of Phospholipids Relevant to Cancer Tissue Using Differential Ion Mobility Spectrometry" International Journal of Molecular Sciences 25, no. 20: 11002. https://doi.org/10.3390/ijms252011002