Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy
Abstract
:1. Introduction
2. Results
2.1. Range of Outer Retinal Disease Severity
2.2. Extrafoveal Visual Function
2.3. Visual Function Immediately Surrounding the Anatomical Fovea
2.4. Spatial Vision Driven by S Cones and Rods
2.5. Color Discrimination
2.6. Cone Photoreceptor Mosaic
2.7. Long-Term Changes
3. Discussion
3.1. Macular Light Sensitivity
3.2. Extramacular Light Sensitivity
3.3. Color Vision
3.4. Spatial Vision
3.5. Cone Photoreceptor Identity and Density
3.6. Likelihood of Vision Improvement in BCM
3.7. Proposed Outcomes for a Clinical Trial
4. Materials and Methods
4.1. Patients
4.2. En Face and Cross-Sectional Imaging
4.3. Perimetry, Spectral Sensitivity, and Microperimetry
4.4. Spatial Vision with Grating Acuities
4.5. Color Vision
4.6. Adaptive Optics (AO) Imaging
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nathans, J.; Davenport, C.M.; Maumenee, I.H.; Lewis, R.A.; Hejtmancik, J.F.; Litt, M.; Lovrien, E.; Weleber, R.; Bachynski, B.; Zwas, F.; et al. Molecular genetics of human blue cone monochromacy. Science 1989, 245, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Wissinger, B.; Baumann, B.; Buena-Atienza, E.; Ravesh, Z.; Cideciyan, A.V.; Stingl, K.; Audo, I.; Meunier, I.; Bocquet, B.; Traboulsi, E.I.; et al. The landscape of submicroscopic structural variants at the OPN1LW/OPN1MW gene cluster on Xq28 underlying blue cone monochromacy. Proc. Natl. Acad. Sci. USA 2022, 119, e2115538119. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Hufnagel, R.B.; Carroll, J.; Sumaroka, A.; Luo, X.; Schwartz, S.B.; Dubra, A.; Land, M.; Michaelides, M.; Gardner, J.C.; et al. Human cone visual pigment deletions spare sufficient photoreceptors to warrant gene therapy. Hum. Gene Ther. 2013, 24, 993–1006. [Google Scholar] [CrossRef]
- Luo, X.; Cideciyan, A.V.; Iannaccone, A.; Roman, A.J.; Ditta, L.C.; Jennings, B.J.; Yatsenko, S.A.; Sheplock, R.; Sumaroka, A.; Swider, M.; et al. Blue cone monochromacy: Visual function and efficacy outcome measures for clinical trials. PLoS ONE 2015, 10, e0125700. [Google Scholar] [CrossRef]
- Roman, A.J.; Cideciyan, A.V.; Matsui, R.; Sheplock, R.; Schwartz, S.B.; Jacobson, S.G. Outcome measure for the treatment of cone photoreceptor diseases: Orientation to a scene with cone-only contrast. BMC Ophthalmol. 2015, 15, 98. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Roman, A.J.; Jacobson, S.G.; Yan, B.; Pascolini, M.; Charng, J.; Pajaro, S.; Nirenberg, S. Developing an outcome measure with high luminance for optogenetics treatment of severe retinal degenerations and for gene therapy of cone diseases. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3211–3221. [Google Scholar] [CrossRef]
- Sumaroka, A.; Garafalo, A.V.; Cideciyan, A.V.; Charng, J.; Roman, A.J.; Choi, W.; Saxena, S.; Aksianiuk, V.; Kohl, S.; Wissinger, B.; et al. Blue cone monochromacy caused by the C203R missense mutation or large deletion mutations. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5762–5772. [Google Scholar] [CrossRef]
- Sumaroka, A.; Cideciyan, A.V.; Sheplock, R.; Wu, V.; Kohl, S.; Wissinger, B.; Jacobson, S.G. Foveal therapy in blue cone monochromacy: Predictions of visual potential from artificial intelligence. Front. Neurosci. 2020, 14, 800. [Google Scholar] [CrossRef]
- Semenov, E.P.; Sheplock, R.; Roman, A.J.; McGuigan, D.B.; Swider, M.; Cideciyan, A.V.; Jacobson, S.G. Reading performance in blue cone monochromacy: Defining an outcome measure for a clinical trial. Transl. Vis. Sci. Technol. 2020, 9, 13. [Google Scholar] [CrossRef]
- Mascio, A.A.; Roman, A.J.; Cideciyan, A.V.; Sheplock, R.; Wu, V.; Garafalo, A.V.; Sumaroka, A.; Pirkle, S.; Kohl, S.; Wissinger, B.; et al. Color vision in blue cone monochromacy: Outcome measures for a clinical trial. Transl. Vis. Sci. Technol. 2023, 12, 25. [Google Scholar] [CrossRef]
- Smallwood, P.M.; Olveczky, B.P.; Williams, G.L.; Jacobs, G.H.; Reese, B.E.; Meister, M.; Nathans, J. Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision. Proc. Natl. Acad. Sci. USA 2003, 100, 11706–11711. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, K.; Hauswirth, W.W.; Li, Q.; Connor, T.B.; Kuchenbecker, J.A.; Mauck, M.C.; Neitz, J.; Neitz, M. Gene therapy for red-green colour blindness in adult primates. Nature 2009, 461, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, W.T.; Du, W.; Zhu, P.; Li, J.; Xu, F.; Sun, J.; Gerstner, C.D.; Baehr, W.; Boye, S.L.; et al. Gene-based therapy in a mouse model of blue cone monochromacy. Sci. Rep. 2017, 7, 6690. [Google Scholar] [CrossRef]
- Ma, X.; Sechrest, E.R.; Fajardo, D.; Zhu, P.; Dyka, F.; Wang, Y.; Lobanova, E.; Boye, S.E.; Baehr, W.; Deng, W.T. Gene Therapy in Opn1mw(-/-)/Opn1sw(-/-) mice and implications for blue cone monochromacy patients with deletion mutations. Hum. Gene Ther. 2022, 33, 708–718. [Google Scholar] [CrossRef]
- Deng, W.T.; Li, J.; Zhu, P.; Freedman, B.; Smith, W.C.; Baehr, W.; Hauswirth, W.W. Rescue of M-cone function in aged Opn1mw-/- mice, a model for late-stage blue cone monochromacy. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3644–3651. [Google Scholar] [CrossRef]
- Deng, W.T.; Li, J.; Zhu, P.; Chiodo, V.A.; Smith, W.C.; Freedman, B.; Baehr, W.; Pang, J.; Hauswirth, W.W. Human L- and M-opsins restore M-cone function in a mouse model for human blue cone monochromacy. Mol. Vis. 2018, 24, 17–28. [Google Scholar]
- Hanna, K.; Nieves, J.; Dowd, C.; Bender, K.O.; Sharma, P.; Singh, B.; Renz, M.; Ver Hoeve, J.N.; Cepeda, D.; Gelfman, C.M.; et al. Preclinical evaluation of ADVM-062, a novel intravitreal gene therapy vector for the treatment of blue cone monochromacy. Mol. Ther. 2023, 31, 2014–2027. [Google Scholar] [CrossRef]
- Dalkara, D.; Byrne, L.C.; Klimczak, R.R.; Visel, M.; Yin, L.; Merigan, W.H.; Flannery, J.G.; Schaffer, D.V. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 2013, 5, 189ra76. [Google Scholar] [CrossRef]
- Khabou, H.; Garita-Hernandez, M.; Chaffiol, A.; Reichman, S.; Jaillard, C.; Brazhnikova, E.; Bertin, S.; Forster, V.; Desrosiers, M.; Winckler, C.; et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight. 2018, 3, e96029. [Google Scholar] [CrossRef]
- Grishanin, R.; Vuillemenot, B.; Sharma, P.; Keravala, A.; Greengard, J.; Gelfman, C.; Blumenkrantz, M.; Lawrence, M.; Hu, W.; Kiss, S.; et al. Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol. Ther. 2019, 27, 118–129. [Google Scholar] [CrossRef]
- Sahel, J.A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J.N.; Esposti, S.D.; Delaux, A.; de Saint Aubert, J.B.; de Montleau, C.; et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 2021, 27, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.; Obolensky, A.; Averbukh, E.; Desrosiers, M.; Ezra-Elia, R.; Honig, H.; Yamin, E.; Rosov, A.; Dvir, H.; Gootwine, E.; et al. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther. 2022, 29, 624–635. [Google Scholar] [CrossRef] [PubMed]
- Ail, D.; Ren, D.; Brazhnikova, E.; Nouvel-Jaillard, C.; Bertin, S.; Mirashrafi, S.B.; Fisson, S.; Dalkara, D. Systemic and local immune responses to intraocular AAV vector administration in non-human primates. Mol. Ther. Methods Clin. Dev. 2022, 24, 306–316. [Google Scholar] [CrossRef]
- Charng, J.; Tan, R.; Luu, C.D.; Sadigh, S.; Stambolian, D.; Guymer, R.H.; Jacobson, S.G.; Cideciyan, A.V. Imaging lenticular autofluorescence in older subjects. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4940–4947. [Google Scholar] [CrossRef]
- Curcio, C.A.; Sloan, K.R.; Kalina, R.E.; Hendrickson, A.E. Human photoreceptor topography. J. Comp. Neurl. 1990, 292, 497–523. [Google Scholar] [CrossRef]
- Weiss, A.H.; Biersdorf, W.R. Blue cone monochromatism. J. Pediatr. Ophthalmol. Strabismus. 1989, 26, 218–223. [Google Scholar] [CrossRef]
- Ayyagari, R.; Kakuk, L.E.; Bingham, E.L.; Szczesny, J.J.; Kemp, J.; Toda, Y.; Felius, J.; Sieving, P.A. Spectrum of color gene deletions and phenotype in patients with blue cone monochromacy. Hum. Genet. 2000, 107, 75–82. [Google Scholar] [CrossRef]
- Michaelides, M.; Johnson, S.; Simunovic, M.P.; Bradshaw, K.; Holder, G.; Mollon, J.D.; Moore, A.T.; Hunt, D.M. Blue cone monochromatism: A phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye 2005, 19, 2–10. [Google Scholar] [CrossRef]
- Reitner, A.; Sharpe, L.T.; Zrenner, E. Is colour vision possible with only rods and blue-sensitive cones? Nature 1991, 352, 798–800. [Google Scholar] [CrossRef]
- Scoles, D.; Flatter, J.A.; Cooper, R.F.; Langlo, C.S.; Robison, S.; Neitz, M.; Weinberg, D.V.; Pennesi, M.E.; Han, D.P.; Dubra, A.; et al. Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina 2016, 36, 91–103. [Google Scholar] [CrossRef]
- Patterson, E.J.; Kalitzeos, A.; Kane, T.M.; Singh, N.; Kreis, J.; Pennesi, M.E.; Hardcastle, A.J.; Neitz, J.; Neitz, M.; Michaelides, M.; et al. Foveal cone structure in patients with blue cone monochromacy. Investig. Ophthalmol. Vis. Sci. 2022, 63, 23. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Krishnan, A.K.; Roman, A.J.; Sumaroka, A.; Swider, M.; Jacobson, S.G. Measures of function and structure to determine phenotypic features, natural history, and treatment outcomes in inherited retinal diseases. Annu. Rev. Vis. Sci. 2021, 7, 747–772. [Google Scholar] [CrossRef] [PubMed]
- Csaky, K.; Ferris, F., 3rd; Chew, E.Y.; Nair, P.; Cheetham, J.K.; Duncan, J.L. Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3456–3463. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.A.; Iannaccone, A.; Ali, R.R.; Arshavsky, V.Y.; Audo, I.; Bainbridge, J.W.B.; Besirli, C.G.; Birch, D.G.; Branham, K.E.; Cideciyan, A.V.; et al. Advancing clinical trials for inherited retinal diseases: Recommendations from the second Monaciano symposium. Transl. Vis. Sci. Technol. 2020, 9, 2. [Google Scholar] [CrossRef]
- Schmetterer, L.; Scholl, H.; Garhofer, G.; Janeschitz-Kriegl, L.; Corvi, F.; Sadda, S.R.; Medeiros, F.A. Endpoints for clinical trials in ophthalmology. Prog. Retin. Eye Res 2023, 97, 101160. [Google Scholar] [CrossRef]
- Wandell, B.A.; Winawer, J. Imaging retinotopic maps in the human brain. Vision Res. 2011, 51, 718–737. [Google Scholar] [CrossRef]
- Ayyagari, R.; Kakuk, L.E.; Coats, C.L.; Bingham, E.L.; Toda, Y.; Felius, J.; Sieving, P.A. Bilateral macular atrophy in blue cone monochromacy (BCM) with loss of the locus control region (LCR) and part of the red pigment gene. Mol. Vis. 1999, 5, 13. [Google Scholar]
- Carroll, J.; Dubra, A.; Gardner, J.C.; Mizrahi-Meissonnier, L.; Cooper, R.F.; Dubis, A.M.; Nordgren, R.; Genead, M.; Connor, T.B., Jr.; Stepien, K.E.; et al. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. Investig. Ophthalmol. Vis. Sci. 2012, 53, 8006–8015. [Google Scholar] [CrossRef]
- Roman, A.J.; Powers, C.A.; Semenov, E.P.; Sheplock, R.; Aksianiuk, V.; Russell, R.C.; Sumaroka, A.; Garafalo, A.V.; Cideciyan, A.V.; Jacobson, S.G. Short-wavelength sensitive cone (S-cone) testing as an outcome measure for NR2E3 clinical treatment trials. Int. J. Mol. Sci. 2019, 20, 2497. [Google Scholar] [CrossRef]
- Simunovic, M.P.; Hess, K.; Avery, N.; Mammo, Z. Threshold versus intensity functions in two-colour automated perimetry. Ophthalmic. Physiol. Opt. 2021, 41, 157–164. [Google Scholar] [CrossRef]
- Oertli, J.M.; Pfau, K.; Scholl, H.P.N.; Jeffrey, B.G.; Pfau, M. Establishing fully-automated fundus-controlled dark adaptometry: A validation and retest-reliability study. Transl. Vis. Sci. Technol. 2023, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Simunovic, M.P.; Mammo, Z. Mechanisms of cone sensitivity loss in retinitis pigmentosa. Ophthalmic. Physiol. Opt. 2024, 44, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.; Lindner, M.; Fleckenstein, M.; Finger, R.P.; Rubin, G.S.; Harmening, W.M.; Morales, M.U.; Holz, F.G.; Schmitz-Valckenberg, S. Test-retest reliability of scotopic and mesopic fundus-controlled perimetry using a modified MAIA (Macular Integrity Assessment) in normal eyes. Ophthalmologica 2017, 237, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.; Jolly, J.K.; Wu, Z.; Denniss, J.; Lad, E.M.; Guymer, R.H.; Fleckenstein, M.; Holz, F.G.; Schmitz-Valckenberg, S. Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials. Prog. Retin. Eye Res. 2021, 82, 100907. [Google Scholar] [CrossRef] [PubMed]
- Aleman, T.S.; Cideciyan, A.V.; Windsor, E.A.M.; Schwartz, S.B.; Swider, M.; Chico, J.D.; Sumaroka, A.; Pantelyat, A.Y.; Duncan, K.G.; Gardner, L.M.; et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1319–1329. [Google Scholar] [CrossRef]
- Duncan, J.L.; Aleman, T.S.; Gardner, L.M.; De Castro, E.; Marks, D.A.; Emmons, J.M.; Bieber, M.L.; Steinberg, J.D.; Bennett, J.; Stone, E.M.; et al. Macular pigment and lutein supplementation in choroideremia. Exp. Eye Res. 2002, 74, 371–381. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; Jaffe, G.J.; Johnson, C.A.; Farsiu, S.; Lad, E.M.; Guymer, R.; Rosenfeld, P.; Hubschman, J.P.; Constable, I.; et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: A randomized clinical trial. Ophthalmology 2019, 126, 540–549. [Google Scholar] [CrossRef]
- Owsley, C.; Jackson, G.R.; Cideciyan, A.V.; Huang, Y.; Fine, S.L.; Ho, A.C.; Maguire, M.G.; Lolley, V.; Jacobson, S.G. Psychophysical evidence for rod vulnerability in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2000, 41, 267–273. [Google Scholar]
- Ferris, F.L., 3rd; Kassoff, A.; Bresnick, G.H.; Bailey, I. New visual acuity charts for clinical research. Am. J. Ophthalmol. 1982, 94, 91–96. [Google Scholar] [CrossRef]
- Beck, R.W.; Moke, P.S.; Turpin, A.H.; Ferris, F.L., 3rd; SanGiovanni, J.P.; Johnson, C.A.; Birch, E.E.; Chandler, D.L.; Cox, T.A.; Blair, R.C.; et al. A computerized method of visual acuity testing: Adaptation of the early treatment of diabetic retinopathy study testing protocol. Am. J. Ophthalmol. 2003, 135, 194–205. [Google Scholar] [CrossRef]
- Jolly, J.K.; Juenemann, K.; Boagey, H.; Nadsady, M.; Bridge, H.; Maclaren, R.E. Validation of electronic visual acuity (EVA) measurement against standardised ETDRS charts in patients with visual field loss from inherited retinal degenerations. Br. J. Ophthalmol. 2020, 104, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Bach, M. The Freiburg visual acuity test - automatic measurement of visual acuity. Optom. Vis. Sci. 1996, 73, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Williams, D.R.; Miller, D.T. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 1997, 14, 2884–2892. [Google Scholar] [CrossRef] [PubMed]
- Wynne, N.; Carroll, J.; Duncan, J.L. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog. Retin. Eye Res. 2021, 83, 100920. [Google Scholar] [CrossRef]
- Carroll, J.; Neitz, M.; Hofer, H.; Neitz, J.; Williams, D.R. Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. Proc. Natl. Acad. Sci. USA 2004, 101, 8461–8466. [Google Scholar] [CrossRef]
- Scoles, D.; Sulai, Y.N.; Langlo, C.S.; Fishman, G.A.; Curcio, C.A.; Carroll, J.; Dubra, A. In vivo imaging of human cone photoreceptor inner segments. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4244–4251. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Jacobson, S.G. Leber congenital amaurosis (LCA): Potential for improvement of vision. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1680–1695. [Google Scholar] [CrossRef]
- Cideciyan, A.V. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog. Retin. Eye Res. 2010, 29, 398–427. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Cideciyan, A.V.; Ho, A.C.; Roman, A.J.; Wu, V.; Garafalo, A.V.; Sumaroka, A.; Krishnan, A.K.; Swider, M.; Mascio, A.A.; et al. Night vision restored in days after decades of congenital blindness. iScience 2022, 25, 105274. [Google Scholar] [CrossRef]
- Russell, S.R.; Drack, A.V.; Cideciyan, A.V.; Jacobson, S.G.; Leroy, B.P.; Van Cauwenbergh, C.; Ho, A.C.; Dumitrescu, A.V.; Han, I.C.; Martin, M.; et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: A phase 1b/2 trial. Nat. Med. 2022, 28, 1014–1021. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Jacobson, S.G.; Ho, A.C.; Swider, M.; Sumaroka, A.; Roman, A.J.; Wu, V.; Russell, R.C.; Viarbitskaya, I.; Garafalo, A.V.; et al. Durable vision improvement after a single intravitreal treatment with antisense oligonucleotide in CEP290-LCA: Replication in two eyes. Am. J. Ophthalmol. Case Rep. 2023, 32, 101873. [Google Scholar] [CrossRef]
- Pierce, E.A.; Aleman, T.S.; Jayasundera, K.T.; Ashimatey, B.S.; Kim, K.; Rashid, A.; Jaskolka, M.C.; Myers, R.L.; Lam, B.L.; Bailey, S.T.; et al. Gene editing for CEP290-associated retinal degeneration. N. Engl. J. Med. 2024, 390, 1972–1984. [Google Scholar] [CrossRef]
- Fischer, M.D.; Michalakis, S.; Wilhelm, B.; Zobor, D.; Muehlfriedel, R.; Kohl, S.; Weisschuh, N.; Ochakovski, G.A.; Klein, R.; Schoen, C.; et al. Safety and vision outcomes of subretinal gene therapy targeting cone photoreceptors in achromatopsia: A nonrandomized controlled trial. JAMA Ophthalmol. 2020, 138, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, M.; Anderson, E.J.; Maimon-Mor, R.O.; Rider, A.; Greenwood, J.A.; Hirji, N.; Zaman, S.; Jones, P.R.; Schwarzkopf, D.S.; Rees, G.; et al. A demonstration of cone function plasticity after gene therapy in achromatopsia. Brain 2022, 145, 3803–3815. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.; Hirji, N.; Wong, S.C.; Besirli, C.G.; Zaman, S.; Kumaran, N.; Georgiadis, A.; Smith, A.J.; Ripamonti, C.; Gottlob, I.; et al. First-in-human gene therapy trial of AAV8-hCARp.hCNGB3 in adults and children with CNGB3-associated achromatopsia. Am. J. Ophthalmol. 2023, 253, 243–251. [Google Scholar] [CrossRef] [PubMed]
- McKyton, A.; Marks Ohana, D.; Nahmany, E.; Banin, E.; Levin, N. Seeing color following gene augmentation therapy in achromatopsia. Curr. Biol. 2023, 33, 3489–3494.e2. [Google Scholar] [CrossRef]
- Anderson, E.J.; Dekker, T.M.; Farahbakhsh, M.; Hirji, N.; Schwarzkopf, D.S.; Michaelides, M.; Rees, G. fMRI and gene therapy in adults with CNGB3 mutation. Brain Res. Bull. 2024, 215, 111026. [Google Scholar] [CrossRef]
- Zein, W.M.; Jeffrey, B.G.; Wiley, H.E.; Turriff, A.E.; Tumminia, S.J.; Tao, W.; Bush, R.A.; Marangoni, D.; Wen, R.; Wei, L.L.; et al. CNGB3-achromatopsia clinical trial with CNTF: Diminished rod pathway responses with no evidence of improvement in cone function. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6301–6308. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Swider, M.; Aleman, T.S.; Roman, M.I.; Sumaroka, A.; Schwartz, S.B.; Stone, E.M.; Jacobson, S.G. Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations. J. Opt. Soc. Am. A 2007, 24, 1457. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Jacobson, S.G.; Ho, A.C.; Krishnan, A.K.; Roman, A.J.; Garafalo, A.V.; Wu, V.; Swider, M.; Sumaroka, A.; Van Cauwenbergh, C.; et al. Restoration of cone sensitivity to individuals with congenital photoreceptor blindness within the phase 1/2 sepofarsen trial. Ophthalmol. Sci. 2022, 2, 100133. [Google Scholar] [CrossRef]
- Li, R.T.H.; Roman, A.J.; Sumaroka, A.; Stanton, C.M.; Swider, M.; Garafalo, A.V.; Heon, E.; Vincent, A.; Wright, A.F.; Megaw, R.; et al. Treatment strategy with gene editing for late-onset retinal degeneration caused by a founder variant in C1QTNF5. Investig. Ophthalmol. Vis. Sci. 2023, 64, 33. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.G.; Voigt, W.J.; Parel, J.M.; Apathy, P.P.; Nghiem-Phu, L.; Myers, S.W.; Patella, V.M. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 1986, 93, 1604–1611. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Pugh, E.N.; Lamb, T.D.; Huang, Y.; Jacobson, S.G. Rod plateaux during dark adaptation in Sorsby’s fundus dystrophy and vitamin A deficiency. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1786–1794. [Google Scholar]
- Cideciyan, A.V.; Zhao, X.; Nielsen, L.; Khani, S.C.; Jacobson, S.G.; Palczewski, K. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc. Natl. Acad. Sci. USA 1998, 95, 328–333. [Google Scholar] [CrossRef]
- Cideciyan, A.V.; Haeseleer, F.; Fariss, R.N.; Aleman, T.S.; Jang, G.F.; Verlinde, C.L.M.J.; Marmor, M.F.; Jacobson, S.G.; Palczewski, K. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man. Vis. Neurosci. 2000, 17, 667–678. [Google Scholar] [CrossRef]
- Stockman, A.; Sharpe, L.T.; Fach, C. The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Res. 1999, 39, 2901–2927. [Google Scholar] [CrossRef]
- Stockman, A.; Sharpe, L.T. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 2000, 40, 1711–1737. [Google Scholar] [CrossRef]
- Barbur, J.L.; Rodriguez-Carmona, M.; Evans, B.E.W. Color vision assessment-3. An efficient, two-step, color assessment protocol. Color Res. Appl. 2021, 46, 33–45. [Google Scholar] [CrossRef]
- Barbur, J.L.; Rodriguez-Carmona, M. Colour vision requirements in visually demanding occupations. Br. Med. Bull. 2017, 122, 51–77. [Google Scholar] [CrossRef]
- Barbur, J.L.; Harlow, A.J.; Plant, G.T. Insights into the different exploits of colour in the visual cortex. Proc. Biol. Sci. 1994, 258, 327–334. [Google Scholar]
- Dubra, A.; Sulai, Y. Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2011, 2, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.I.W.; Jiang, Y.Y.; Vergilio, G.K.; Serrano, L.W.; Pearson, D.J.; Bennett, J.; Maguire, A.M.; Aleman, T.S. Short-term assessment of subfoveal injection of adeno-associated virus-mediated hCHM gene augmentation in choroideremia using adaptive optics ophthalmoscopy. JAMA Ophthalmol. 2022, 140, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Dubra, A.; Harvey, Z. Registration of 2D images from fast scanning ophthalmic instruments. Lecture Notes Comput. Sci. 2010, 6204, 60–71. [Google Scholar]
- Chen, M.; Cooper, R.F.; Han, G.K.; Gee, J.; Brainard, D.H.; Morgan, J.I. Multi-modal automatic montaging of adaptive optics retinal images. Biomed. Opt. Express 2016, 7, 4899–4918. [Google Scholar] [CrossRef]
ID | Age [years] | Genotype | BCVA 1 [logMAR] | Refraction | Axial Length [mm] |
---|---|---|---|---|---|
P1 | 23 | Deletion LCR | 0.94 | Plano | 26.0 |
P2 | 46 | Deletion LCR | 0.66 | −6.25 −2.00 × 155 | 26.5 |
P3 | 66 | Deletion LCR | 0.90 | −5.00 DS | na |
P4 | 11 | C203R | 0.84 | −11.50 +3.50 × 094 | 27.7 |
P5 | 19 | C203R | 0.82 | Plano −1.00 × 050 | 25.0 |
P6 | 21 | C203R | 0.62 | −3.75 −3.25 × 165 | 25.8 |
P7 | 25 | C203R | 0.60 | −3.25 −0.75 × 000 | 26.2 |
P8 | 30 | C203R | 0.76 | −5.25 −1.50 × 040 | 25.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cideciyan, A.V.; Roman, A.J.; Warner, R.L.; Sumaroka, A.; Wu, V.; Jiang, Y.Y.; Swider, M.; Garafalo, A.V.; Viarbitskaya, I.; Russell, R.C.; et al. Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy. Int. J. Mol. Sci. 2024, 25, 10639. https://doi.org/10.3390/ijms251910639
Cideciyan AV, Roman AJ, Warner RL, Sumaroka A, Wu V, Jiang YY, Swider M, Garafalo AV, Viarbitskaya I, Russell RC, et al. Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy. International Journal of Molecular Sciences. 2024; 25(19):10639. https://doi.org/10.3390/ijms251910639
Chicago/Turabian StyleCideciyan, Artur V., Alejandro J. Roman, Raymond L. Warner, Alexander Sumaroka, Vivian Wu, Yu Y. Jiang, Malgorzata Swider, Alexandra V. Garafalo, Iryna Viarbitskaya, Robert C. Russell, and et al. 2024. "Evaluation of Retinal Structure and Visual Function in Blue Cone Monochromacy to Develop Clinical Endpoints for L-opsin Gene Therapy" International Journal of Molecular Sciences 25, no. 19: 10639. https://doi.org/10.3390/ijms251910639