The Modulation of Septic Shock: A Proteomic Approach
Abstract
:1. Introduction
2. Results
2.1. Monocyte Profile
2.2. Mass Spectrometry and Bioinformatics
3. Discussion
4. Materials and Methods
4.1. Study Population
4.1.1. Healthy Volunteers
4.1.2. Patients
4.2. Peripheral Blood Monocytes Isolation
4.3. Protein Extraction and Sample Preparation
4.4. Mass Spectrometry of Complex Digested Samples
4.5. Database Searching and Bioinformatics
Functional Annotation and In Silico Analysis of Monocyte Function
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensiv. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Torre, C.; Pinto, R.; Sepodes, B.; Rocha, J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J. Clin. Med. 2023, 12, 2892. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis—Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Backer, D.D.; Hajjar, L.; Monnet, X. Vasoconstriction in Septic Shock. Intensiv. Care Med. 2024, 50, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sarmiento, J.; Schlapbach, L.J.; Acevedo, L.; Santana, C.R.; Acosta, Y.; Diana, A.; Monsalve, M.; Carcillo, J.A. Endothelial Damage in Sepsis: The Importance of Systems Biology. Front. Pediatr. 2022, 10, 828968. [Google Scholar] [CrossRef] [PubMed]
- Dolmatova, E.V.; Wang, K.; Mandavilli, R.; Griendling, K.K. The Effects of Sepsis on Endothelium and Clinical Implications. Cardiovasc. Res. 2020, 117, 60–73. [Google Scholar] [CrossRef]
- Joffre, J.; Hellman, J.; Ince, C.; Ait-Oufella, H. Endothelial Responses in Sepsis. Am. J. Respir. Crit. Care Med. 2019, 202, 361–370. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Q.; Li, H.; Zhang, M.; You, L.; Lin, Y.; Wang, K.; Gou, Q.; Wang, Z.; Zhou, S.; et al. The Role of Monocytes in Thrombotic Diseases: A Review. Front. Cardiovasc. Med. 2023, 10, 1113827. [Google Scholar] [CrossRef]
- Ning, D.; Garg, K.; Mayer, B.; Schick, B.; Bracht, H.; Barth, E.; Weiss, M.; Li, C.; Schneider, J.; Schneider, E.M. Monocyte Subtype Expression Patterns in Septic Patients with Diabetes Are Distinct from Patterns Observed in Obese Patients. Front. Med. 2023, 9, 1026298. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed]
- Teh, Y.C.; Ding, J.L.; Ng, L.G.; Chong, S.Z. Capturing the Fantastic Voyage of Monocytes through Time and Space. Front. Immunol. 2019, 10, 834. [Google Scholar] [CrossRef]
- Beltrán-García, J.; Osca-Verdegal, R.; Jávega, B.; Herrera, G.; O’Connor, J.-E.; García-López, E.; Casabó-Vallés, G.; Rodriguez-Gimillo, M.; Ferreres, J.; Carbonell, N.; et al. Characterization of Early Peripheral Immune Responses in Patients with Sepsis and Septic Shock. Biomedicines 2022, 10, 525. [Google Scholar] [CrossRef] [PubMed]
- Gorecki, G.; Cochior, D.; Moldovan, C.; Rusu, E. Molecular Mechanisms in Septic Shock (Review). Exp. Ther. Med. 2021, 22, 1161. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; van der Poll, T. Immunopathophysiology of Human Sepsis. eBioMedicine 2022, 86, 104363. [Google Scholar] [CrossRef]
- Verbeek, W.; Lekstrom-Himes, J.; Park, D.J.; Dang, P.M.-C.; Vuong, P.T.; Kawano, S.; Babior, B.M.; Xanthopoulos, K.; Koeffler, H.P. Myeloid Transcription Factor C/EBPɛ Is Involved in the Positive Regulation of Lactoferrin Gene Expression in Neutrophils. Blood 1999, 94, 3141–3150. [Google Scholar] [CrossRef]
- Wolff, L.; Ackerman, S.J.; Nucifora, G. Meeting Report: Seventh International Workshop on Molecular Aspects of Myeloid Stem Cell Development and Leukemia, Annapolis, MD, May 13–16, 2007. Exp. Hematol. 2008, 36, 523–532. [Google Scholar] [CrossRef]
- Asou, N. The Role of a Runt Domain Transcription Factor AML1/RUNX1 in Leukemogenesis and Its Clinical Implications. Crit. Rev. Oncol. Hematol. 2003, 45, 129–150. [Google Scholar] [CrossRef]
- Velusamy, S.K.; Poojary, R.; Ardeshna, R.; Alabdulmohsen, W.; Fine, D.H.; Velliyagounder, K. Protective Effects of Human Lactoferrin during Aggregatibacter Actinomycetemcomitans-Induced Bacteremia in Lactoferrin-Deficient Mice. Antimicrob. Agents Chemother. 2014, 58, 397–404. [Google Scholar] [CrossRef]
- Natarajan, R.; Salloum, F.N.; Fisher, B.J.; Ownby, E.D.; Kukreja, R.C.; Fowler, A.A. Activation of Hypoxia-Inducible Factor-1 via Prolyl-4 Hydoxylase-2 Gene Silencing Attenuates Acute Inflammatory Responses in Postischemic Myocardium. Am. J. Physiol.-Heart Circ. Physiol. 2007, 293, H1571–H1580. [Google Scholar] [CrossRef]
- Zhang, Z.; Mahajan, S.; Zhang, X.; Stanley, S.L. Tumor Necrosis Factor Alpha Is a Key Mediator of Gut Inflammation Seen in Amebic Colitis in Human Intestine in the SCID Mouse-Human Intestinal Xenograft Model of Disease. Infect. Immun. 2003, 71, 5355–5359. [Google Scholar] [CrossRef] [PubMed]
- Katzenback, B.A.; Katakura, F.; Belosevic, M. Goldfish (Carassius auratus L.) as a Model System to Study the Growth Factors, Receptors and Transcription Factors That Govern Myelopoiesis in Fish. Dev. Comp. Immunol. 2016, 58, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Gaviria-Agudelo, C.; Carter, K.; Tareen, N.; Pascual, V.; Copley, L.A. Gene Expression Analysis of Children with Acute Hematogenous Osteomyelitis Caused by Methicillin-Resistant Staphylococcus Aureus: Correlation with Clinical Severity of Illness. PLoS ONE 2014, 9, e103523. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Kang, Y.; Hou, C.; Duan, X.; Sheng, P.; Sandell, L.; Liao, W. Resistin Stimulates Expression of Chemokine Genes in Chondrocytes via Combinatorial Regulation of C/EBPβ and NF-ΚB. Int. J. Mol. Sci. 2014, 15, 17242–17255. [Google Scholar] [CrossRef] [PubMed]
- Bagi, Z.; Broskova, Z.; Feher, A. Obesity and Coronary Microvascular Disease—Implications for Adipose Tissue-Mediated Remote Inflammatory Response. Curr. Vasc. Pharmacol. 2014, 12, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Sauter, N.S.; Schulthess, F.T.; Galasso, R.; Castellani, L.W.; Maedler, K. The Antiinflammatory Cytokine Interleukin-1 Receptor Antagonist Protects from High-Fat Diet-Induced Hyperglycemia. Endocrinology 2008, 149, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Battu, A.; Mohareer, K.; Hasnain, S.E.; Ehtesham, N.Z. Transcription of Human Resistin Gene Involves an Interaction of Sp1 with Peroxisome Proliferator-Activating Receptor Gamma (PPARγ). PLoS ONE 2010, 5, e9912. [Google Scholar] [CrossRef]
- Gombart, A.F.; Kwok, S.H.; Anderson, K.L.; Yamaguchi, Y.; Torbett, B.E.; Koeffler, H.P. Regulation of Neutrophil and Eosinophil Secondary Granule Gene Expression by Transcription Factors C/EBPε and PU.1. Blood 2003, 101, 3265–3273. [Google Scholar] [CrossRef]
- Hu, S.; Peng, L.; Kwak, Y.-T.; Tekippe, E.M.; Pasare, C.; Malter, J.S.; Hooper, L.V.; Zaki, M.H. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense. Cell Rep. 2015, 13, 1922–1936. [Google Scholar] [CrossRef]
- Guo, H.; Jin, D.; Chen, X. Lipocalin 2 Is a Regulator of Macrophage Polarization and NF-ΚB/STAT3 Pathway Activation. Mol. Endocrinol. 2014, 28, 1616–1628. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The Multifaceted Roles of Neutrophil Gelatinase Associated Lipocalin (NGAL) in Inflammation and Cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2012, 1826, 129–169. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23–IL-17 Immune Axis: From Mechanisms to Therapeutic Testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, C.; Németh, J.; Angel, P.; Hess, J. S100A8 and S100A9 in Inflammation and Cancer. Biochem. Pharmacol. 2006, 72, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Curran, C.S.; Bertics, P.J. Lactoferrin Regulates an Axis Involving CD11b and CD49d Integrins and the Chemokines MIP-1α and MCP-1 in GM-CSF-Treated Human Primary Eosinophils. J. Interf. Cytokine Res. 2012, 32, 450–461. [Google Scholar] [CrossRef]
- Bando, M.; Zou, X.; Hiroshima, Y.; Kataoka, M.; Ross, K.F.; Shinohara, Y.; Nagata, T.; Herzberg, M.C.; Kido, J. Mechanism of Interleukin-1α Transcriptional Regulation of S100A9 in a Human Epidermal Keratinocyte Cell Line. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2013, 1829, 954–962. [Google Scholar] [CrossRef]
- Miao, L.; Grebhardt, S.; Shi, J.; Peipe, I.; Zhang, J.; Mayer, D. Prostaglandin E2 Stimulates S100A8 Expression by Activating Protein Kinase A and CCAAT/Enhancer-Binding-Protein-Beta in Prostate Cancer Cells. Int. J. Biochem. Cell Biol. 2012, 44, 1919–1928. [Google Scholar] [CrossRef]
- Voigtländer, T.; Wlecke, J.; Negm, A.A.; Lenzen, H.; Manns, M.P.; Lankisch, T.O. Calprotectin in Bile. J. Clin. Gastroenterol. 2014, 48, 866–869. [Google Scholar] [CrossRef]
- Sorenson, B.S.; Khammanivong, A.; Guenther, B.D.; Ross, K.F.; Herzberg, M.C. IL-1 Receptor Regulates S100A8/A9-Dependent Keratinocyte Resistance to Bacterial Invasion. Mucosal Immunol. 2012, 5, 66–75. [Google Scholar] [CrossRef]
- Hemdan, N.Y.A.; El-Saad, A.M.A.; Sack, U. The Role of T Helper (T H)17 Cells as a Double-Edged Sword in the Interplay of Infection and Autoimmunity with a Focus on Xenobiotic-Induced Immunomodulation. J. Immunol. Res. 2013, 2013, 374769. [Google Scholar] [CrossRef]
- Nagareddy, P.R.; Murphy, A.J.; Stirzaker, R.A.; Hu, Y.; Yu, S.; Miller, R.G.; Ramkhelawon, B.; Distel, E.; Westerterp, M.; Huang, L.-S.; et al. Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis. Cell Metab. 2013, 17, 695–708. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, W.; Tang, H.; Ye, Q.; Liao, Q.; Zhou, Y.; Wu, M.; Xiong, W.; Zheng, Y.; Guo, X.; et al. Lactotransferrin Acts as a Tumor Suppressor in Nasopharyngeal Carcinoma by Repressing AKT through Multiple Mechanisms. Oncogene 2013, 32, 4273–4283. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, M.E.; Fischer, H.; Poellinger, L.; Johnson, R.S.; Gustafsson, T.; Sundberg, C.J.; Rundqvist, H. Negative Regulation of HIF in Skeletal Muscle of Elite Endurance Athletes: A Tentative Mechanism Promoting Oxidative Metabolism. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2014, 307, R248–R255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Y.; Li, X.; Qian, S.-W.; Guo, L.; Huang, H.-Y.; He, Q.; Liu, Y.; Ma, C.-G.; Tang, Q.-Q. Transcriptional Activation of Histone H4 by C/EBPβ during the Mitotic Clonal Expansion of 3T3-L1 Adipocyte Differentiation. Mol. Biol. Cell 2011, 22, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, S.J.; Lim, E.K.; Yu, Y.-S.; Kim, S.W.; Roh, J.H.; Do, I.-G.; Joh, J.-W.; Kim, D.S. Expression of Nicotinamide N-Methyltransferase in Hepatocellular Carcinoma Is Associated with Poor Prognosis. J. Exp. Clin. Cancer Res. 2009, 28, 20. [Google Scholar] [CrossRef] [PubMed]
- Denizot, J.; Desrichard, A.; Agus, A.; Uhrhammer, N.; Dreux, N.; Vouret-Craviari, V.; Hofman, P.; Darfeuille-Michaud, A.; Barnich, N. Diet-Induced Hypoxia Responsive Element Demethylation Increases CEACAM6 Expression, Favouring Crohn’s Disease-Associated Escherichia coli Colonisation. Gut 2015, 64, 428–437. [Google Scholar] [CrossRef]
- Zhu, H.; Hou, L.; Liu, J.; Li, Z. MiR-217 Is down-Regulated in Psoriasis and Promotes Keratinocyte Differentiation via Targeting GRHL2. Biochem. Biophys. Res. Commun. 2016, 471, 169–176. [Google Scholar] [CrossRef]
- Vliet-Gregg, P.A.; Hamilton, J.R.; Katzenellenbogen, R.A. Human Papillomavirus 16E6 and NFX1-123 Potentiate Notch Signaling and Differentiation without Activating Cellular Arrest. Virology 2015, 478, 50–60. [Google Scholar] [CrossRef]
- Dubash, A.D.; Koetsier, J.L.; Amargo, E.V.; Najor, N.A.; Harmon, R.M.; Green, K.J. The GEF Bcr Activates RhoA/MAL Signaling to Promote Keratinocyte Differentiation via Desmoglein-1. J. Cell Biol. 2013, 202, 653–666. [Google Scholar] [CrossRef]
- Lian, X.; Yang, T.; Xiang, M. Regulation of Calcium to Tissue Plasminogen Activator Secretion in Mouse Epidermal Keratinocytes. Colloids Surf. B Biointerfaces 2003, 28, 279–284. [Google Scholar] [CrossRef]
- Rabeony, H.; Petit-Paris, I.; Garnier, J.; Barrault, C.; Pedretti, N.; Guilloteau, K.; Jegou, J.-F.; Guillet, G.; Huguier, V.; Lecron, J.-C.; et al. Inhibition of Keratinocyte Differentiation by the Synergistic Effect of IL-17A, IL-22, IL-1α, TNFα and Oncostatin M. PLoS ONE 2014, 9, e101937. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Geng, Z.; Ma, K.; Sun, X.; Fu, X. Abnormalities in the Basement Membrane Structure Promote Basal Keratinocytes in the Epidermis of Hypertrophic Scars to Adopt a Proliferative Phenotype. Int. J. Mol. Med. 2016, 37, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Jin, J.; Hu, L.; Shen, D.; Dong, X.; Samie, M.A.; Knoff, J.; Eisinger, B.; Liu, M.; Huang, S.M.; et al. TRP Channel Regulates EGFR Signaling in Hair Morphogenesis and Skin Barrier Formation. Cell 2010, 141, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Fu, X.; Han, W.; Zhao, Y.; Liu, H.; Sheng, Z. Dedifferentiation of Human Terminally Differentiating Keratinocytes into Their Precursor Cells Induced by Basic Fibroblast Growth Factor. Biol. Pharm. Bull. 2011, 34, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Petreaca, M.; Yao, M.; Martins-Green, M. Cell and Molecular Mechanisms of Keratinocyte Function Stimulated by Insulin during Wound Healing. BMC Cell Biol. 2009, 10, 1. [Google Scholar] [CrossRef]
- Giot, J.-P.; Paris, I.; Levillain, P.; Huguier, V.; Charreau, S.; Delwail, A.; Garcia, M.; Garnier, J.; Bernard, F.-X.; Dagregorio, G.; et al. Involvement of IL-1 and Oncostatin M in Acanthosis Associated with Hypertensive Leg Ulcer. Am. J. Pathol. 2013, 182, 806–818. [Google Scholar] [CrossRef]
- Tanimizu, N.; Nakamura, Y.; Ichinohe, N.; Mizuguchi, T.; Hirata, K.; Mitaka, T. Hepatic Biliary Epithelial Cells Acquire Epithelial Integrity but Lose Plasticity to Differentiate into Hepatocytes in Vitro during Development. J. Cell Sci. 2013, 126, 5239–5246. [Google Scholar] [CrossRef] [PubMed]
- Wittmer, C.R.; Phelps, J.A.; Lepus, C.M.; Saltzman, W.M.; Harding, M.J.; Tassel, P.R.V. Multilayer Nanofilms as Substrates for Hepatocellular Applications. Biomaterials 2008, 29, 4082–4090. [Google Scholar] [CrossRef]
- Takehara, T.; Matsumoto, K.; Nakamura, T. Cell Density-Dependent Regulation of Albumin Synthesis and DNA Synthesis in Rat Hepatocytes by Hepatocyte Growth Factor. J. Biochem. 1992, 112, 330–334. [Google Scholar] [CrossRef]
- Ishii, K.; Yoshida, Y.; Akechi, Y.; Sakabe, T.; Nishio, R.; Ikeda, R.; Terabayashi, K.; Matsumi, Y.; Gonda, K.; Okamoto, H.; et al. Hepatic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Tetracycline-regulated Hepatocyte Nuclear Factor 3β. Hepatology 2008, 48, 597–606. [Google Scholar] [CrossRef]
- Huang, J.; Glauber, M.; Qiu, Z.; Gazit, V.; Dietzen, D.J.; Rudnick, D.A. The Influence of Skeletal Muscle on the Regulation of Liver: Body Mass and Liver Regeneration. Am. J. Pathol. 2012, 180, 575–582. [Google Scholar] [CrossRef]
- Kamiya, A.; Kinoshita, T.; Miyajima, A. Oncostatin M and Hepatocyte Growth Factor Induce Hepatic Maturation via Distinct Signaling Pathways. FEBS Lett. 2001, 492, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Hadas, K.; Randriamboavonjy, V.; Elgheznawy, A.; Mann, A.; Fleming, I. Methylglyoxal Induces Platelet Hyperaggregation and Reduces Thrombus Stability by Activating PKC and Inhibiting PI3K/Akt Pathway. PLoS ONE 2013, 8, e74401. [Google Scholar] [CrossRef] [PubMed]
- Soboloff, J.; Sasaki, H.; Tsang, B.K. Follicular Stage-Dependent Tumor Necrosis Factor α-Induced Hen Granulosa Cell Integrin Production and Survival in the Presence of Transforming Growth Factor α In Vitro1. Biol. Reprod. 2001, 65, 477–487. [Google Scholar] [CrossRef]
- Zhao, Y.; Garcia, J.; Kolp, L.; Cheadle, C.; Rodriguez, A.; Vlahos, N.F. The Impact of Luteal Phase Support on Gene Expression of Extracellular Matrix Protein and Adhesion Molecules in the Human Endometrium during the Window of Implantation Following Controlled Ovarian Stimulation with a GnRH Antagonist Protocol. Fertil. Steril. 2010, 94, 2264–2271. [Google Scholar] [CrossRef]
- Jones, F.S.; Meech, R.; Edelman, D.B.; Oakey, R.J.; Jones, P.L. Prx1 Controls Vascular Smooth Muscle Cell Proliferation and Tenascin-C Expression and Is Upregulated with Prx2 in Pulmonary Vascular Disease. Circ. Res. 2001, 89, 131–138. [Google Scholar] [CrossRef]
- Desai, V.D.; Hsia, H.C.; Schwarzbauer, J.E. Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells. PLoS ONE 2014, 9, e86865. [Google Scholar] [CrossRef]
- Maier, S.; Lutz, R.; Gelman, L.; Sarasa-Renedo, A.; Schenk, S.; Grashoff, C.; Chiquet, M. Tenascin-C Induction by Cyclic Strain Requires Integrin-Linked Kinase. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2008, 1783, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Sarközi, R.; Hauser, C.; Noppert, S.-J.; Kronbichler, A.; Pirklbauer, M.; Haller, V.M.; Grillari, J.; Grillari-Voglauer, R.; Mayer, G.; Schramek, H. Oncostatin M Is a Novel Inhibitor of TGF-Β1-Induced Matricellular Protein Expression. Am. J. Physiol.-Ren. Physiol. 2011, 301, F1014–F1025. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.-J.; McNaughton, L.J.; Koleini, N.; Ma, X.; Bestvater, B.; Nickel, B.E.; Fandrich, R.R.; Wigle, J.T.; Freed, D.H.; Arora, R.C.; et al. High Molecular Weight Fibroblast Growth Factor-2 in the Human Heart Is a Potential Target for Prevention of Cardiac Remodeling. PLoS ONE 2014, 9, e97281. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Yang, P.; Enkhjargal, B.; Manaenko, A.; Tang, J.; Pearce, W.J.; Hartman, R.; Obenaus, A.; Chen, G.; et al. Recombinant Osteopontin Stabilizes Smooth Muscle Cell Phenotype via Integrin Receptor/Integrin-Linked Kinase/Rac-1 Pathway after Subarachnoid Hemorrhage in Rats. Stroke 2018, 47, 1319–1327. [Google Scholar] [CrossRef]
- Horiguchi, K.; Sakamoto, K.; Koinuma, D.; Semba, K.; Inoue, A.; Inoue, S.; Fujii, H.; Yamaguchi, A.; Miyazawa, K.; Miyazono, K.; et al. TGF-β Drives Epithelial-Mesenchymal Transition through ΔEF1-Mediated Downregulation of ESRP. Oncogene 2012, 31, 3190–3201. [Google Scholar] [CrossRef] [PubMed]
- Delrieu, I. The High Molecular Weight Isoforms of Basic Fibroblast Growth Factor (FGF-2): An Insight into an Intracrine Mechanism. FEBS Lett. 2000, 468, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Sárközy, M.; Szűcs, G.; Pipicz, M.; Zvara, Á.; Éder, K.; Fekete, V.; Szűcs, C.; Bárkányi, J.; Csonka, C.; Puskás, L.G.; et al. The Effect of a Preparation of Minerals, Vitamins and Trace Elements on the Cardiac Gene Expression Pattern in Male Diabetic Rats. Cardiovasc. Diabetol. 2015, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.S.; Yan, S.; Lü, J.; Liang, Z.; Yao, Q.; Chen, C. Resistin Increases Monolayer Permeability of Human Coronary Artery Endothelial Cells. PLoS ONE 2013, 8, e84576. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, N.; Zhang, Q.; Zhuo, L.; Wang, X.; Wang, D.; Jin, H. Resistin Increases Platelet P-Selectin Levels via P38 MAPK Signal Pathway. Diabetes Vasc. Dis. Res. 2014, 11, 121–124. [Google Scholar] [CrossRef]
- Kuipers, M.T.; Vogl, T.; Aslami, H.; Jongsma, G.; van den Berg, E.; Vlaar, A.P.J.; Roelofs, J.J.T.H.; Juffermans, N.P.; Schultz, M.J.; van der Poll, T.; et al. High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling. PLoS ONE 2013, 8, e68694. [Google Scholar] [CrossRef]
- Lukanidin, E.; Sleeman, J.P. Building the Niche: The Role of the S100 Proteins in Metastatic Growth. Semin. Cancer Biol. 2012, 22, 216–225. [Google Scholar] [CrossRef]
- Lu, S.-M.; Yu, C.-J.; Liu, Y.-H.; Dong, H.-Q.; Zhang, X.; Zhang, S.-S.; Hu, L.-Q.; Zhang, F.; Qian, Y.-N.; Gui, B. S100A8 Contributes to Postoperative Cognitive Dysfunction in Mice Undergoing Tibial Fracture Surgery by Activating the TLR4/MyD88 Pathway. Brain Behav. Immun. 2015, 44, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Kostakis, I.D.; Cholidou, K.G.; Kallianidis, K.; Perrea, D.; Antsaklis, A. The Role of Calprotectin in Obstetrics and Gynecology. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 151, 3–9. [Google Scholar] [CrossRef]
- Iyalomhe, O.; Chen, Y.; Allard, J.; Ntekim, O.; Johnson, S.; Bond, V.; Goerlitz, D.; Li, J.; Obisesan, T.O. A Standardized Randomized 6-Month Aerobic Exercise-Training down-Regulated pro-Inflammatory Genes, but up-Regulated Anti-Inflammatory, Neuron Survival and Axon Growth-Related Genes. Exp. Gerontol. 2015, 69, 159–169. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Sunderkötter, C.; Foell, D.; Vogl, T.; Roth, J. The Endogenous Toll–like Receptor 4 Agonist S100A8/S100A9 (Calprotectin) as Innate Amplifier of Infection, Autoimmunity, and Cancer. J. Leukoc. Biol. 2009, 86, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, C.; Gao, H.; Bilodeau, M.L.; Zhang, Z.; Croce, K.; Liu, S.; Morooka, T.; Sakuma, M.; Nakajima, K.; et al. Platelet-Derived S100 Family Member Myeloid-Related Protein-14 Regulates Thrombosis. J. Clin. Investig. 2014, 124, 2160–2171. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, Y.; Pokreisz, P.; Vermeersch, P.; Marsboom, G.; Swinnen, M.; Verbeken, E.; Santos, J.; Pellens, M.; Gillijns, H.; et al. Nitric Oxide Inhalation Improves Microvascular Flow and Decreases Infarction Size after Myocardial Ischemia and Reperfusion. J. Am. Coll. Cardiol. 2007, 50, 808–817. [Google Scholar] [CrossRef]
- Ali, H.; Weigmann, B.; Neurath, M.F.; Collnot, E.M.; Windbergs, M.; Lehr, C.-M. Budesonide Loaded Nanoparticles with PH-Sensitive Coating for Improved Mucosal Targeting in Mouse Models of Inflammatory Bowel Diseases. J. Control. Release 2014, 183, 167–177. [Google Scholar] [CrossRef]
- Chen, L.Q.; Rohatgi, A.; Ayers, C.R.; Das, S.R.; Khera, A.; Berry, J.D.; McGuire, D.K.; de Lemos, J.A. Race-Specific Associations of Myeloperoxidase with Atherosclerosis in a Population-Based Sample: The Dallas Heart Study. Atherosclerosis 2011, 219, 833–838. [Google Scholar] [CrossRef]
- Purushothaman, M.; Krishnan, P.; Purushothaman, K.-R.; Baber, U.; Tarricone, A.; Perez, J.S.; Wiley, J.; Kini, A.; Sharma, S.K.; Fuster, V.; et al. Genotype-Dependent Impairment of Hemoglobin Clearance Increases Oxidative and Inflammatory Response in Human Diabetic Atherosclerosis. Arter. Thromb. Vasc. Biol. 2012, 32, 2769–2775. [Google Scholar] [CrossRef] [PubMed]
- Sunil, V.R.; Patel, K.J.; Nilsen-Hamilton, M.; Heck, D.E.; Laskin, J.D.; Laskin, D.L. Acute Endotoxemia Is Associated with Upregulation of Lipocalin 24p3/Lcn2 in Lung and Liver. Exp. Mol. Pathol. 2007, 83, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Gouweleeuw, L.; Naudé, P.J.W.; Rots, M.; DeJongste, M.J.L.; Eisel, U.L.M.; Schoemaker, R.G. The Role of Neutrophil Gelatinase Associated Lipocalin (NGAL) as Biological Constituent Linking Depression and Cardiovascular Disease. Brain Behav. Immun. 2015, 46, 23–32. [Google Scholar] [CrossRef]
- Lindberg, S.; Jensen, J.S.; Mogelvang, R.; Pedersen, S.H.; Galatius, S.; Flyvbjerg, A.; Magnusson, N.E. Plasma Neutrophil Gelatinase-Associated Lipocalinin in the General Population. Arter. Thromb. Vasc. Biol. 2014, 34, 2135–2142. [Google Scholar] [CrossRef]
- Rajnics, P.; Kellner, Á.; Karádi, É.; Moizs, M.; Bödör, C.; Király, P.A.; Marosvári, D.; Andrikovics, H.; Egyed, M. Increased Lipocalin 2 Level May Have Important Role in Thrombotic Events in Patients with Polycythemia Vera and Essential Thrombocythemia. Leuk. Res. 2016, 48, 101–106. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The Microbiome in Infectious Disease and Inflammation. Annu. Rev. Immunol. 2012, 30, 759–795. [Google Scholar] [CrossRef] [PubMed]
- Münzer, P.; Walker-Allgaier, B.; Geue, S.; Geuss, E.; Hron, G.; Rath, D.; Eißler, D.; Winter, S.; Schaeffeler, E.; Meinert, M.; et al. PDK1 Determines Collagen-Dependent Platelet Ca2+ Signaling and Is Critical to Development of Ischemic Stroke In Vivo. Arter. Thromb. Vasc. Biol. 2016, 36, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Maryanoff, B.E.; de Garavilla, L.; Greco, M.N.; Haertlein, B.J.; Wells, G.I.; Andrade-Gordon, P.; Abraham, W.M. Dual Inhibition of Cathepsin G and Chymase Is Effective in Animal Models of Pulmonary Inflammation. Am. J. Respir. Crit. Care Med. 2010, 181, 247–253. [Google Scholar] [CrossRef]
- Baldini, M.; Manfredi, A.; Maugeri, N. Targeting Platelet-Neutrophil Interactions in Giant-Cell Arteritis. Curr. Pharm. Des. 2014, 20, 567–574. [Google Scholar] [CrossRef]
- Ma, Y.; Yabluchanskiy, A.; Lindsey, M.L. Neutrophil Roles in Left Ventricular Remodeling Following Myocardial Infarction. Fibrogenesis Tissue Repair 2013, 6, 11. [Google Scholar] [CrossRef]
- Ando, K.; Hasegawa, K.; Shindo, K.; Furusawa, T.; Fujino, T.; Kikugawa, K.; Nakano, H.; Takeuchi, O.; Akira, S.; Akiyama, T.; et al. Human Lactoferrin Activates NF-κB through the Toll-like Receptor 4 Pathway While It Interferes with the Lipopolysaccharide-Stimulated TLR4 Signaling. FEBS J. 2010, 277, 2051–2066. [Google Scholar] [CrossRef] [PubMed]
- Raqib, R.; Mia, S.M.S.; Qadri, F.; Alam, T.I.; Alam, N.H.; Chowdhury, A.K.; Mathan, M.M.; Andersson, J. Innate Immune Responses in Children and Adults with Shigellosis. Infect. Immun. 2000, 68, 3620–3629. [Google Scholar] [CrossRef]
- Özsan, H.G.; Pehlıvan, M.; Demırkan, F.; Ündar, B.; Sayan, M.; Çehrelı, C. High Lactoferrin Levels in Disseminated Intravascular Coagulation and Its Possible Negative Role in Coagulation. Thromb. Res. 2000, 98, 111–114. [Google Scholar] [CrossRef]
- Grant, L.; Shearer, K.D.; Czopek, A.; Lees, E.K.; Owen, C.; Agouni, A.; Workman, J.; Martin-Granados, C.; Forrester, J.V.; Wilson, H.M.; et al. Myeloid-Cell Protein Tyrosine Phosphatase-1B Deficiency in Mice Protects Against High-Fat Diet and Lipopolysaccharide-Induced Inflammation, Hyperinsulinemia, and Endotoxemia through an IL-10 STAT3-Dependent Mechanism. Diabetes 2014, 63, 456–470. [Google Scholar] [CrossRef]
- Coquerel, D.; Neviere, R.; Delile, E.; Mulder, P.; Marechal, X.; Montaigne, D.; Renet, S.; Remy-Jouet, I.; Gomez, E.; Henry, J.-P.; et al. Gene Deletion of Protein Tyrosine Phosphatase 1B Protects Against Sepsis-Induced Cardiovascular Dysfunction and Mortality. Arter. Thromb. Vasc. Biol. 2018, 34, 1032–1044. [Google Scholar] [CrossRef]
- Avlan, D.; Taşkinlar, H.; Ünlü, A.; Öztürk, C.; Cinel, L.; Nayci, A.; Cinel, İ.; Aksöyek, S. The Role of Poly(ADP-Ribose) Synthetase Inhibition on the Intestinal Mucosal Barrier after Thermal Injury. Burns 2004, 30, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C.; Cuzzocrea, S.; Zingarelli, B.; O’Connor, M.; Salzman, A.L. Endothelial Dysfunction in a Rat Model of Endotoxic Shock. Importance of the Activation of Poly (ADP-Ribose) Synthetase by Peroxynitrite. J. Clin. Investig. 1997, 100, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ning, B. Signaling Pathways and Intervention Therapies in Sepsis. Signal Transduct. Target. Ther. 2021, 6, 407. [Google Scholar] [CrossRef]
- Cao, M.; Wang, G.; Xie, J. Immune Dysregulation in Sepsis: Experiences, Lessons and Perspectives. Cell Death Discov. 2023, 9, 465. [Google Scholar] [CrossRef]
- Nedeva, C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules 2021, 11, 1011. [Google Scholar] [CrossRef]
- Narasimhan, P.B.; Marcovecchio, P.; Hamers, A.A.J.; Hedrick, C.C. Nonclassical Monocytes in Health and Disease. Annu. Rev. Immunol. 2019, 37, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Hortová-Kohoutková, M.; Lázničková, P.; Bendíčková, K.; Zuani, M.D.; Andrejčinová, I.; Tomášková, V.; Suk, P.; Šrámek, V.; Helán, M.; Frič, J. Differences in Monocyte Subsets Are Associated with Short-Term Survival in Patients with Septic Shock. J. Cell. Mol. Med. 2020, 24, 12504–12512. [Google Scholar] [CrossRef]
- Wang, P.; Yang, S.; Li, C.; Ma, B.; Yi, M.; Chen, X.; Yu, M. Monocyte Subsets along with Their Inflammatory Cytokines in Septic Lung Injury: Anti-Inflammatory Effect of Sulfotransferase Homolog 2 Receptors Blockade. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Park, J.; Dean, L.S.; Jiyarom, B.; Gangcuangco, L.M.; Shah, P.; Awamura, T.; Ching, L.L.; Nerurkar, V.R.; Chow, D.C.; Igno, F.; et al. Elevated Circulating Monocytes and Monocyte Activation in COVID-19 Convalescent Individuals. Front. Immunol. 2023, 14, 1151780. [Google Scholar] [CrossRef]
- Chen, G.; Wen, D.; Chong, H.; Zhang, P.; Du, J.; Peng, G.; He, Y.; Zhang, K.; Zhang, A.; Deng, J. Value of Peripheral Blood Monocyte Subsets and CD64 Expression in the Diagnosis and Prognosis of Sepsis. Chin. Crit. Care Med. 2022, 34, 921–926. [Google Scholar] [CrossRef]
- Greco, M.; Mazzei, A.; Palumbo, C.; Verri, T.; Lobreglio, G. Flow Cytometric Analysis of Monocytes Polarization and Reprogramming from Inflammatory to Immunosuppressive Phase during Sepsis. EJIFCC 2019, 30, 371–384. [Google Scholar] [PubMed]
- Skrzeczyñska, J.; Kobylarz, K.; Hartwich, Z.; Zembala, M.; Pryjma, J. CD14+CD16+ Monocytes in the Course of Sepsis in Neonates and Small Children: Monitoring and Functional Studies. Scand. J. Immunol. 2002, 55, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Poehlmann, H.; Schefold, J.C.; Zuckermann-Becker, H.; Volk, H.-D.; Meisel, C. Phenotype Changes and Impaired Function of Dendritic Cell Subsets in Patients with Sepsis: A Prospective Observational Analysis. Crit. Care 2009, 13, R119. [Google Scholar] [CrossRef]
- Urbanski, K.; Ludew, D.; Filip, G.; Filip, M.; Sagan, A.; Szczepaniak, P.; Grudzien, G.; Sadowski, J.; Jasiewicz-Honkisz, B.; Sliwa, T.; et al. CD14+CD16++ “Nonclassical” Monocytes Are Associated with Endothelial Dysfunction in Patients with Coronary Artery Disease. Thromb. Haemost. 2017, 117, 971–980. [Google Scholar] [CrossRef]
- Buscher, K.; Marcovecchio, P.; Hedrick, C.C.; Ley, K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Front. Cardiovasc. Med. 2017, 4, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Wong, W.-C.; Sem, X.; Han, H.; Ong, S.-M.; Tan, Y.-C.; Yeap, W.-H.; Gan, C.-S.; Ng, K.-Q.; et al. Identification of Novel Functional Differences in Monocyte Subsets Using Proteomic and Transcriptomic Methods. J. Proteome Res. 2009, 8, 4028–4038. [Google Scholar] [CrossRef]
- Monneret, G. Advancing Our Understanding of Monocyte HLA-DR, S100A9, and the Potential for Individualized Therapies in Sepsis. Mil. Med. Res. 2023, 10, 28. [Google Scholar] [CrossRef]
- da Mota, N.V.F.; Brunialti, M.K.C.; Santos, S.S.; Machado, F.R.; Assuncao, M.; Azevedo, L.C.P.; Salomao, R. Immunophenotyping of Monocytes during Human Sepsis Shows Impairment in Antigen Presentation: A Shift Toward Nonclassical Differentiation and Upregulation of FCγRi-Receptor. SHOCK 2018, 50, 293–300. [Google Scholar] [CrossRef]
- Teh, Y.C.; Chooi, M.Y.; Chong, S.Z. Behind the Monocyte’s Mystique: Uncovering Their Developmental Trajectories and Fates. Discov. Immunol. 2023, 2, kyad008. [Google Scholar] [CrossRef]
- Tamura, A.; Hirai, H.; Yokota, A.; Kamio, N.; Sato, A.; Shoji, T.; Kashiwagi, T.; Torikoshi, Y.; Miura, Y.; Tenen, D.G.; et al. C/EBPβ Is Required for Survival of Ly6C−Monocytes. Blood 2017, 130, 1809–1818. [Google Scholar] [CrossRef]
- Mildner, A.; Schönheit, J.; Giladi, A.; David, E.; Lara-Astiaso, D.; Lorenzo-Vivas, E.; Paul, F.; Chappell-Maor, L.; Priller, J.; Leutz, A.; et al. Genomic Characterization of Murine Monocytes Reveals C/EBPβ Transcription Factor Dependence of Ly6C−Cells. Immunity 2017, 46, 849–862.e7. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.; Zhang, Q.; Zhang, Y.; Li, S.; Ran, X. Unraveling the Role of HIF-1α in Sepsis: From Pathophysiology to Potential Therapeutics—A Narrative Review. Crit. Care 2024, 28, 100. [Google Scholar] [CrossRef] [PubMed]
- Codo, A.C.; Davanzo, G.G.; Monteiro, L.d.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; Junior, C.A.O.d.B.; Crunfli, F.; et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020, 32, 437–446.e5. [Google Scholar] [CrossRef] [PubMed]
- Iske, J.; Fatimy, R.E.; Nian, Y.; Ghouzlani, A.; Eskandari, S.K.; Biefer, H.R.C.; Vasudevan, A.; Elkhal, A. NAD+ Prevents Septic Shock-Induced Death by Non-Canonical Inflammasome Blockade and IL-10 Cytokine Production in Macrophages. eLife 2024, 12, RP88686. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, X.; Escames, G.; Lei, W.; Zhang, X.; Li, M.; Jing, T.; Yao, Y.; Qiu, Z.; Wang, Z.; et al. The NLRP3 Inflammasome: Contributions to Inflammation-Related Diseases. Cell. Mol. Biol. Lett. 2023, 28, 51. [Google Scholar] [CrossRef]
- Busani, S.; Biasi, S.D.; Nasi, M.; Paolini, A.; Venturelli, S.; Tosi, M.; Girardis, M.; Cossarizza, A. Increased Plasma Levels of Mitochondrial DNA and Normal Inflammasome Gene Expression in Monocytes Characterize Patients with Septic Shock Due to Multidrug Resistant Bacteria. Front. Immunol. 2020, 11, 768. [Google Scholar] [CrossRef]
- Xue, Z.; Xi, Q.; Liu, H.; Guo, X.; Zhang, J.; Zhang, Z.; Li, Y.; Yang, G.; Zhou, D.; Yang, H.; et al. MiR-21 Promotes NLRP3 Inflammasome Activation to Mediate Pyroptosis and Endotoxic Shock. Cell Death Dis. 2019, 10, 461. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Q.; Li, Q.; Guo, S. PD-L1 Blockade Improves Survival in Sepsis by Reversing Monocyte Dysfunction and Immune Disorder. Inflammation 2024, 47, 114–128. [Google Scholar] [CrossRef]
- Santos, S.S.; Carmo, A.M.; Brunialti, M.K.C.; Machado, F.R.; Azevedo, L.C.; Assunção, M.; Trevelin, S.C.; Cunha, F.Q.; Salomao, R. Modulation of Monocytes in Septic Patients: Preserved Phagocytic Activity, Increased ROS and NO Generation, and Decreased Production of Inflammatory Cytokines. Intensive Care Med. Exp. 2016, 4, 5. [Google Scholar] [CrossRef]
- Iba, T.; Helms, J.; Connors, J.M.; Levy, J.H. The Pathophysiology, Diagnosis, and Management of Sepsis-Associated Disseminated Intravascular Coagulation. J. Intensiv. Care 2023, 11, 24. [Google Scholar] [CrossRef]
- Bode, C.; Weis, S.; Sauer, A.; Wendel-Garcia, P.; David, S. Targeting the Host Response in Sepsis: Current Approaches and Future Evidence. Crit. Care 2023, 27, 478. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Ronco, C. The Role of Endotoxin in Septic Shock. Crit. Care 2023, 27, 400. [Google Scholar] [CrossRef] [PubMed]
- Sirivongrangson, P.; Kulvichit, W.; Payungporn, S.; Pisitkun, T.; Chindamporn, A.; Peerapornratana, S.; Pisitkun, P.; Chitcharoen, S.; Sawaswong, V.; Worasilchai, N.; et al. Endotoxemia and Circulating Bacteriome in Severe COVID-19 Patients. Intensive Care Med. Exp. 2020, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.M.; Kellum, J.A. Endotoxic Septic Shock: Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 16185. [Google Scholar] [CrossRef]
- Ishijima, T.; Nakajima, K. Inflammatory Cytokines TNFα, IL-1β, and IL-6 Are Induced in Endotoxin-Stimulated Microglia through Different Signaling Cascades. Sci. Prog. 2021, 104, 00368504211054985. [Google Scholar] [CrossRef]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and Chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 2563–2582. [Google Scholar] [CrossRef]
- Brown, G.C. The Endotoxin Hypothesis of Neurodegeneration. J. Neuroinflamm. 2019, 16, 180. [Google Scholar] [CrossRef]
- Bhan, C.; Dipankar, P.; Chakraborty, P.; Sarangi, P.P. Role of Cellular Events in the Pathophysiology of Sepsis. Inflamm. Res. 2016, 65, 853–868. [Google Scholar] [CrossRef]
- Bouck, E.G.; Denorme, F.; Holle, L.A.; Middelton, E.A.; Blair, A.M.; de Laat, B.; Schiffman, J.D.; Yost, C.C.; Rondina, M.T.; Wolberg, A.S.; et al. COVID-19 and Sepsis Are Associated with Different Abnormalities in Plasma Procoagulant and Fibrinolytic Activity. Arter. Thromb. Vasc. Biol. 2020, 41, 401–414. [Google Scholar] [CrossRef]
- Immanuel, J.; Yun, S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023, 12, 1640. [Google Scholar] [CrossRef]
- Silva, J.C.; Gorenstein, M.V.; Li, G.-Z.; Vissers, J.P.C.; Geromanos, S.J. Absolute Quantification of Proteins by LCMSE A Virtue of Parallel ms Acquisition * S. Mol. Cell. Proteom. 2006, 5, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Cassoli, J.S.; Brandão-Teles, C.; Santana, A.G.; Souza, G.H.M.F.; Martins-de-Souza, D. Ion Mobility-Enhanced Data-Independent Acquisitions Enable a Deep Proteomic Landscape of Oligodendrocytes. Proteomics 2017, 17, 1700209. [Google Scholar] [CrossRef] [PubMed]
- Distler, U.; Kuharev, J.; Navarro, P.; Levin, Y.; Schild, H.; Tenzer, S. Drift Time-Specific Collision Energies Enable Deep-Coverage Data-Independent Acquisition Proteomics. Nat. Methods 2014, 11, 167–170. [Google Scholar] [CrossRef]
- Geromanos, S.J.; Hughes, C.; Ciavarini, S.; Vissers, J.P.C.; Langridge, J.I. Using Ion Purity Scores for Enhancing Quantitative Accuracy and Precision in Complex Proteomics Samples. Anal. Bioanal. Chem. 2012, 404, 1127–1139. [Google Scholar] [CrossRef]
- Silva, J.C.; Denny, R.; Dorschel, C.A.; Gorenstein, M.; Kass, I.J.; Li, G.-Z.; McKenna, T.; Nold, M.J.; Richardson, K.; Young, P.; et al. Quantitative Proteomic Analysis by Accurate Mass Retention Time Pairs. Anal. Chem. 2005, 77, 2187–2200. [Google Scholar] [CrossRef]
- Giles, K.; Pringle, S.D.; Worthington, K.R.; Little, D.; Wildgoose, J.L.; Bateman, R.H. Applications of a Travelling Wave-Based Radio-Frequency-only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004, 18, 2401–2414. [Google Scholar] [CrossRef]
- Souza, G.H.M.F.; Guest, P.C.; Martins-de-Souza, D. LC-MSE, Multiplex MS/MS, Ion Mobility, and Label-Free Quantitation in Clinical Proteomics. Methods Mol. Biol. 2016, 1546, 57–73. [Google Scholar] [CrossRef]
- Houel, S.; Abernathy, R.; Renganathan, K.; Meyer-Arendt, K.; Ahn, N.G.; Old, W.M. Quantifying the Impact of Chimera MS/MS Spectra on Peptide Identification in Large-Scale Proteomics Studies. J. Proteome Res. 2010, 9, 4152–4160. [Google Scholar] [CrossRef]
- Silva, W.M.; Folador, E.L.; Soares, S.C.; Souza, G.H.; Santos, A.V.; Sousa, C.S.; Figueiredo, H.; Miyoshi, A.; Le Loir, Y.; Silva, A.; et al. Label-free quantitative proteomics of Corynebacterium pseudotuberculosis isolates reveals differences between Biovars ovis and equi strains. BMC Genom. 2017, 18, 451. [Google Scholar] [CrossRef]
Gene | Accession | Description | Score | ANOVA (p) | Ratio | N 1 | C 1 | M 1 | S 1 | R 2 |
---|---|---|---|---|---|---|---|---|---|---|
ANXA3 | P12429 | Annexin A3 | 171.36 | 6.04 × 10−6 | 3.046 | + | ||||
HIST1H2AC | Q93077 | Histone H2A type 1-C | 44.50 | 7.00 × 10−6 | 3.087 | + | ||||
FLNB | O75369 | Filamin-B | 155.76 | 3.045 × 10−8 | 3.121 | + | ||||
GXYLT2 | A0PJZ3 | Glucoside xylosyltransferase 2 | 9.12 | 6.82 × 10−5 | 3.122 | + | ||||
IGSF10 | Q6WRI0 | Immunoglobulin superfamily member 10 | 63.37 | 2.88 × 10−6 | 3.125 | + | ||||
WDR90 | Q96KV7 | WD repeat-containing protein 90 | 46.32 | 0.0002 | 3.146 | + | ||||
ZEB2 | O60315 | Zinc finger E-box-binding homeobox 2 | 7.80 | 0.0001 | 3.167 | + | ||||
EPRS | P07814 | Bifunctional glutamate/proline--tRNA ligase | 19.40 | 9.10 × 10−5 | 3.168 | + | ||||
HYDIN | Q4G0P3 | Hydrocephalus-inducing protein homolog | 91.08 | 5.43 × 10−6 | 3.187 | + | ||||
ADGRD1 | Q6QNK2 | Adhesion G-protein coupled receptor D1 | 13.29 | 5.89 × 10−6 | 3.239 | + | ||||
RETN | Q9HD89 | Resistin | 24.98 | 0.0001 | 3.251 | + | ||||
LCN2 | P80188 | Neutrophil gelatinase-associated lipocalin | 53.16 | 1.11 × 10−6 | 3.255 | + | ||||
PDPK1 | O15530 | 3-phosphoinositide-dependent protein kinase 1 | 15.67 | 0.0001 | 3.284 | + | ||||
NNMT | P40261 | Nicotinamide N-methyltransferase | 13.64 | 1.56 × 10−5 | 3.286 | + | ||||
HIST1H2BK | O60814 | Histone H2B type 1-K | 68.54 | 5.53 × 10−5 | 3.356 | + | ||||
RNASE3 | P12724 | Eosinophil cationic protein | 35.48 | 0.0002 | 3.359 | + | ||||
ATP6V1B1 | C9JL73 | V-type proton ATPase subunit B, kidney isoform | 45.81 | 2.28 × 10−6 | 3.436 | + | ||||
DLC1 | Q96QB1 | Rho GTPase-activating protein 7 | 10.11 | 3.05 × 10−6 | 3.452 | + | ||||
HIST1H2BB | P33778 | Histone H2B type 1-B | 75.93 | 6.93 × 10−6 | 3.540 | + | ||||
MLH3 | Q9UHC1 | DNA mismatch repair protein Mlh3 | 36.53 | 4.81 × 10−7 | 3.599 | + | ||||
ZNF133 | P52736 | Zinc finger protein 133 | 7.84 | 0.0001 | 3.603 | + | ||||
SACM1L | Q9NTJ5 | Phosphatidylinositide phosphatase SAC1 | 25.19 | 6.30 × 10−6 | 3.625 | + | ||||
TLN2 | Q9Y4G6 | Talin-2 | 139.60 | 1.56 × 10−5 | 3.833 | + | ||||
LTF | P02788 | Lactotransferrin | 207.35 | 5.46 × 10−6 | 4.066 | + | ||||
PPP1CB | P62140 | Serine/threonine–protein phosphatase PP1-beta catalytic subunit | 36.26 | 1.12 × 10−5 | 4.134 | + | ||||
S100A8 | P05109 | Protein S100-A8 | 68.05 | 3.52 × 10−5 | 4.458 | + | ||||
PTPN1 | B4DSN5 | Tyrosine–protein phosphatase non-receptor type | 25.30 | 0.0001 | 4.506 | + | ||||
KLB | Q86Z14 | Beta-klotho | 15.35 | 6.19 × 10−6 | 4.515 | + | ||||
ANAPC5 | F5H0F9 | Anaphase-promoting complex subunit 5 | 14.87 | 7.71 × 10−5 | 4.525 | + | ||||
CTSG | P08311 | Cathepsin G | 137.54 | 2.36 × 10−7 | 4.539 | + | ||||
CHTF8 | P0CG12 | Chromosome transmission fidelity protein 8 homolog isoform 2 | 23.38 | 1.11 × 10−5 | 5.026 | + | ||||
C8B | P07358 | Complement component C8 beta | 13.87 | 1.36 × 10−6 | 5.059 | + | ||||
MPO | P05164 | Myeloperoxidase | 350.67 | 1.19 × 10−6 | 5.399 | + | ||||
EFTUD2 | Q15029 | 116 kDa U5 small nuclear ribonucleoprotein component | 51.23 | 3.93 × 10−6 | 5.491 | + | ||||
K7ERQ8 | Uncharacterized protein (Fragment) | 18.18 | 1.15 × 10−5 | 5.579 | + | |||||
TUBGCP5 | Q96RT8 | Gamma-tubulin complex component | 9.59 | 4.57 × 10−5 | 5.580 | + | ||||
FAM167A | Q96KS9 | Protein FAM167A | 15.10 | 2.78 × 10−6 | 6.212 | + | ||||
NRCAM | C9JYY6 | Neuronal cell adhesion molecule | 8.18 | 2.43 × 10−5 | 6.232 | + | ||||
S100A9 | P06702 | Protein S100-A9 | 141.73 | 3.65 × 10−6 | 7.217 | + | ||||
MATR3 | P43243 | Matrin-3 | 31.47 | 6.77 × 10−6 | 7.618 | + | ||||
HIST1H4A | P62805 | Histone H4 | 132.30 | 2.00 × 10−6 | 10.050 | + | ||||
CEACAM6 | P40199 | Carcinoembryonic antigen-related cell adhesion molecule 6 | 28.45 | 1.75 × 10−5 | 11.350 | + | ||||
KIR2DL2 | Q8N742 | KIR2DL2 | 14.60 | 1.18 × 10−5 | 11.410 | + | ||||
NUDC | Q9Y266 | Nuclear migration protein nudC | 15.40 | 3.04 × 10−76 | 11.518 | + | ||||
SH3TC2 | E9PDF1 | SH3 domain and tetratricopeptide repeat-containing protein 2 | 28.98 | 2.27 × 10−6 | 18.110 | − | ||||
KRT9 | P35527 | Keratin, type I cytoskeletal 9 | 10.62 | 1.42 × 10−7 | 9.427 | − | ||||
ACP1 | P24666 | Low-molecular-weight phosphotyrosine protein phosphatase | 9.94 | 1.08 × 10−5 | 5.852 | − | ||||
KRT1 | P04264 | Keratin, type II cytoskeletal 1 | 57.80 | 6.76 × 10−7 | 5.782 | − | ||||
KRT10 | P13645 | Keratin, type I cytoskeletal 10 | 137.21 | 6.77 × 10−6 | 5.695 | − | ||||
LZTR1 | Q8N653 | Leucine-zipper-like transcriptional regulator 1 | 11.91 | 4.68 × 10−6 | 4.618 | − | ||||
ATP13A3 | Q9H7F0 | Probable cation-transporting ATPase 13A3 | 28.15 | 1.61 × 10−5 | 4.614 | − | ||||
ZNF677 | Q86XU0 | Zinc finger protein 677 | 7.78 | 4.14 × 10−5 | 4.543 | − | ||||
ITGB3 | P05106 | Integrin beta-3 | 174.14 | 2.37 × 10−6 | 4.476 | − | ||||
TNC | P24821 | Tenascin | 36.37 | 8.73 × 10−6 | 4.307 | − | ||||
ZFHX2 | Q9C0A1 | Zinc finger homeobox protein 2 | 14.11 | 0.0001 | 4.104 | − | ||||
ESRP2 | Q9H6T0 | Epithelial splicing regulatory protein 2 | 16.19 | 1.7 × 10−5 | 4.011 | − | ||||
MYH10 | P35580 | Myosin-10 | 76.79 | 3.25 × 10−5 | 3.879 | − | ||||
COG4 | Q9H9E3 | Conserved oligomeric Golgi complex subunit 4 | 14.50 | 0.0001 | 3.870 | − | ||||
PSMC4 | P43686 | 26S protease regulatory subunit 6B | 10.90 | 8.76 × 10−5 | 3.762 | − | ||||
ATAD2B | Q9ULI0 | ATPase family AAA domain-containing protein 2B | 13.66 | 8.72 × 10−5 | 3.703 | − | ||||
PGK2 | P07205 | Phosphoglycerate kinase 2 | 94.21 | 2.49 × 10−6 | 3.701 | − | ||||
ALB | P02768 | Serum albumin | 164.05 | 4.34 × 10−5 | 3.670 | − | ||||
ACAD9 | Q9H845 | Acyl-CoA dehydrogenase family member 9, mitochondrial | 14.60 | 4.86 × 10−6 | 3.262 | − | ||||
CCT8 | P50990 | T-complex protein 1 subunit theta | 76.19 | 8.92 × 10−6 | 3.255 | − | ||||
HMGB2 | P26583 | High-mobility group protein B2 | 63.46 | 2.43 × 10−5 | 3.059 | − | ||||
CLCN4 | P51793 | H(+)/Cl(−) exchange transporter 4 | 8.30 | 0.0003 | 2.927 | − | ||||
MYO5 | G3V394 | Unconventional myosin-Va | 128.70 | 1.25 × 10−6 | 2.855 | − |
Protein | Effector | Effect | Ref. |
---|---|---|---|
LTF | CEBPE | CEBPE is involved in the positive regulation of lactoferrin gene expression | [16] |
CEBPA | C/EBPα binds to the C/EBP site in the lactoferrin promoter in induced myeloid cells | [17] | |
MPO | CEBPE | Upregulation of CBPE induces expression of myeloperoxidase | [18] |
LTF | LTF decreased the serum C-reactive protein level and the inducible nitric oxide synthase (iNOS) and myeloperoxidase (MPO) gene expression levels | [19] | |
HIF-1 | Activation of HIF-1 by P4HA2 gene silencing attenuated myeloperoxidase expression in myocardium following ischemia–reperfusion | [20] | |
IL1-RA | Interleukin-1ra and anti-TNF-α also significantly lowered MPO levels | [21] | |
CEBPA | C/EBPα inhibits monocyte/macrophage differentiation and initiates granulocyte differentiation by inducing myeloperoxidase gene expressions | [22] | |
RETN | CEBPE | Human leukocyte resistin expression depends on the myeloid-specific nuclear transcription factor CEBPE | [23] |
CEBPB | Resistin stimulates the expression of chemokine genes in chondrocytes via the combinatorial regulation of C/EBPβ and NF-κB. | [24] | |
HIF-1 | Hypoxia-inducible factor-1 results in the increased production of leptin, resistin, TNF, and IL-6 | [25] | |
IL1-RA | IL-1Ra treatment for reduction in leptin and resistin levels | [26] | |
CEBPA | Resistin gene promoter carries the C/EBP-α binding site, which is necessary and sufficient for transcription from the resistin gene promoter | [27] | |
LCN2 | CEBPE | Stable inducible expression of CEBPE in the murine fibroblast cell line NIH 3T-activated expression of mRNA LCN2 | [28] |
INFLAMMASOME | Inflammasome-mediated production of antimicrobial peptides, including Reg3β, Reg3γ, S100A8, S100A9, and LCN2 | [29] | |
CEBPB | LCN2 promoter region contains the binding sites of several transcription factors such as NF-κB, STAT1, STAT3, and CEBPB | [30] | |
IL17 | IL17 positively regulates LCN2 expression. | [31] | |
CEBPA | IL6 and LCN2 promoters require both NF-κB and C/EBP elements | [32] | |
S100A8S100A9 | S100A3 | S100A3 co-expression inhibits AP-1 and NF-κB-dependent transcription upon S100A8 and S100A9 over-expression | [33] |
INFLAMMASOME | Inflammasome-mediated production of antimicrobial peptides, including Reg3β, Reg3γ, S100A8, S100A9, and LCN4 | [29] | |
LTF | Lactoferrin induces the production of chemokines (MIP-1a, MCP-1, and S100A9) | [34] | |
CEBPB | IL-1α-induced S100A9 expression is signaled through the IL-1 receptor and p38 MAPK pathways, resulting in the binding of CEBPB to the upstream S100A9 promoter | [35,36] | |
HIF-1 | Hypoxia and HIF-1 increase S100A8 and S100A9 expression | [37] | |
IL1-RA | IL-1Ra inhibited interleukin-1 α-induced S100A8 and S100A9 gene expression | [38] | |
IL17F | IL-17 stimulates the expression of human beta-defensin- 2, S100A9 and enhances the expression of S100A7 and S100A9 | [39] | |
CEBPA | Increase in the presence of reactive oxygen species and the expression levels of the transcription factors Klf-5 and CEBPA in neutrophils, both of which promote S100A8/S100A9 expression | [40] | |
PDPK1 | LTF | Lactotransferrin downregulates the level of 3-phosphoinositide-dependent protein kinase 1 (PDK1) transcription and subsequently inhibits other proteins | [41] |
HIF-1 | Repression of hypoxia-inducible factor-1 activity, attenuate PDK-1 expression | [42] | |
HIST4H4 | CEBPB | CEBPB can significantly transactivate the expression of HIST4H4 | [43] |
NNMT | CEBPB | NNMT promoter region also contains the consensus sequences for signal transducers and activators of transcription binding elements | [44] |
CEACAM6 | HIF-1 | Hypoxia-inducible factor-1 transcription factor increases CEACAM6 expression in intestinal epithelial cells | [45] |
Protein | Effector | Function Protein Effector | Effect | Ref. |
---|---|---|---|---|
KRT1 | GRHL2 | Transcription factor | Downregulate KRT1 and KRT10 | [46] |
NFX1 | Nuclear transcription factor | Upregulate KRT1 and KRT10 | [47] | |
BCR | Breakpoint cluster region protein | Loss of BCR reduces expression of KRT1 and KRT10 | [48] | |
PLAT | Plasminogen activator, tissue | Plays a role in the expression of KRT1 and KRT10 | [49] | |
OSM | Oncostatin M | Downregulate mRNA expression | [50] | |
KRT10 | GRHL2 | Transcription factor | Downregulate KRT1 and KRT10 | [46] |
NFX1 | Nuclear transcription factor | Upregulate KRT1 and KRT10 | [47] | |
COLLAGEN | Matrix protein | Downregulate the mRNA expression KRT10 | [51] | |
BCR | Breakpoint cluster region protein | Loss of BCR reduces expression of KRT1 and KRT10 | [48] | |
TGFA | Transforming grown factor | Suppress KRT10 expression, promoted late terminal differentiation | [52] | |
FGF2 | Fibroblast growth factor 2 | Downregulate the KRT10 expression | [53] | |
PLAT | Plasminogen activator, tissue | Plays a role in the expression of KRT1 and KRT10 | [49] | |
ITGA3 | Integrin alpha 3 | Inhibition KRT10 production | [54] | |
OSM | Oncostatin M | Decrease expression | [55] | |
ABL | GRHL2 | Transcription factor | Inhibits expression ABL | [56] |
COLLAGEN | Matrix protein | Inhibit albumin production at short times, but enhances albumin production at longer times | [57] | |
TGFA | Transforming grown factor | Stimulate albumin synthesis | [58] | |
FGF2 | Fibroblast growth factor 2 | Induce expression | [59] | |
ILK | Integrin like kinase | ALB mRNA expression is downregulated by ILK | [60] | |
OSM | Oncostatin M | Upregulate production | [61] | |
ITGB3 | COLLAGEN | Matrix protein | Enhance β3 integrin tyrosine phosphorylation by adhesion platelets to collagen | [62] |
TGFA | Transforming grown factor | Stimulate ITGB3 expression | [63] | |
ITGA3 | Integrin alpha 3 | Enhance the expression | [64] | |
TNC | COLLAGEN | Matrix protein | Tenascin-C mRNA expression is reduced by native collagen and is upregulated by denatured collagen | [65] |
FGF2 | Fibroblast growth factor 2 | Upregulator of tenascin expression and activation | [66] | |
ILK | Integrin like kinase | Induce expression TNC | [67] | |
OSM | Oncostatin M | Inhibit mRNA expression | [68] | |
MYH10 | FGF2 | Fibroblast growth factor 2 | Decrease MYH10 expression | [69] |
ILK | Integrin like kinase | Regulate MYH10 expression | [70] | |
ESRP2 | FGF2 | Fibroblast growth factor 2 | Repress the levels of ESRP2 mRNA | [71] |
PGK2 | FGF2 | Fibroblast growth factor 2 | Modulate transcription of PGK-2 genes | [72] |
Protein | Effect | Action | Ref. |
---|---|---|---|
RETN | Inflammation | Mediated chronic inflammation can lead to atherosclerosis, and other cardiometabolic diseases | [73] |
Vascular damage | Major inducer of endothelial damage through the induction of permeability | [74] | |
Thrombosis | Resistin an adipokine associated with the metabolic syndrome is believed to have a role in thrombotic conditions. | [75] | |
S100A8 | Endotoxemia | S100A8 administration attenuated inflammation and injury in a mouse model of endotoxemia | [76] |
Inflammation | S100A8 important mediators of various processes during chronic inflammation | [77] | |
Vascular damage | High S100A8 expression leads to endothelial damage by inducing the apoptosis and death of endothelial cells | [78] | |
Thrombosis | S100A8 which is secreted by trophoblast cells probably regulates the level of macrophage activation and procoagulant factors | [79] | |
S100A9 | Inflammation | S100A9, an important pro-inflammatory mediator in acute and chronic inflammation | [80] |
Vascular damage | S100A8/S100A9 is released in high amounts at sites of inflammation, S100A8/S100A9-induced endothelial damage | [81] | |
Thrombosis | Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis | [82] | |
MPO | Endotoxemia | MPO can aggravate this inflammatory response in rodent models of endotoxemia | [83] |
Inflammation | MPO plays an important role in the initiation and progression of acute and chronic inflammation. | [84] | |
Vascular damage | MPO consumes nitric oxide, leading to vasoconstriction and promoting endothelial damage | [85] | |
Thrombosis | Hemoglobin-Hp2-2 complexes may promote a pro-inflammatory macrophage phenotype via oxidative mechanisms (MPO) leading to plaque destabilization and atherothrombosis | [86] | |
LCN2 | Endotoxemia | Acute endotoxemia is associated with upregulation of lipocalin 24p3/Lcn2 in lung and liver | [87] |
Inflammation | LCN2 is involved in chronic inflammation | [88] | |
Vascular damage | LCN2 supposedly mediates vascular damage and plaque rupture. | [89] | |
Thrombosis | LCN2 could have an important role in thrombotic events associated with polycythemia vera and essential thrombocythemia | [90] | |
PDPK1 | Inflammation | Deletion of PDPK1 induces chronic inflammation of the intestine | [91] |
Thrombosis | PDK1 is required for Ca(2+)-dependent platelet activation on stimulation of collagen receptor glycoprotein VI, arterial thrombotic occlusion, and ischemic stroke in vivo | [92] | |
CTSG | Inflammation | CTSG is thought to contribute to self-propagating, chronic inflammation. | [93] |
Vascular damage | CTSG causes the activation of bystander platelets, enhances vascular damage and inhibits fibrinolysis | [94] | |
Thrombosis | CTSG is a potent platelet activator and promotes intravascular thrombosis, thus contributing to the formation of a thrombus clot | [95] | |
LTF | Endotoxemia | Lactoferrin suppresses endotoxemia by interfering with lipopolysaccharide dependent TLR4 activation | [96] |
Inflammation | Persistent production of lactoferrin in pediatric patients may contribute to chronic inflammation in the rectum | [97] | |
Thrombosis | Lactoferrin may play a role in the pathogenesis of disseminated intravascular coagulation and thrombotic complications | [98] | |
PTPN1 | Endotoxemia | PTP1 not protect lipopolysaccharide-induced inflammation, hyperinsulinemia, and endotoxemia through an IL-10 STAT3-dependent mechanism. | [99] |
Vascular damage | Cytokines, ROS, and COX trigger an acute inflammatory response and induce vascular damage that may be reduced by PTP1B deletion | [100] | |
EPRS | Endotoxemia | EPRS inhibition has beneficial effects against organ dysfunction due to reperfusion injury and endotoxemia | [101] |
Vascular damage | PARS activation plays a role in the pathogenesis of endothelial injury in endotoxin shock. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, P.T.; de Souza, A.G.; Bastos, V.A.F.; Miguel, E.L.; Ramos, A.C.S.; Cameron, L.C.; Goulart, L.R.; Cunha, T.M. The Modulation of Septic Shock: A Proteomic Approach. Int. J. Mol. Sci. 2024, 25, 10641. https://doi.org/10.3390/ijms251910641
Alves PT, de Souza AG, Bastos VAF, Miguel EL, Ramos ACS, Cameron LC, Goulart LR, Cunha TM. The Modulation of Septic Shock: A Proteomic Approach. International Journal of Molecular Sciences. 2024; 25(19):10641. https://doi.org/10.3390/ijms251910641
Chicago/Turabian StyleAlves, Patrícia Terra, Aline Gomes de Souza, Victor Alexandre F. Bastos, Eduarda L. Miguel, Augusto César S. Ramos, L. C. Cameron, Luiz Ricardo Goulart, and Thúlio M. Cunha. 2024. "The Modulation of Septic Shock: A Proteomic Approach" International Journal of Molecular Sciences 25, no. 19: 10641. https://doi.org/10.3390/ijms251910641