Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells
Abstract
:1. Introduction
2. Results
2.1. Effects of EGb 761 on Cell Viability in BV2 Microglial Cells
2.2. Effects of EGb 761 on LPS-Induced TNF-α Expression and Release in BV2 Microglial Cells
2.3. Effects of EGb 761 on LPS-Induced IL-6 Expression and Release in BV2 Microglial Cells
2.4. Effects of EGb 761 on LPS-Induced CCL2 Expression and Release in BV2 Microglial Cells
2.5. Effects of EGb 761 on LPS-Induced CCL3 Expression and Release in BV2 Microglial Cells
2.6. Effects of EGb 761 on LPS-Induced CXCL2 Expression and Release in BV2 Microglial Cells
2.7. Effects of EGb 761 on LPS-Induced CXCL10 Expression and Release in BV2 Microglial Cells
2.8. Effects of EGb 761 on Phosphorylation of PKCβ, p38 MAPK, ERK 1/2, and NF-κB
3. Discussion
4. Materials and Methods
4.1. Herbal Extract EGb 761®
4.2. Chemicals
4.3. BV2 Cell Culture
4.4. MTT Cell Viability Assay
4.5. Determination of Chemokine and Cytokine Production
4.6. RNA Isolation and Quantitative PCR
4.7. Western Blot
4.8. Statistical Analysis
5. Conclusions
6. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozben, T.; Ozben, S. Neuro-Inflammation and Anti-Inflammatory Treatment Options for Alzheimer’s Disease. Clin. Biochem. 2019, 72, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Gao, Z. Microglia in Depression: Current Perspectives. Life Sci. 2021, 64, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Hirsch, E.C. Neuroinflammatory Processes in Parkinson’s Disease. Park. Relat. Disord. 2005, 11, 9–15. [Google Scholar] [CrossRef]
- Cannon, J.R.; Greenamyre, J.T. The Role of Environmental Exposures in Neurodegeneration and Neurodegenerative Diseases. Park. Relat. Disord. 2011, 124, 225–250. [Google Scholar] [CrossRef] [PubMed]
- Celorrio, M.; Rojo-Bustamante, E.; Fernández-Suárez, D.; Sáez, E.; Estella-Hermoso de Mendoza, A.; Müller, C.E.; Ramírez, M.J.; Oyarzábal, J.; Franco, R.; Aymerich, M.S. GPR55: A Therapeutic Target for Parkinson’s Disease? Neuropharmacology 2017, 125, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, R.; Hu, D.; Sun, X.; Fujioka, H.; Lundberg, K.; Chan, E.R.; Wang, Q.; Xu, R.; Flanagan, M.E.; et al. Oligodendroglial Glycolytic Stress Triggers Inflammasome Activation and Neuropathology in Alzheimer’s Disease. Sci. Adv. 2020, 6, abb8680. [Google Scholar] [CrossRef]
- Goldmann, T.; Prinz, M. Role of Microglia in CNS Autoimmunity 1. Multiple Sclerosis: The Most Frequent. J. Immunol. Res. 2013, 2013, 208093. [Google Scholar]
- Rothwell, N.J.; Strijbos, P.J.L.M. Cytokines in Neurodegeneration and Repair. Int. J. Dev. Neurosci. 1995, 13, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Hussain, M.D.; Yan, L.J. Microglia, Neuroinflammation, and Beta-Amyloid Protein in Alzheimer’s Disease. Int. J. Neurosci. 2014, 124, 307–321. [Google Scholar] [CrossRef]
- Aramideh, J.A.; Maurel, C.; Scherer, N.M.; Don, E.K.; Lee, A.; Chung, R.S.; Graeber, M.B.; Morsch, M. Microglia Morphophysiological Diversity and Its Implications for the CNS. Front. Immunol. 2022, 13, 997786. [Google Scholar] [CrossRef]
- Sochocka, M.; Diniz, B.S.; Leszek, J. Inflammatory Response in the CNS: Friend or Foe? Mol. Neurobiol. 2017, 54, 8071–8089. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. The Pharmacopoeia of the People’s Republic of China, 10th ed.; Chinese Pharmacopoeia Commission Edition: Beijing, China, 2015. [Google Scholar]
- Ginkgo Folium—Herbal Medicinal Product|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/herbal/ginkgo-folium (accessed on 2 May 2024).
- Kulić, Ž.; Lehner, M.D.; Dietz, G.P.H. Ginkgo Biloba Leaf Extract EGb 761® as a Paragon of the Product by Process Concept. Front. Pharmacol. 2022, 13, 1007746. [Google Scholar] [CrossRef] [PubMed]
- Hort, J.; Duning, T.; Hoerr, R. Ginkgo Biloba Extract EGb 761 in the Treatment of Patients with Mild Neurocognitive Impairment: A Systematic Review. Neuropsychiatr. Dis. Treat. 2023, 19, 647–660. [Google Scholar] [CrossRef]
- Gauthier, S.; Schlaefke, S. Efficacy and Tolerability of Ginkgo Biloba Extract EGb 761® in Dementia: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Clin. Interv. Aging 2014, 9, 2065. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, N.; Ong, P.A.; Yuda, T.; Ng, L.L.; Mamun, K.; Merchant, R.A.; Chen, C.; Dominguez, J.; Marasigan, S.; Ampil, E.; et al. Treatment of Dementia and Mild Cognitive Impairment with or without Cerebrovascular Disease: Expert Consensus on the Use of Ginkgo Biloba Extract, EGb 761®. CNS Neurosci. Ther. 2019, 25, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Von Gunten, A.; Schlaefke, S.; Überla, K. Efficacy of Ginkgo Biloba Extract EGb 761® in Dementia with Behavioural and Psychological Symptoms: A Systematic Review. World J. Biol. Psychiatry 2016, 17, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Jeng, C.; Kao, S.C.; Yu, J.J.H.; Liu, D.Z. Improved Haemorrheological Properties by Ginkgo Biloba Extract (Egb 761) in Type 2 Diabetes Mellitus Complicated with Retinopathy. Clin. Nutr. 2004, 23, 615–621. [Google Scholar] [CrossRef]
- Kellermann, A.J.; Kloft, C. Is There a Risk of Bleeding Associated with Standardized Ginkgo Biloba Extract Therapy? A Systematic Review and Meta-Analysis. Pharmacotherapy 2011, 31, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, B.A.; Abd El-Aziz, S.M. Ginkgo Biloba Protects against Intermittent Hypoxia-Induced Memory Deficits and Hippocampal DNA Damage in Rats. Phytomedicine 2012, 19, 444–450. [Google Scholar] [CrossRef]
- Luo, Y.; Smith, J.V.; Paramasivam, V.; Burdick, A.; Curry, K.J.; Buford, J.P.; Khan, I.; Netzer, W.J.; Xu, H.; Butko, P. Inhibition of Amyloid-Beta Aggregation and Caspase-3 Activation by the Ginkgo Biloba Extract EGb761. Proc. Natl. Acad. Sci. USA 2002, 99, 12197–12202. [Google Scholar] [CrossRef]
- Tchantchou, F.; Xu, Y.; Wu, Y.; Christen, Y.; Luo, Y. EGb 761 Enhances Adult Hippocampal Neurogenesis and Phosphorylation of CREB in Transgenic Mouse Model of Alzheimer’s Disease. FASEB J. 2007, 21, 2400–2408. [Google Scholar] [CrossRef] [PubMed]
- Kehr, J.; Yoshitake, S.; Ijiri, S.; Koch, E.; Nöldner, M.; Yoshitake, T. Ginkgo Biloba Leaf Extract (EGb 761®) and Its Specific Acylated Flavonol Constituents Increase Dopamine and Acetylcholine Levels in the Rat Medial Prefrontal Cortex: Possible Implications for the Cognitive Enhancing Properties of EGb 761®. Int. Psychogeriatr. 2012, 24 (Suppl. 1), S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kader, R.; Hauptmann, S.; Keil, U.; Scherping, I.; Leuner, K.; Eckert, A.; Müller, W.E. Stabilization of Mitochondrial Function by Ginkgo Biloba Extract (EGb 761). Pharmacol. Res. 2007, 56, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, B.; Carstensen, J.; Bhatia, H.S.; Huell, M.; Dietz, G.P.H.; Fiebich, B.L. Anti-Neuroinflammatory Effects of Ginkgo Biloba Extract EGb761 in LPS-Activated Primary Microglial Cells. Phytomedicine 2018, 44, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Zhang, C.; Zhang, C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem. Res. 2024, 49, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The Role of Interleukin-6 Signaling in Nervous Tissue. Biochim. Biophys. Acta 2016, 1863, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, E.; Faivre, E.; Dutar, P.; Alves Pires, C.; Demeyer, D.; Caillierez, R.; Laloux, C.; Buée, L.; Blum, D.; Humez, S. The Chemokine MIP-1α/CCL3 Impairs Mouse Hippocampal Synaptic Transmission, Plasticity and Memory. Sci. Rep. 2015, 5, 15862. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Thirumangalakudi, L.; Grammas, P. Expression of Macrophage Inflammatory Protein 1-Alpha Is Elevated in Alzheimer’s Vessels and Is Regulated by Oxidative Stress. J. Alzheimers Dis. 2007, 11, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wilke Saliba, S.; Apweiler, M.; Akmermer, K.; Herlan, C.; Grathwol, C.; Carlos, A.; De Oliveira, P.; Normann, C.; Jung, N.; et al. Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Int. J. Mol. Sci. 2024, 25, 4462. [Google Scholar] [CrossRef]
- Michlmayr, D.; McKimmie, C.S. Role of CXCL10 in Central Nervous System Inflammation. Int. J. Interferon Cytokine Mediat. Res. 2014, 6, 1–18. [Google Scholar] [CrossRef]
- Kaminska, B.; Gozdz, A.; Zawadzka, M.; Ellert-Miklaszewska, A.; Lipko, M. MAPK Signal Transduction Underlying Brain Inflammation and Gliosis as Therapeutic Target. Anat. Rec. 2009, 292, 1902–1913. [Google Scholar] [CrossRef]
- Mussbacher, M.; Derler, M.; Basílio, J.; Schmid, J.A. NF-ΚB in Monocytes and Macrophages—An Inflammatory Master Regulator in Multitalented Immune Cells. Front. Immunol. 2023, 14, 1134661. [Google Scholar] [CrossRef]
- Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Semin. Cell Dev. Biol. 2019, 94, 112–120. [Google Scholar] [CrossRef]
- Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in Neurological Disorders: Pharmacotherapeutic Targets from Bench to Bedside; Springer: New York, NY, USA, 2021; Volume 36, ISBN 0123456789. [Google Scholar]
- Badanjak, K.; Fixemer, S.; Smaji, S.; Skupin, A.; Grünewald, A. The Contribution of Microglia to Neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 4676. [Google Scholar] [CrossRef]
- Thakur, S.; Dhapola, R.; Sarma, P.; Medhi, B.; Reddy, D.H. Neuroinflammation in Alzheimer s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation 2023, 46, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The Immunology and Immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Wang, X.; Wu, Y.; Hu, J.; Li, Y.; Jin, S.; Wu, X. Activation of GPR55 Attenuates Cognitive Impairment, Oxidative Stress, Neuroinflammation, and Synaptic Dysfunction in a Streptozotocin-Induced Alzheimer’s Mouse Model. Pharmacol. Biochem. Behav. 2022, 214, 173340. [Google Scholar] [CrossRef]
- Zifko, U.A.; Yacob, M.; Braun, B.J.; Dietz, G.P.H. Alleviation of Post-COVID-19 Cognitive Deficits by Treatment with EGb 761®: A Case Series. Am. J. Case Rep. 2022, 23, 203–212. [Google Scholar] [CrossRef]
- Ramassamy, C.; Longpré, F.; Christen, Y. Ginkgo Biloba Extract (EGb 761) in Alzheimer’ s Disease: Is There Any Evidence? Curr. Alzheimer Res. 2007, 4, 253–262. [Google Scholar] [CrossRef]
- Rojas, P.; Ph, D.; Montes, P.; Sc, M.; Rojas, C.; Sc, B.; Serrano-garc, N.; Sc, M.; Julio, C. Effect of a Phytopharmaceutical Medicine, Ginko Biloba Extract 761, in an Animal Model of Parkinson’ s Disease: Therapeutic Perspectives Nutrition 2012, 28, 1081–1088. [CrossRef]
- Shi, C.; Liu, J.; Wu, F.; Yew, D.T. Ginkgo Biloba Extract in Alzheimer’s Disease: From Action Mechanisms to Medical Practice. Int. J. Mol. Sci. 2010, 11, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, T.L.; Koop, D.R. Effects of Ginkgo Biloba Extract (EGb 761) and Quercetin on Lipopolysaccharide-Induced Release of Nitric Oxide. Chem. Biol. Interact. 2001, 137, 43–58. [Google Scholar] [CrossRef] [PubMed]
- DeVries, M.E.; Hosiawa, K.A.; Cameron, C.M.; Bosinger, S.E.; Persad, D.; Kelvin, A.A.; Coombs, J.C.; Wang, H.; Zhong, R.; Cameron, M.J.; et al. The Role of Chemokines and Chemokine Receptors in Alloantigen-Independent and Alloantigen-Dependent Transplantation Injury. Semin. Immunol. 2003, 15, 33–48. [Google Scholar] [CrossRef]
- Koper, O.M.; Kaminska, J.; Sawicki, K.; Kemona, H. CXCL9, CXCL10, CXCL11, and Their Receptor (CXCR3) in Neuroinflammation and Neurodegeneration. Adv. Clin. Exp. Med. 2018, 27, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Tisato, V.; Zauli, G.; Rimondi, E.; Gianesini, S.; Brunelli, L.; Menegatti, E.; Zamboni, P.; Secchiero, P. Inhibitory Effect of Natural Anti-Inflammatory Compounds on Cytokines Released by Chronic Venous Disease Patient-Derived Endothelial Cells. Mediat. Inflamm. 2013, 2013, 423407. [Google Scholar] [CrossRef] [PubMed]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Signal Transduction by the Lipopolysaccharide Receptor, Toll-like Receptor-4. Immunology 2004, 113, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Hornik, T.C.; Neniskyte, U.; Brown, G.C. Inflammation Induces Multinucleation of Microglia via PKC Inhibition of Cytokinesis, Generating Highly Phagocytic Multinucleated Giant Cells. J. Neurochem. 2014, 128, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Nennig, S.E.; Schank, J.R. The Role of NFkB in Drug Addiction: Beyond Inflammation. Alcohol. Alcohol. 2017, 52, 172–179. [Google Scholar] [CrossRef]
- Langlois, A.; Chouinard, F.; Flamand, N.; Ferland, C.; Rola-Pleszczynski, M.; Laviolette, M. Crucial Implication of Protein Kinase C (PKC)-δ, PKC-ζ, ERK-1/2, and P38 MAPK in Migration of Human Asthmatic Eosinophils. J. Leukoc. Biol. 2009, 85, 656–663. [Google Scholar] [CrossRef]
- Diaz-Meco, M.T.; Moscat, J. The Atypical PKCs in Inflammation: NF-ΚB and Beyond. Immunol. Rev. 2012, 246, 154–167. [Google Scholar] [CrossRef]
- Yang, Q.; Langston, J.C.; Tang, Y.; Kiani, M.F.; Kilpatrick, L.E. The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int. J. Mol. Sci. 2019, 20, 1498. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, S.F. Structural Basis of Protein Kinase C Isoform Function. Physiol. Rev. 2008, 88, 1341–1378. [Google Scholar] [CrossRef]
- Dempsey, E.C.; Newton, A.C.; Mochly-Rosen, D.; Fields, A.P.; Reyland, M.E.; Insel, P.A.; Messing, R.O. Protein kinase C isozymes and the regulation of diverse cell responses. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, 429–438. [Google Scholar] [CrossRef]
- Ude, C.; Paulke, A.; Nöldner, M.; Schubert-Zsilavecz, M.; Wurglics, M. Plasma and Brain Levels of Terpene Trilactones in Rats after an Oral Single Dose of Standardized Ginkgo Biloba Extract EGb 761®. Planta Med. 2011, 77, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Ordóñez, L.; Nöldner, M.; Schubert-Zsilavecz, M.; Wurglics, M. Plasma Levels and Distribution of Flavonoids in Rat Brain after Single and Repeated Doses of Standardized Ginkgo Biloba Extract EGb 761®. Planta Med. 2010, 76, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, T.; Yoshitake, S.; Kehr, J. The Ginkgo Biloba Extract EGb 761(R) and Its Main Constituent Flavonoids and Ginkgolides Increase Extracellular Dopamine Levels in the Rat Prefrontal Cortex. Br. J. Pharmacol. 2010, 159, 659–668. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Pan, F. The Effects of EGb761 on Lipopolysaccharide-Induced Depressive-like Behaviour in C57BL/6J Mice. Cent. Eur. J. Immunol. 2015, 40, 11–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Apweiler, M.; Tirkey, A.; Klett, D.; Normann, C.; Dietz, G.P.H.; Lehner, M.D.; Fiebich, B.L. Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int. J. Mol. Sci. 2024, 25, 8108. https://doi.org/10.3390/ijms25158108
Sun L, Apweiler M, Tirkey A, Klett D, Normann C, Dietz GPH, Lehner MD, Fiebich BL. Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. International Journal of Molecular Sciences. 2024; 25(15):8108. https://doi.org/10.3390/ijms25158108
Chicago/Turabian StyleSun, Lu, Matthias Apweiler, Ashwini Tirkey, Dominik Klett, Claus Normann, Gunnar P. H. Dietz, Martin D. Lehner, and Bernd L. Fiebich. 2024. "Anti-Neuroinflammatory Effects of Ginkgo biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells" International Journal of Molecular Sciences 25, no. 15: 8108. https://doi.org/10.3390/ijms25158108