Role of Na+-K+ ATPase Alterations in the Development of Heart Failure
Abstract
:1. Introduction
2. Status of Na+-K+ ATPase Activity and Isoenzymes
2.1. Alterations in Na+-K+ ATPase Activity in Failing Hearts
2.2. Alterations in Na+-K+ ATPase Isoenzymes in Failing Hearts
3. Signal Transduction and Regulation of Na+-K+ ATPase in Heart Failure
4. Alterations in Na+-K+ ATPase and Intracellular Cation Content in Contractile Dysfunction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skou, J.C. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 1965, 45, 596–617. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.H. Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 2002, 71, 511–535. [Google Scholar] [CrossRef] [PubMed]
- Ziegelhoffer, A.; Kjeldsen, K.; Bundgaard, H.; Breier, A.; Vrbjarm, N.; Dzurba, A. Na, K-ATPase in the myocardium: Molecular principles, functional and clinical aspects. Gen. Physiol. Biophys. 2000, 19, 9–47. [Google Scholar]
- Jorgensen, P.L.; Hakansson, K.O.; Karlish, S.J. Structure and mechanism of Na, K-ATPase: Functional sites and their interactions. Annu. Rev. Physiol. 2003, 65, 817–849. [Google Scholar] [CrossRef]
- Garty, H.; Karlish, S.J. Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 2006, 68, 431–459. [Google Scholar] [CrossRef]
- Shinoda, T.; Ogawa, H.; Cornelius, F.; Toyoshima, C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature 2009, 459, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Bagrov, A.Y.; Shapiro, J.I.; Fedorova, O.V. Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev. 2009, 61, 9–38. [Google Scholar] [CrossRef]
- Lingrel, J.B. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na, K-ATPase. Annu. Rev. Physiol. 2010, 72, 395–412. [Google Scholar] [CrossRef]
- Fuller, W.; Tulloch, L.B.; Shattock, M.J.; Calaghan, S.C.; Howie, J.; Wypijewski, K.J. Regulation of the cardiac sodium pump. Cell Mol. Life Sci. 2013, 70, 1357–1380. [Google Scholar] [CrossRef]
- Schuurmans-Stekhoven, F.; Banting, S.L. Transport adenosine triphosphatase properties and functions. Physiol. Rev. 1981, 61, 2–76. [Google Scholar] [CrossRef]
- Schwartz, A.; Lindenmayer, G.E.; Allen, J.C. The sodium-potassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 1975, 27, 3–134. [Google Scholar]
- Palmgren, M.G.; Nissen, P. P-type ATPases. Annu. Rev. Biophys. 2011, 40, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Horisberger, J.D.; Lemas, V.; Kraehenbuhl, J.P.; Rossier, B.C. Structure-function relationship of Na, K-ATPase. Annu. Rev. Physiol. 1991, 53, 565–584. [Google Scholar] [CrossRef] [PubMed]
- Sweadner, K.J. Isozymes of the Na+/K+ -ATPase. Biochim. Biophys. Acta 1989, 988, 185–220. [Google Scholar] [CrossRef]
- Chakraborti, S.; Dhalla, N.S. (Eds.) Regulation of Membrane Na+-K+ ATPase; Advances in Biochemistry in Health and Disease; Springer International Publishing: Cham, Switzerland, 2016; Volume 15, pp. 1–436. [Google Scholar] [CrossRef]
- McDonough, A.A.; Velotta, J.B.; Schwinger, R.H.; Philipson, K.D.; Farley, R.A. The cardiac sodium pump: Structure and function. Basic. Res. Cardiol. 2002, 97, I19–I24. [Google Scholar] [CrossRef] [PubMed]
- Müller-Ehmsen, J.; McDonough, A.A.; Farley, R.A.; Schwinger, R.H. Sodium pump isoform expression in heart failure: Implication for treatment. Basic. Res. Cardiol. 2002, 97, I25–I30. [Google Scholar] [CrossRef] [PubMed]
- Schoner, W.; Scheiner-Bobis, G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am. J. Cardiovasc. Drugs 2007, 7, 173–189. [Google Scholar] [CrossRef]
- Galougahi, K.K.; Liu, C.C.; Bundgaard, H.; Rasmussen, H.H. β-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling. Trends Cardiovasc. Med. 2012, 22, 83–87. [Google Scholar] [CrossRef]
- Cheung, J.Y.; Zhang, X.Q.; Song, J.; Gao, E.; Chan, T.O.; Rabinowitz, J.E.; Koch, W.J.; Feldman, A.M.; Wang, J. Coordinated regulation of cardiac Na+/Ca2+ exchanger and Na+-K+-ATPase by phospholemman (FXYD1). Adv. Exp. Med. Biol. 2013, 961, 175–190. [Google Scholar]
- Shattock, M.J. Phospholemman: Its role in normal cardiac physiology and potential as a druggable target in disease. Curr. Opin. Pharmacol. 2009, 9, 160–166. [Google Scholar] [CrossRef]
- Silva, E.; Soares-da-Silva, P. New insights into the regulation of Na+,K+-ATPase by ouabain. Int. Rev. Cell Mol. Biol. 2012, 294, 99–132. [Google Scholar] [PubMed]
- Obradovic, M.; Stanimirovic, J.; Panic, A.; Bogdanovic, N.; Sudar-Milovanovic, E.; Cenic-Milosevic, D.; Isenovic, E.R. Regulation of Na+/K+-ATPase by estradiol and IGF-1 in cardio-metabolic diseases. Curr. Pharm. Des. 2017, 23, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Schwinger, R.H.; Bundgaard, H.; Müller-Ehmsen, J.; Kjeldsen, K. The Na, K-ATPase in the failing human heart. Cardiovasc. Res. 2003, 57, 913–920. [Google Scholar] [CrossRef]
- Bartlett, D.E.; Miller, R.B.; Thiesfeldt, S.; Lakhani, H.V.; Shapiro, J.I.; Sodhi, K. The role of Na/K-ATPase signaling in oxidative stress related to aging: Implications in obesity and cardiovascular disease. Int. J. Mol. Sci. 2018, 19, 2139. [Google Scholar] [CrossRef]
- Baartscheer, A.; van Borren, M.M. Sodium ion transporters as new therapeutic targets in heart failure. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 229–236. [Google Scholar] [CrossRef]
- Figtree, G.A.; Keyvan Karimi, G.; Liu, C.C.; Rasmussen, H.H. Oxidative regulation of the Na+-K+ pump in the cardiovascular system. Free Radic. Biol. Med. 2012, 53, 2263–2268. [Google Scholar] [CrossRef]
- Liu, C.C.; Fry, N.A.; Hamilton, E.J.; Chia, K.K.; Garcia, A.; Karimi Galougahi, K.; Figtree, G.A.; Clarke, R.J.; Bundgaard, H.; Rasmussen, H.H. Redox-dependent regulation of the Na⁺-K⁺ pump: New twists to an old target for treatment of heart failure. J. Mol. Cell Cardiol. 2013, 61, 94–101. [Google Scholar] [CrossRef]
- Khan, H.; Metra, M.; Blair, J.E.; Vogel, M.; Harinstein, M.E.; Filippatos, G.S.; Sabbah, H.N.; Porchet, H.; Valentini, G.; Gheorghiade, M. Istaroxime, a first in class new chemical entity exhibiting SERCA-2 activation and Na-K-ATPase inhibition: A new promising treatment for acute heart failure syndromes? Heart Fail. Rev. 2009, 14, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Ambrosy, A.P.; Ferrandi, M.; Ferrari, P. Combining SERCA2a activation and Na-K ATPase inhibition: A promising new approach to managing acute heart failure syndromes with low cardiac output. Discov. Med. 2011, 12, 141–151. [Google Scholar]
- Elimban, V.; Bartekova, M.; Xu, Y.-J.; Dhalla, N.S. Regulation of membrane Na+-K+ ATPase in health and disease. In Regulation of Membrane Na+-K+ ATPase; Advances in Biochemistry in Health and Disease; Chakraborti, S., Dhalla, N.S., Eds.; Springer Int Pub.: Cham, Switzerland, 2016; Volume 15, pp. 311–322. [Google Scholar] [CrossRef]
- Bundgaard, H.; Kjeldsen, K. Human myocardial Na, K-ATPase concentration in heart failure. Mol. Cell Biochem. 1996, 163–164, 277–283. [Google Scholar] [CrossRef]
- Despa, S.; Islam, M.A.; Weber, C.R.; Pogwizd, S.M.; Bers, D.M. Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 2002, 105, 2543–2548. [Google Scholar] [CrossRef] [PubMed]
- Sulakhe, P.V.; Dhalla, N.S. Alterations in the activity of cardiac Na+ K+-stimulated ATPase in congestive heart failure. Exp. Mol. Path. 1973, 18, 100–111. [Google Scholar] [CrossRef]
- Prasad, K.; Khatter, J.C.; Bharadwaj, B. Intra- and extracellular electrolytes and sarcolemmal ATPase in the failing heart due to pressure overload in dogs. Cardiovasc. Res. 1979, 13, 95–104. [Google Scholar] [CrossRef]
- Khatter, J.C.; Prasad, K. Myocardial sarcolemmal ATPase in dogs with induced mitral insufficiency. Cardiovasc. Res. 1976, 10, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Mead, R.J.; Peterson, M.B.; Welty, J.D. Sarcolemmal and sarcoplasmic reticular ATPase activities in the failing canine heart. Circ. Res. 1971, 29, 14–20. [Google Scholar] [CrossRef]
- Yazaki, Y.; Fujii, J. Depressed Na+-K+-ATPase activity in the failing rabbit heart. Jap. Heart J. 1972, 13, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Singh, J.N.; Bajusz, E.; Jasmin, G. Comparison of heart sarcolemmal enzyme activities in normal and cardiomyopathic (UM-X7.1) hamsters. Clin. Sci. Mol. Med. 1976, 51, 233–242. [Google Scholar] [CrossRef]
- Spinale, F.G.; Clayton, C.; Tanaka, R.; Fulbright, B.M.; Mukherjee, R.; Schulte, B.A.; Crawford, F.A.; Zile, M.R. Myocardial Na+, K+-ATPase in tachycardia induced cardiomyopathy. J. Mol. Cell Cardiol. 1992, 24, 277–294. [Google Scholar] [CrossRef]
- Fan, T.H.; Frantz, R.P.; Elam, H.; Sakamoto, S.; Imai, N.; Liang, C.S. Reductions of myocardial Na-K-ATPase activity and ouabain binding sites in heart failure: Prevention by nadolol. Am. J. Physiol. 1993, 265, H2086–H2093. [Google Scholar] [CrossRef]
- Dixon, I.M.; Hata, T.; Dhalla, N.S. Sarcolemmal Na+-K+-ATPase activity in congestive heart failure due to myocardial infarction. Am. J. Physiol. 1992, 262, C664–C671. [Google Scholar] [CrossRef]
- Nørgaard, A.; Bjerregaard, P.; Baandrup, U.; Kjeldsen, K.; Reske-Nielsen, E.; Thomsen, P.E. The concentration of the Na, K-pump in skeletal and heart muscle in congestive heart failure. Int. J. Cardiol. 1990, 26, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, O.; Holthe, M.R.; Svindland, A.; Aksnes, G.; Sejersted, O.M.; Ilebekk, A. Na, K-pump concentration in hypertrophied human hearts. Eur. Heart J. 1994, 15, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Ishino, K.; Bøtker, H.E.; Clausen, T.; Hetzer, R.; Sehested, J. Myocardial adenine nucleotides, glycogen, and Na, K-ATPase in patients with idiopathic dilated cardiomyopathy requiring mechanical circulatory support. Am. J. Cardiol. 1999, 83, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Fedelesova, M.; Sulakhe, P.V.; Yates, J.C.; Dhalla, N.S. Biochemical basis of heart function. IV. Energy metabolism and calcium transport in hearts of vitamin E deficient rats. Can. J. Physiol. Pharmacol. 1971, 49, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, E.; Bolte, H.D.; Lüderitz, B. The (Na+ K+)-ATPase activity of guinea pig heart muscle in potassium deficiency. Arch. Biochem. Biophys. 1971, 145, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Dransfeld, H.; Lipinski, J.; Borsch-Galetke, E. Die Na+ + K+- aktivierte transport-ATPase bei experimenteller herzinsuffizienz durch kobaltchlorid. Naunyn-Schmiedebergs Arch. Pharmak. 1971, 270, 335–342. [Google Scholar] [CrossRef]
- O’Neil, C.L.; Bharadwaj, B.; Prasad, K. Effect of chronic digoxin treatment on cardiac function, electrolytes and ATPase in failing heart due to pressure overload. Cardiovasc. Res. 1984, 18, 502–510. [Google Scholar] [CrossRef]
- Prasad, K.; O’Neil, C.L.; Bharadwaj, B. Effect of prolonged prazosin treatment on hemodynamic and biochemical changes in the dog heart due to chronic pressure overload. Jpn. Heart J. 1984, 25, 461–476. [Google Scholar] [CrossRef]
- Prasad, K.; O’Neil, C.L.; Bharadwaj, B. Effect of prazosin treatment on the cardiac sarcolemmal ATPase in failing heart due to mitral insufficiency in dogs. Cardiovasc. Res. 1985, 19, 406–410. [Google Scholar] [CrossRef]
- Lindenmayer, G.E.; Sordahl, L.A.; Harigaya, S.; Allen, J.C.; Besch, H.R., Jr.; Schwartz, A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. Am. J. Cardiol. 1971, 27, 277–283. [Google Scholar] [CrossRef]
- Borsch-Galetke, E.; Dransfeld, H.; Greeff, K. Specific activity and sensitivity to strophanthin of the Na+ + K+-activated ATPase in rats and guinea-pigs with hypoadrenalism. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1972, 274, 74–80. [Google Scholar] [CrossRef]
- Balasubramanian, V.; McNamara, D.B.; Singh, J.N.; Dhalla, N.S. Biochemical basis of heart function. X. Reduction in the Na+ -K+-stimulated ATPase activity in failing rat heart due to hypoxia. Can. J. Physiol. Pharmacol. 1973, 51, 504–510. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Singh, J.N.; Fedelesova, M.; Balasubramanian, V.; McNamara, D.B. Biochemical basis of heart function. XII. Sodium-potassium stimulated adenosine triphosphatase activity in the perfused rat heart made to fail by substrate-lack. Cardiovasc. Res. 1974, 8, 227–236. [Google Scholar] [CrossRef]
- Sethi, R.; Dhalla, K.S.; Ganguly, P.K.; Ferrari, R.; Dhalla, N.S. Beneficial effects of propionyl L-carnitine on sarcolemmal changes in congestive heart failure due to myocardial infarction. Cardiovasc. Res. 1999, 42, 607–615. [Google Scholar] [CrossRef]
- Dixon, I.M.; Afzal, N.; Takeda, N.; Magano, M.; Dhalla, N.S. Remodeling of cardiac membranes during the development of congestive heart failure due to myocardial infarction. In The Failing Heart; Dhalla, N.S., Beamish, R., Takeda, N., Nagano, M., Eds.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1995; pp. 217–230. [Google Scholar]
- Shao, Q.; Ren, B.; Elimban, V.; Tappia, P.S.; Takeda, N.; Dhalla, N.S. Modification of sarcolemmal Na+-K+-ATPase and Na+/Ca2+ exchanger expression in heart failure by blockade of renin-angiotensin system. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H2637–H2646. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, N.S.; Lee, S.L.; Shah, K.R.; Elimban, V.; Suzuki, S.; Jasmine, G. Behavior of subcellular organelles during the development of congestive heart failure in cardiomyopathic hamsters (UM-X7.1). In The Cardiomyopathic Heart; Nagano, M., Takeda, N., Dhalla, N.S., Eds.; Raven Press, Ltd.: New York, NY, USA, 1994; pp. 1–14. [Google Scholar]
- Geering, K. Functional roles of Na, K-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 2008, 17, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Crambert, G.; Fuzesi, M.; Garty, H.; Karlish, S.; Geering, K. Phospholemman (FXYD1) associates with Na, K-ATPase and regulates its transport properties. Proc. Natl. Acad. Sci. USA 2002, 99, 11476–11481. [Google Scholar] [CrossRef] [PubMed]
- Bibert, S.; Roy, S.; Schaer, D.; Horisberger, J.D.; Geering, K. Phosphorylation of phospholemman (FXYD1) by protein kinases A and C modulates distinct Na, K-ATPase isozymes. J. Biol. Chem. 2008, 283, 476–486. [Google Scholar] [CrossRef]
- Shamraj, O.I.; Grupp, I.L.; Grupp, G.; Melvin, D.; Gradoux, N.; Kremers, W.; Lingrel, J.B.; Pover, A.D. Characterisation of Na/K-ATPase, its isoforms, and the inotropic response to ouabain in isolated failing human hearts. Cardiovasc. Res. 1993, 27, 2229–2237. [Google Scholar] [CrossRef]
- Schwinger, R.H.; Wang, J.; Frank, K.; Müller-Ehmsen, J.; Brixius, K.; McDonough, A.A.; Erdmann, E. Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+,K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Circulation 1999, 99, 2105–2112. [Google Scholar] [CrossRef]
- Sylvén, C.; Jansson, E.; Sotonyi, P.; Waagstein, F.; Brönnegård, M. Na, K-ATPase receptor subunits alpha 1, alpha 2 and alpha 3 mRNA in dilated cardiomyopathy. Biol. Pharm. Bull. 1995, 18, 907–909. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Velotta, J.B.; McDonough, A.A.; Farley, R.A. All human Na+-K+-ATPase α-subunit isoforms have a similar affinity for cardiac glycosides. Am. J. Physiol. Cell Physiol. 2001, 50, C1336–C1343. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.A.; Larsen, J.S.; Shannon, R.P.; Komamura, K.; Vatner, D.E.; Kjeldsen, K. Reduced 3H-ouabain binding site (Na, K-ATPase) concentration in ventricular myocardium of dogs with tachycardia induced heart failure. Basic. Res. Cardiol. 1993, 88, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.S.; Schmidt, T.A.; Bundgaard, H.; Kjeldsen, K. Reduced concentration of myocardial Na+,K+-ATPase in human aortic valve disease as well as of Na+,K+- and Ca2+-ATPase in rodents with hypertrophy. Mol. Cell Biochem. 1997, 169, 85–93. [Google Scholar] [CrossRef] [PubMed]
- James, P.F.; Grupp, I.L.; Grupp, G.; Woo, A.L.; Askew, G.R.; Croyle, M.L.; Walsh, R.A.; Lingrel, J.B. Identification of a specific role for the Na, K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol. Cell. 1999, 3, 555–563. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Chen, L.; Hamlyn, J.M.; Leenen, F.H.; Lingrel, J.B.; Wier, W.G.; Zhang, J. Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J. Physiol. 2016, 594, 6079–6103. [Google Scholar] [CrossRef]
- Correll, R.N.; Eder, P.; Burr, A.R.; Despa, S.; Davis, J.; Bers, D.M.; Molkentin, J.D. Overexpression of the Na+/K+ ATPase α2 but not α1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circ. Res. 2014, 114, 249–256. [Google Scholar] [CrossRef]
- Cellini, A.; Höfler, D.; Arias-Loza, P.A.; Bandleon, S.; Langsenlehner, T.; Kohlhaas, M.; Maack, C.; Bauer, W.R.; Eder-Negrin, P. The α2-isoform of the Na+/K+-ATPase protects against pathological remodeling and β-adrenergic desensitization after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, H650–H662. [Google Scholar] [CrossRef]
- Barwe, S.P.; Jordan, M.C.; Skay, A.; Inge, L.; Rajasekaran, S.A.; Wolle, D.; Johnson, C.L.; Neco, P.; Fang, K.; Rozengurt, N.; et al. Dysfunction of ouabain-induced cardiac contractility in mice with heart-specific ablation of Na, K-ATPase beta1-subunit. J. Mol. Cell Cardiol. 2009, 47, 552–560. [Google Scholar] [CrossRef]
- Fedorova, O.V.; Talan, M.I.; Agalakova, N.I.; Lakatta, E.G.; Bagrov, A.Y. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J. Hypertens. 2004, 22, 389–397. [Google Scholar] [CrossRef]
- Trouve, P.; Carre, F.; Belikova, I.; Leclercq, C.; Dakhli, T.; Soufir, L.; Coquard, I.; Ramirez-Gil, J.; Charlemagne, D. Na+-K+ ATPase alpha(2)-isoform expression in guinea pig hearts during transition from compensation to decompensation. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H1972–H1981. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Fan, T.H.; Kelly, P.F.; Himura, Y.; Delehanty, J.M.; Hang, C.L.; Liang, C.S. Isoform-specific regulation of myocardial Na, K-ATPase alpha-subunit in congestive heart failure. Role of norepinephrine. Circulation 1994, 89, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.P.; Fan, T.H.; Delehanty, J.M.; Yatani, A.; Liang, C.S. Elevated myocardial interstitial norepinephrine concentration contributes to the regulation of Na+,K+-ATPase in heart failure. Eur. J. Pharmacol. 1996, 309, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Lukas, A.; Chapman, D.C.; Dhalla, N.S. Changes in the expression of cardiac Na+ -K+ ATPase subunits in the UM-X7.1 cardiomyopathic hamster. Life Sci. 2000, 67, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, F.; Mougenot, R.; Maixentt, J.M. Defective activity and isoform of the Na, K-ATPase in the dilated cardiomyopathic hamster. Cell Mol. Biol. 2001, 47, 255–260. [Google Scholar] [PubMed]
- Maixent, J.M.; Pierre, S.V.; Sadrin, S.; Guieu, R.; Paganelli, F. Effects of long-term anti-ischemic drug treatment on Na, K-ATPase isoforms in cardiomyopathic hamsters. Cell Mol. Biol. 2021, 67, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Tsuruya, Y.; Ikeda, U.; Ohta, T.; Yamamoto, K.; Seino, Y.; Ebata, H. Na, K-ATPase gene expression in cardiomyopathic hearts. In The Cardiomyopathic Heart; Nagano, M., Takeda, N., Dhalla, Eds.; Raven Press Ltd.: New York, NY, USA, 1994; pp. 15–21. [Google Scholar]
- Guo, X.; Wang, J.; Elimban, V.; Dhalla, N.S. Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarction. Can. J. Physiol. Pharmacol. 2008, 86, 139–147. [Google Scholar] [CrossRef]
- Ren, B.; Shao, Q.; Ganguly, P.K.; Tappia, P.S.; Takeda, N.; Dhalla, N.S. Influence of long-term treatment of imidapril on mortality, cardiac function, and gene expression in congestive heart failure due to myocardial infarction. Can. J. Physiol. Pharmacol. 2004, 82, 1118–1127. [Google Scholar] [CrossRef]
- Semb, S.O.; Lunde, P.K.; Holt, E.; Tønnessen, T.; Christensen, G.; Sejersted, O.M. Reduced myocardial Na+, K(+)-pump capacity in congestive heart failure following myocardial infarction in rats. J. Mol. Cell Cardiol. 1998, 30, 1311–1328. [Google Scholar] [CrossRef]
- Chen, W.; Dando, R. Membrane potential hyperpolarization in mammalian cardiac cells by synchronization modulation of Na/K pumps. J. Membr. Biol. 2008, 221, 165–173. [Google Scholar] [CrossRef]
- Wang, W.; Gao, J.; Entcheva, E.; Cohen, I.S.; Gordon, C.; Mathias, R.T. A transmural gradient in the cardiac Na/K pump generates a transmural gradient in Na/Ca exchange. J. Membr. Biol. 2010, 233, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Horie, M.; Haruna, T.; Ai, T.; Nishimoto, T.; Fujiwara, H.; Sasayama, S. Functional Communication Between Cardiac ATPSensitive K+ Channel and Na/K ATPase. J. Cardiovasc. Electrophysiol. 2010, 9, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Kabakov, A.Y. Activation of KATP channels by Na/K pump in isolated cardiac myocytes and giant membrane patches. Biophys. J. 1998, 75, 2858–2867. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z. Ouabain interaction with cardiac Na/K -ATPase reveals that the enzyme can act as a pump and as a signal transducer. Cell Mol. Biol. 2002, 47, 383–390. [Google Scholar]
- Xie, Z.; Xie, J. The Na/K-ATPase-mediated signal transduction as a target for new drug development. Front. Biosci. 2005, 10, 3100–3109. [Google Scholar] [CrossRef]
- Li, Q.; Pogwizd, S.M.; Prabhu, S.D.; Zhou, L. Inhibiting Na+/K+ ATPase can impair mitochondrial energetics and induce abnormall Ca2+ cycling and automaticity in guinea pig cardiomyocytes. PLoS ONE 2014, 9, e93928. [Google Scholar]
- Sag, C.M.; Wagner, S.; Maier, L.S. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic. Biol. Med. 2013, 63, 338–349. [Google Scholar] [CrossRef]
- Netticadan, T.; Kato, K.; Tappia, P.; Elimban, V.; Dhalla, N.S. Phosphorylation of cardiac Na+-K+ ATPase by Ca2+/calmodulin dependent protein kinase. Biochem. Biophys. Res. Commun. 1997, 238, 544–548. [Google Scholar] [CrossRef]
- Saini, H.K.; Dhalla, N.S. Sarcolemmal cation channels and exchangers modify the increase in intracellular calcium in cardiomyocytes on inhibiting Na+-K+-ATPase. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H169–H181. [Google Scholar] [CrossRef]
- Saini-Chohan, H.K.; Goyal, R.K.; Dhalla, N.S. Involvement of sarcoplasmic reticulum in changing intracellular calcium due to Na+/K+-ATPase inhibition in cardiomyocytes. Can. J. Physiol. Pharmacol. 2010, 88, 702–715. [Google Scholar] [CrossRef]
- Askari, A. The sodium pump and digitalis drugs: Dogmas and fallacies. Pharmacol. Res. Perspect. 2019, 7, e00505. [Google Scholar] [CrossRef]
- Wansapura, A.N.; Lasko, V.M.; Lingrel, J.B.; Lorenz, J.N. Mice expressing ouabain-sensitive α1-Na,K-ATPase have increased susceptibility to pressure overload-induced cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H347–H355. [Google Scholar] [CrossRef] [PubMed]
- Gonano, L.A.; Petroff, M.V. Subcellular mechanisms underlying digitalis-induced arrhythmias: Role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect. Heart Lung Circ. 2014, 23, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.N.; Kumar, S.P.; Modi, K.M.; Soni, M.N.; Modi, N.R.; Pandya, H.A. Cardiotonic steroids as potential Na+/K+-ATPase inhibitors—A computational study. J. Recept. Signal Transduct. Res. 2019, 39, 226–234. [Google Scholar] [CrossRef]
- Sehirli, A.O.; Aykac, A.; Tetik, S.; Yiginer, O.; Cetinel, S.; Ozkan, N.; Akkiprik, M.; Kaya, Z.; Yegen, B.C.; Tezcan, M.; et al. The effects of resveratrol treatment on caveolin-3 expression and Na+/K+ ATPase activity in rats with isoproterenol-induced myocardial injury. North. Clin. Istanb. 2020, 7, 313–320. [Google Scholar]
- Şehirli, A.Ö.; Koyun, D.; Tetik, Ş.; Özsavcı, D.; Yiğiner, Ö.; Çetinel, Ş.; Tok, O.E.; Kaya, Z.; Akkiprik, M.; Kılıç, E.; et al. Melatonin protects against ischemic heart failure in rats. J. Pineal Res. 2013, 55, 138–148. [Google Scholar] [CrossRef]
- Sapia, L.; Palomeque, J.; Mattiazzi, A.; Petroff, M.V. Na+/K+-ATPase inhibition by ouabain induces CaMKII-dependent apoptosis in adult rat cardiac myocytes. J. Mol. Cell Cardiol. 2010, 49, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bai, Y.; Chen, Y.; Wang, Y.; Sottejeau, Y.; Liu, L.; Li, X.; Lingrel, J.B.; Malhotra, D.; Cooper, C.J.; et al. Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac dysfunction and myocyte apoptosis. J. Biol. Chem. 2012, 287, 16390–16398. [Google Scholar] [CrossRef]
- Liao, Q.Q.; Dong, Q.Q.; Zhang, H.; Shu, H.P.; Tu, Y.C.; Yao, L.J. Contributions of SGK3 to transporter-related diseases. Front. Cell Dev. Biol. 2022, 10, 1007924. [Google Scholar] [CrossRef]
- Galougahi, K.K.; Liu, C.C.; Garcia, A.; Fry, N.A.; Hamilton, E.J.; Rasmussen, H.H.; Figtree, G.A. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: Evidence from in vivo and in vitro modulation of cell signalling. J. Physiol. 2013, 591, 2999–3015. [Google Scholar] [CrossRef]
- Yan, X.; Li, M.; Lan, P.; Xun, M.; Zhang, Y.; Shi, J.; Wang, R.; Zheng, J. Regulation of Na+-K+-ATPase leads to disturbances of isoproterenol-induced cardiac dysfunction via interference of Ca2+-dependent cardiac metabolism. Clin. Sci. 2024, 138, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Bastug-Özel, Z.; Wright, P.T.; Kraft, A.E.; Pavlovic, D.; Howie, J.; Froese, A.; Fuller, W.; Gorelik, J.; Shattock, M.J.; Nikolaev, V.O. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain. Cardiovasc. Res. 2019, 115, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Fry, N.A.S.; Liu, C.C.; Garcia, A.; Hamilton, E.J.; Karimi Galougahi, K.; Kim, Y.J.; Whalley, D.W.; Bundgaard, H.; Rasmussen, H.H. Targeting Cardiac Myocyte Na+ -K+ Pump Function With β3 Adrenergic Agonist in Rabbit Model of Severe Congestive Heart Failure. Circ. Heart Fail. 2020, 13, e006753. [Google Scholar] [CrossRef] [PubMed]
- Stimers, J.R.; Dobretsov, M. Adrenergic stimulation of Na/K pump current in adult rat cardiac myocytes in short-term culture. J. Membr. Biol. 1998, 163, 205–216. [Google Scholar] [CrossRef]
- Bers, D.M.; Despa, S. Na/K-ATPase--an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc. Med. 2009, 19, 111–118. [Google Scholar] [CrossRef]
- Banday, A.A.; Lokhandwala, M.F. Loss of biphasic effect on Na/K-ATPase activity by Angiotensin II involves defective angiotensin type 1 receptor–nitric oxide signaling. Hypertension 1979, 52, 1099–1105. [Google Scholar] [CrossRef]
- Palacios, J.; Marusic, E.T.; Lopez, N.C.; Gonzalez, M.; Michea, L. Estradiol-induced expression of N+-K+-ATPase catalytic isoforms in rat arteries: Gender differences in activity mediated by nitric oxide donors. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1793–H1800. [Google Scholar] [CrossRef]
- Karmazyn, M.; Dhalla, N.S. Thromboxane B2: A cardiodepressant of isolated rat hearts and inhibitor of sarcolemma Na+—K+ stimulated ATPase activity. Prostaglandins Med. 1979, 3, 81–93. [Google Scholar] [CrossRef]
- Fedorova, O.V.; Talan, M.I.; Agalakova, N.I.; Droy-Lefaix, M.T.; Lakatta, E.G.; Bagrov, A.Y. Myocardial PKC beta2 and the sensitivity of Na/K-ATPase to marinobufagenin are reduced by cicletanine in Dahl hypertension. Hypertension 2003, 41, 505–511. [Google Scholar] [CrossRef]
- Silverman, B.; Fuller, W.; Eaton, P.; Deng, J.; Moorman, J.R.; Cheung, J.Y.; James, A.F.; Shattock, M.J. Serine 68 phosphorylation of phospholemman: Acute isoform-specific activation of cardiac Na/K ATPase. Cardiovasc. Res. 2005, 65, 93–103. [Google Scholar] [CrossRef]
- Despa, S.; Tucker, A.L.; Bers, D.M. Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during beta-adrenergic stimulation in mouse ventricular myocytes. Circulation 2008, 117, 1849–1855. [Google Scholar] [CrossRef]
- Bossuyt, J.; Despa, S.; Han, F.; Hou, Z.; Robia, S.L.; Lingrel, J.B.; Bers, D.M. Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J. Biol. Chem. 2009, 284, 26749–26757. [Google Scholar] [CrossRef] [PubMed]
- El-Armouche, A.; Wittköpper, K.; Fuller, W.; Howie, J.; Shattock, M.J.; Pavlovic, D. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. FASEB J. 2011, 25, 4467–4475. [Google Scholar] [CrossRef]
- Teriete, P.; Thai, K.; Choi, J.; Marassi, F.M. Effects of PKA phosphorylation on the conformation of the Na,K-ATPase regulatory protein FXYD1. Biochim. Biophys. Acta 2009, 1788, 2462–2470. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, D.; Fuller, W.; Shattock, M.J. The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K ATPase. FASEB J. 2007, 21, 1539–1546. [Google Scholar] [CrossRef]
- Mirza, M.A.; Lane, S.; Yang, Z.; Karaoli, T.; Akosah, K.; Hossack, J.; McDuffie, M.; Wang, J.; Zhang, X.; Song, J.; et al. Phospholemman deficiency in postinfarct hearts: Enhanced contractility but increased mortality. Clin. Transl. Sci. 2012, 5, 235–242. [Google Scholar] [CrossRef]
- Bossuyt, J.; Ai, X.; Moorman, J.R.; Pogwizd, S.M.; Bers, D.M. Expression and phosphorylation of the na-pump regulatory subunit phospholemman in heart failure. Circ. Res. 2005, 97, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Boguslavskyi, A.; Pavlovic, D.; Aughton, K.; Clark, J.E.; Howie, J.; Fuller, W.; Shattock, M.J. Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman. Cardiovasc. Res. 2014, 104, 72–82. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; He, M.; Wang, C.; Qiao, Z.; Wang, Q.; Ren, S.; Yu, Q. Activating Na+-K+ ATPase: A potential cardioprotective therapy during early hemorrhagic shock. Med. Hypotheses. 2014, 83, 685–687. [Google Scholar] [CrossRef]
- Xu, K.Y.; Takimoto, E.; Fedarko, N.S. Activation of (Na+ + K+)-ATPase induces positive inotropy in intact mouse heart in vivo. Biochem. Biophys. Res. Commun. 2006, 349, 582–587. [Google Scholar] [CrossRef]
- Zheng, J.; Koh, X.; Hua, F.; Li, G.; Larrick, J.W.; Bian, J.S. Cardioprotection induced by Na+/K+-ATPase activation involves extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt pathway. Cardiovasc. Res. 2011, 89, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Wu, Z.; Yan, X.; Zheng, J.; Sun, H.; Cao, X.; Bian, J.-S. DR region of Na+-K+-ATPase is a new target to protect heart against oxidative injury. Sci. Rep. 2018, 8, 13100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Lu, X.; Li, J.; Chidiac, P.; Sims, S.M.; Feng, Q. Inhibition of Na/K ATPase promotes myocardial tumor necrosis factor-alpha protein expression and cardiac dysfunction via calcium/m TOR signaling in endotoxemia. Basic. Res. Cardiol. 2012, 107, 254. [Google Scholar] [CrossRef]
- Ferrario, C.M.; Schiffrin, E.L. Role of mineralocorticoid receptor antagonist in cardiovascular disease. Circ. Res. 2015, 116, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xie, J.; Tian, J. Reducing cardiac fibrosis: Na/K-ATPase signaling complex as a novel target. Cardiovasc. Pharm. 2017, 6, 204. [Google Scholar]
- Skayian, Y.; Kreydiyyeh, S.I. Tumor necrosis factor alpha alters Na+-K+ ATPase activity in rat cardiac myocytes: Involvement of NF-kappaB, AP-1 and PGE2. Life Sci. 2006, 80, 173–180. [Google Scholar] [CrossRef]
- Xie, Z.J.; Novograd, J.; Itzkowitz, Y.; Sher, A.; Buchen, Y.D.; Sodhi, K.; Abraham, N.G.; Shapiro, J.I. The pivotal role of adipocyte-Na K peptide in reversing systemic inflammation in obesity and covid-19 in the development of heart failure. Antioxidants 2020, 9, 1129. [Google Scholar] [CrossRef]
- Buhagiar, K.A.; Hansen, P.S.; Kong, B.Y.; Clarke, R.J.; Fernandes, C.; Rasmussen, H.H. Dietary cholesterol alters Na+/K+ selectivity at intracellular Na+/K+ pump sites in cardiac myocytes. Am. J. Physiol. Cell Physiol. 2004, 286, C398–C405. [Google Scholar] [CrossRef]
- Kometiani, P.; Tian, J.; Li, J.; Nabih, Z.; Gick, G.; Xie, Z. Regulation of Na/K- ATPase beta1-subunit gene expression by ouabain and other hypertrophic stimuli in neonatal stimuli in neonatal rat cardiac myocytes. Mol. Cell Biochem. 2000, 215, 65–72. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Tomlinson, C.W.; Singh, J.N.; Lee, S.L.; McNamara, D.B.; Harrow, J.A.; Yates, J.C. Role of sarcolemmal changes in cardiac pathophysiology. Recent. Adv. Stud. Cardiac Struct. Metab. 1976, 9, 377–394. [Google Scholar]
- Dhalla, N.S.; Das, P.K.; Sharma, G.P. Subcellular basis of cardiac contractile failure. J. Mol. Cell Cardiol. 1978, 10, 363–385. [Google Scholar] [CrossRef] [PubMed]
- Despa, S.; Bers, D.M. Na+ transport in the normal and failing heart- remember the balance. J. Mol. Cell Cardiol. 2013, 61, 2–10. [Google Scholar] [CrossRef]
- Baartscheer, A.; Schumacher, C.A.; Van Borren, M.M.G.J.; Belterman, C.N.W.; Coronel, R.; Fiolet, J.W.T. Increased Na+/H+- exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc. Res. 2003, 57, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.J.; Hoare, Z.; Baark, F.; Yu, C.S.; Guo, J.; Fuller, W.; Southworth, R.; Katschinski, D.M.; Murphy, M.P.; Eykyn, T.R.; et al. Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart. Nat. Commun. 2024, 15, 4277. [Google Scholar] [CrossRef] [PubMed]
- Morotti, S.; Ni, H.; Peters, C.H.; Rickert, C.; Asgari-Targi, A.; Sato, D.; Glukhov, A.V.; Proenza, C.; Grandi, E. Intracellular Na+ modulates pacemaking activity in murine sinoastrial node myocytes: An in silico analysis. Int. J. Mol. Sci. 2021, 22, 5645. [Google Scholar] [CrossRef] [PubMed]
- Trenor, B.; Cardona, K.; Gomez, J.F.; Rajamani, S.; Ferrero, J.M., Jr.; Belardinelli, L.; Saiz, J. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure. PLoS ONE 2012, 7, e32659. [Google Scholar] [CrossRef]
- Wasserstrom, J.A. Changes in intracellular Na+ in heart failure following SERCA knockout-more of a solution or more of a problem? J. Physiol. 2012, 588 Pt 7, 1027. [Google Scholar] [CrossRef] [PubMed]
- Despa, S. Myocyte [Na+]I Dysregulation in heart failure and diabetic cardiomyopathy. Front. Physiol. 2018, 9, 1303. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.W.; Dhalla, N.S. Alterations in myocardial function during bacterial infective cardiomyopathy. Am. J. Cardiol. 1976, 37, 373–381. [Google Scholar] [CrossRef]
- Dhalla, N.S.; Ziegelhoffer, A.; Singal, P.K.; Panagia, V.; Dhillon, K.S. Subcellular changes during cardiac hypertrophy and heart failure due to bacterial endocarditis. Basic. Res. Cardiol. 1980, 75, 81–91. [Google Scholar] [CrossRef]
- Tomlinson, C.W.; Dhalla, N.S. Alterations in calcium metabolism in cardiac hypertrophy and failure caused by bacterial infection. Recent. Adv. Stud. Cardiac Struct. Metab. 1978, 12, 191–202. [Google Scholar]
- Lossnitzer, K.; Bajusz, E. Water and electrolyte alterations during the life course of the BIO 14.6 Syrian golden hamsters. A disease model of hereditary cardiomyopathy. J. Mol. Cell Cardiol. 1974, 6, 163–177. [Google Scholar] [CrossRef] [PubMed]
Na+-K+ ATPase Activities in Different Types of Failing Hearts | References |
---|---|
A. Increased Na+-K+ ATPase Activity | |
Cardiomyopathic hamsters (BI0 14.6) | Sulakhe and Dhalla, 1973 [34] |
Mitral insufficiency in dogs | Khatter and Prasad, 1976 [35] |
Pressure overload in dogs (aortic banding) | Prasad et al., 1979 [36] |
B. Unaltered Na+-K+ ATPase activity | |
Pulmonary stenosis in dogs | Mead et al, 1971 [37] |
Aortic insufficiency in rabbits | Despa et al., 2002 [33] |
Aortic constriction in rabbits | Despa et al., 2002 [33] |
C. Decreased Na+-K+ ATPase activity | |
Aortic constriction in rabbits | Yazako and Fujii, 1972 [38] |
Cardiomyopathic hamsters (UM-X7.1) | Dhalla et al. 1976 [39] |
Tachycardia induced cardiomyopathy in pigs | Spinale et al, 1992 [40] |
Pulmonary constriction in dogs | Fan et al, 1993 [41] |
Myocardial infarction in rats | Dixon et al, 1992 [42] |
Dilated cardiomyopathy in human | Norgaard et al. 1990 [43] |
Congestive heart failure in human | Ellingsen et al, 1994 [44] |
Idiopathic dilated cardiomyopathy in humans | Ishino et al, 1999 [45] |
Parameters | Control | Different Stages of Heart Failure | ||
---|---|---|---|---|
Early Failure | Moderate Failure | Severe Failure | ||
A. Cardiac function | ||||
LV systolic pressure (LVSP; mmHg) | 143 ± 9.6 | 130 ± 11.3 | 128 ± 10.5 | 92 ± 7.4 * |
LV end-diastolic pressure (LVEDP; mmHg) | 2.6 ± 0.6 | 12.4 ± 1.8 * | 13.6 ± 2.1 * | 14.4 ± 1.5 * |
Rate of cardiac contraction (+dP/dt; mmHg/s) | 5680 ± 240 | 4228 ± 302 * | 4200 ± 320 * | 2718 ± 306 * |
Rate of cardiac relaxation (−dP/dt; mmHg/s) | 5148 ± 225 | 3126 ± 240 * | 3228 ± 236 * | 2342 ± 300 * |
B. ATPase activity | ||||
Mg2+ ATPase (μmol Pi/mg/h) | 86.6 ± 3.2 | 71.5 ± 3.2 * | 58.3 ± 3.2 * | 55.6 ± 3.3 * |
Na+-K+ ATPase (μmol Pi/mg/h) | 26.2 ± 2.8 | 24.4 ± 2.3 | 15.2 ± 1.8 * | 13.0 ± 1.2 * |
Parameters | Control | Heart Failure due to Myocardial Infarction | ||
---|---|---|---|---|
Untreated | Enalapril | Losartan | ||
A. Cardiac function | ||||
LVSP (mm Hg) | 133 ± 4.9 | 128 ± 3.2 | 131 ± 3.8 | 127 ± 3.9 |
LVEDP (mm Hg) | 4.0 ± 0.2 | 15.9 ± 1.3 * | 7.5 ± 0.6 # | 6.9 ± 0.5 # |
+dP/ dt (mm Hg/s) | 9208 ± 1075 | 4800 ± 745 * | 7690 ± 680 # | 7544 ± 722 # |
−dP/ dt (mm Hg/s) | 8788 ± 956 | 4326 ± 590 * | 7248 ± 702 # | 7312 ± 690 # |
B. ATPase activities | ||||
Mg2+ ATPase (μmol Pi/mg/h) | 93.6 ± 6.9 | 81.2 ± 7.4 | 85.5 ± 6.2 | 86.9 ± 7.8 |
Na+-K+ ATPase (μmol/mg/h) | 22.1 ± 0.82 | 12.9 ± 0.84 * | 18.3 ± 0.59 # | 18.6 ± 0.84 # |
Animals at Different Age Groups | ||||
---|---|---|---|---|
Parameters | 90–100 Days | 120–160 Days | 160–200 Days | 200–280 Days |
A. General characteristics | ||||
Ascites (mL) | ND | 1.3 ± 0.42 * | 2.9 ± 0.31 * | 7.8 ± 0.84 * |
Lung wt (% increase) | 0.5 ± 0.34 | 5.4 ± 0.49 * | 26.2 ± 1.7 * | 35.2 ± 1.9 * |
Liver wt (% increase) | 1.3 ± 0.69 | 1.2 ± 0.58 | 14.5 ± 0.86 * | 41.2 ± 2.13 * |
Heart/body wt ratio (% increase) | 8.9 ± 0.4 * | 15.6 ± 0.8 * | 22.5 ± 1.7 * | 24.6 ± 1.5 * |
B. ATPase activities | ||||
Mg2+ ATPase (μmol/Pi/mg/h) | ||||
Control | 21.2 ± 0.9 | 22.8 ± 1.7 | 21.4 ± 1.5 | 21.9 ± 2.1 |
Cardiomyopathic | 20.5 ± 0.7 | 21.4 ± 2.3 | 20.0 ± 1.7 | 14.2 ± 1.4 * |
Na+-K+ ATPase (μmol/Pi/mg/h) | ||||
Control | 4.6 ± 0.5 | 5.8 ± 0.6 | 6.7 ± 0.4 | 7.5 ± 0.7 |
Cardiomyopathic | 2.4 ± 0.6 * | 3.2 ± 0.5 * | 3.8 ± 0.2 * | 3.6 ± 0.9 * |
Parameters | Control | Cardiomyopathic |
---|---|---|
A. ATPase activities | ||
Mg2+ ATPase (μmol Pi/mg/h) | 30.5 ± 2.6 | 28.2 ± 1.5 |
Na+-K+ ATPase (μmol Pi/mg/h) | 8.9 ± 1.2 | 5.4 ± 1.0 * |
B. Na+-K+ ATPase subunit | ||
protein content (% control) | ||
α1-subunit | 100 | 164 ± 27 * |
α2-subunit | 100 | 82 ± 6 * |
α3-subunit | 100 | 69 ± 11 * |
β1-subunit | 100 | 146 ± 22 * |
B. Na+-K+ ATPase activities | ||
mRNA levels (% of control) | ||
α1-subunit | 100 | 165 ± 20 * |
α2-subunit | 100 | 60 ± 12 * |
α3-subunit | ND | ND |
β1-subunit | 100 | 151 ± 14 * |
Heart Failure due to Myocardial Infarction | |||
---|---|---|---|
Parameters | Control | Untreated | Imidapril |
A. ATPase activity | |||
Mg2+ ATPase (μmol Pi/mg/h) | 92.4 ± 8.6 | 85.0 ± 6.8 | 86.4 ± 9.2 |
Na+-K+ ATPase (μmol Pi/mg/h) | 22.6 ± 2.7 | 8.9 ± 3.2 * | 18.4 ± 1.6 # |
B. Na+-K+ ATPase subunit | |||
protein content (%) | |||
α1-subunit | 100 | 17.4 ± 1.8 * | 40.4 ± 2.9 # |
α2-subunit | 100 | 10.5 ± 1.2 * | 42.6 ± 3.8 # |
α3-subunit | 100 | 160 ± 7.5 * | 104 ± 2.9 # |
β1-subunit | 100 | 65 ± 5.9 * | 82 ± 4.3 # |
C. Na+-K+ ATPase subunit | |||
mRNA level (%) | |||
α1-subunit | 100 | 55 ± 6.2 * | 84 ± 5.1 # |
α2-subunit | 100 | 46 ± 7.5 * | 96 ± 5.8 # |
α3-subunit | 100 | 247 ± 12.2 * | 113 ± 8.6 # |
β1-subunit | 100 | 48 ± 7.1 * | 78 ± 8.2 # |
Parameters | Control | Uninfected Catheterized | Infected Catheterized | ||
---|---|---|---|---|---|
3 Days | 6 Days | 3 Days | 6 Days | ||
A. Cardiac function | |||||
Left heart wt/body | |||||
wt (×103) ratio | 1.34 ± 0.04 | 1.61 ± 0.12 * | 2.06 ± 0.8 * | 1.82 ± 0.09 * | 2.65± 0.11 * |
Heart rate (beats/min) | 259 ± 7.2 | 286 ± 4.5 * | 302 ± 5.6 * | 292 ± 6.1 * | 203 ± 5.9 * |
+dP/dt (mmHg/s) | 476 ± 26 | 456 ± 22 | 404 ± 28 * | 259 ± 31 * | 198 ± 24 * |
−dP/dt (mmHg/s) | 332 ± 21 | 320 ± 20 | 326 ± 33 | 217 ± 22 * | 185 ± 27 * |
B. Cation content | |||||
Sodium (μmol/g heart dry wt) | 118 ± 8.4 | 129 ± 105 | 214 ± 12.1 * | 166 ± 10.9 * | 246 ± 13.2 * |
Potassium (μmol/g heart dry wt) | 336 ± 12.1 | 318 ± 13.6 | 262 ± 13.0 * | 282 ± 14.2 * | 248 ± 14.6 * |
Calcium (μmol/g heart dry wt) | 7.4 ± 0.25 | 6.4 ± 0.28* | 4.2 ± 0.33 * | 5.5 ± 0.28 * | 5.6 ± 0.26 * |
Magnesium (μmol/g heart dry wt) | 31.8 ± 0.97 | N.D. | 33.7 ± 1.16 | 28.5 ± 0.58 * | 35.1 ± 0.72 * |
C. ATPase activity | |||||
Mg2+ ATPase (μmol Pi/mg/h) | 19.4 ± 1.3 | 18.1 ± 0.9 | 15.9 ± 0.6 * | 16.0 ± 0.7 * | 13.8 ± 0.8 * |
Na+-K+ ATPase (μmol Pi/mg/h) | 7.6 ± 0.4 | 6.4 ± 0.4 | 5.5 ± 0.4 * | 4.2 ± 0.3 * | 3.4 ± 0.3 * |
Parameters | Control | Perfusion with Ca2+-Free Medium | Reperfusion with Ca2+-Containing Medium after Perfusion with Ca2+-Free Medium |
---|---|---|---|
A. ATPase activity | |||
Mg2+ ATPase (μmol Pi/mg/h) | 25.0 ± 1.8 | 19.1 ± 1.2 * | 14.1 ± 2.0 * |
Na+-K+ ATPase (μmol Pi/mg/h) | 11.7 ± 0.5 | 7.5 ± 0.8 * | 3.4 ± 0.5 * |
B. Cation content | |||
(μmol/wet wt) | |||
Sodium | 22.6 ± 1.7 | 11.2 ± 0.7 * | 37.8 ± 3.0 * |
Potassium | 54.7 ± 1.3 | 30.5 ± 1.5 * | 22.0 ± 2.0 * |
Calcium | 1.9 ± 0.1 | 0.8 ± 0.1 * | 3.1 ± 0.1 * |
Magnesium | 13.7 ± 0.1 | 10.7 ± 0.2 * | 5.8 ± 0.1 * |
Parameters | Control | Sodium-Free Perfusion for 20 min | Potassium-Free Perfusion for 30 min |
---|---|---|---|
A. ATPase activity | |||
Mg2+ ATPase (μmol Pi/mg/h) | 25.8 ± 2.1 | 30.1 ± 1.8 | 23.5 ± 2.0 |
Na+-K+ ATPase (μmol Pi/mg/h) | 11.2 ± 1.0 | 6.3 ± 0.6 | 7.7 ± 0.3 * |
B. Cation content | |||
(μmol/g wet wt) | |||
Sodium | 24.9 ± 1.4 | 12.1 ± 0.3 * | 47.8 ± 1.6 * |
Potassium | 53.5 ± 1.5 | 41.9 ± 3.0 * | 31.9 ± 1.3 * |
Calcium | 1.9 ± 0.1 | 3.2 ± 0.1 * | 3.8 ± 0.2 * |
Magnesium | 14.5 ± 0.1 | 13.9 ± 0.2 * | 13.3 ± 0.1 * |
Parameters | Control | Substrate Free (2 h Perfusion) | Hypoxia (30 min Perfusion) |
---|---|---|---|
A. ATPase activity | |||
Mg2+ ATPase (μmol Pi/mg/h) | 24.0 ± 1.7 | 28.8 ± 1.9 * | 28.3 ± 2.2 * |
Na+-K+ ATPase (μmol Pi/mg/h) | 12.8 ± 1.1 | 5.9 ± 0.8 * | 6.2 ± 0.04 * |
B. Cation content | |||
(μmol/g wet wt) | |||
Sodium | 26.9 ± 1.2 | 67.3 ± 2.1 * | 58.3 ± 1.9 * |
Potassium | 53.1 ± 1.2 | 31.7 ± 1.5 * | 43.5 ± 1.3 * |
Calcium | 1.9 ± 0.1 | 1.8 ± 0.1 | 1.3 ± 0.2 * |
Magnesium | 13.9 ± 0.1 | 12.4 ± 0.2 * | 12.4 ± 0.2 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhalla, N.S.; Elimban, V.; Adameova, A.D. Role of Na+-K+ ATPase Alterations in the Development of Heart Failure. Int. J. Mol. Sci. 2024, 25, 10807. https://doi.org/10.3390/ijms251910807
Dhalla NS, Elimban V, Adameova AD. Role of Na+-K+ ATPase Alterations in the Development of Heart Failure. International Journal of Molecular Sciences. 2024; 25(19):10807. https://doi.org/10.3390/ijms251910807
Chicago/Turabian StyleDhalla, Naranjan S., Vijayan Elimban, and Adriana Duris Adameova. 2024. "Role of Na+-K+ ATPase Alterations in the Development of Heart Failure" International Journal of Molecular Sciences 25, no. 19: 10807. https://doi.org/10.3390/ijms251910807