Variation of Cyclodextrin (CD) Complexation with Biogenic Amine Tyramine: Pseudopolymorphs of β-CD Inclusion vs. α-CD Exclusion, Deep Atomistic Insights †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Changes in β-CD Inclusion and α-CD Exclusion Complexes with TRM Base/HCl
2.2. How Are TRM Base/HCl Differently Stabilized While Associating with β-CD (Inclusion) and α-CD (Exclusion)?
2.3. 3-D Arrangements of Pseudopolymorphic β-CD–TRM Base/HCl Inclusion (1, 2) and α-CD–TRM HCl Exclusion (3)
2.4. Theoretical Viewpoints on the Distinct Associations of β- and α-CDs with TRM
3. Materials and Methods
3.1. Materials
3.2. Single-Crystal Structure Determination
3.2.1. Crystallization
3.2.2. X-ray Diffraction Experiment
3.2.3. Structure Solution and Refinement
3.3. DFT Complete-Geometry Optimization
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, G.; Marcinek, P.; Sulzinger, N.; Schieberle, P.; Krautwurst, D. Food Sources and Biomolecular Targets of Tyramine. Nutr. Rev. 2019, 77, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.R.; Glória, M.B.A. Migraine and Diet. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 3940–3947. ISBN 978-0-12-227055-0. [Google Scholar]
- Gazerani, P. Migraine and Diet. Nutrients 2020, 12, 1658. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef]
- McCabe-Sellers, B.J.; Staggs, C.G.; Bogle, M.L. Tyramine in Foods and Monoamine Oxidase Inhibitor Drugs: A Crossroad Where Medicine, Nutrition, Pharmacy, and Food Industry Converge. J. Food Compos. Anal. 2006, 19, S58–S65. [Google Scholar] [CrossRef]
- Aree, T. How Cyclodextrin Encapsulation Improves Molecular Stability of Apple Polyphenols Phloretin, Phlorizin, and Ferulic Acid: Atomistic Insights through Structural Chemistry. Food Chem. 2023, 409, 135326. [Google Scholar] [CrossRef] [PubMed]
- Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Latest Developments in the Application of Cyclodextrin Host-Guest Complexes in Beverage Technology Processes. Food Hydrocoll. 2020, 106, 105882. [Google Scholar] [CrossRef]
- Fourmentin, S.; Crini, G.; Lichtfouse, E. (Eds.) Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2018; Volume 17, ISBN 978-3-319-76161-9. [Google Scholar]
- Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the Common Cyclodextrins and Their Larger Analogues Beyond the Doughnut. Chem. Rev. 1998, 98, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Sun, T.; Shao, X.; Chipot, C. Can the Anomalous Aqueous Solubility of β-Cyclodextrin Be Explained by Its Hydration Free Energy Alone? Phys. Chem. Chem. Phys. 2008, 10, 3236–3243. [Google Scholar] [CrossRef]
- Naidoo, K.J.; Chen, J.Y.-J.; Jansson, J.L.M.; Widmalm, G.; Maliniak, A. Molecular Properties Related to the Anomalous Solubility of β-Cyclodextrin. J. Phys. Chem. B 2004, 108, 4236–4238. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Aree, T. β-Cyclodextrin Encapsulation of Nortriptyline HCl and Amitriptyline HCl: Molecular Insights from Single-Crystal X-ray Diffraction and DFT Calculation. Int. J. Pharm. 2020, 575, 118899. [Google Scholar] [CrossRef] [PubMed]
- Aree, T.; Jongrungruangchok, S. Crystallographic Evidence for β-Cyclodextrin Inclusion Complexation Facilitating the Improvement of Antioxidant Activity of Tea (+)-Catechin and (−)-Epicatechin. Carbohydr. Polym. 2016, 140, 362–373. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Re-evaluation of β-Cyclodextrin (E 459) as a Food Additive. EFSA J. 2016, 14, 4628. [Google Scholar] [CrossRef]
- Fenyvesi, É.; Szente, L. Cyclodextrin in Starchy Foods. Acta Aliment. 2021, 50, 417–432. [Google Scholar] [CrossRef]
- Roy, K.; Bomzan, P.; Roy, M.C.; Roy, M.N. Inclusion of Tyrosine Derivatives with α-Cyclodextrin in Aqueous Medium of Various pH Conditions by Surface Tension, Conductance, UV–Vis and NMR Studies. J. Mol. Liq. 2017, 230, 104–112. [Google Scholar] [CrossRef]
- Roy, M.N.; Saha, S.; Kundu, M.; Saha, B.C.; Barman, S. Exploration of Inclusion Complexes of Neurotransmitters with β-Cyclodextrin by Physicochemical Techniques. Chem. Phys. Lett. 2016, 655–656, 43–50. [Google Scholar] [CrossRef]
- Ross, P.D.; Rekharsky, M.V. Thermodynamics of Hydrogen Bond and Hydrophobic Interactions in Cyclodextrin Complexes. Biophys. J. 1996, 71, 2144–2154. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, H.; Lu, S.; Zou, L.; Tang, Z.; Zeng, T.; Tang, J. Effect and Mechanism of Ferulic Acid Inclusion Complexes on Tyramine Production by Enterobacter Hormaechei MW386398 in Smoked Horsemeat Sausages. Food Biosci. 2022, 46, 101520. [Google Scholar] [CrossRef]
- Castiglione, F.; Ganazzoli, F.; Malpezzi, L.; Mele, A.; Panzeri, W.; Raffaini, G. Inclusion Complexes of β-Cyclodextrin with Tricyclic Drugs: An X-Ray Diffraction, NMR and Molecular Dynamics Study. Beilstein J. Org. Chem. 2017, 13, 714–719. [Google Scholar] [CrossRef]
- Koshland, D.E. The Key–Lock Theory and the Induced Fit Theory. Angew. Chem. Int. Ed. Engl. 1995, 33, 2375–2378. [Google Scholar] [CrossRef]
- Lindner, K.; Saenger, W. Crystal and Molecular Structure of Cyclohepta-Amylose Dodecahydrate. Carbohydr. Res. 1982, 99, 103–115. [Google Scholar] [CrossRef]
- Manor, P.C.; Saenger, W. Topography of Cyclodextrin Inclusion Complexes. III. Crystal and Molecular Structure of Cyclohexaamylose Hexahydrate, the Water Dimer Inclusion Complex. J. Am. Chem. Soc. 1974, 96, 3630–3639. [Google Scholar] [CrossRef]
- Podder, A.; Dattagupta, J.K.; Saha, N.N.; Saenger, W. Crystal and Molecular Structure of a Sympathomimetic Amine, Tyramine Hydrochloride. Acta Crystallogr. B 1979, 35, 649–652. [Google Scholar] [CrossRef]
- Hunt, L.E.; Bourne, S.A.; Caira, M.R. Inclusion of Hydroxycinnamic Acids in Methylated Cyclodextrins: Host-Guest Interactions and Effects on Guest Thermal Stability. Biomolecules 2020, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Ceborska, M.; Asztemborska, M.; Luboradzki, R.; Lipkowski, J. Interactions with β-Cyclodextrin as a Way for Encapsulation and Separation of Camphene and Fenchene. Carbohydr. Polym. 2013, 91, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Saenger, W. Nature and Size of Included Guest Molecule Determines Architecture of Crystalline Cyclodextrin Host Matrix. Isr. J. Chem. 1985, 25, 43–50. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism in Molecular Crystals, 2nd ed.; Oxford University Press: Oxford, UK, 2020; ISBN 978-0-19-965544-1. [Google Scholar]
- Lipkowski, J.; Bielejewska, A.; Presly, O. Pseudo-Polymorphism of a Camphor α-Cyclodextrin Complex. Carbohydr. Res. 2022, 520, 108601. [Google Scholar] [CrossRef]
- Aree, T.; Chaichit, N. Crystal Form III of β-Cyclodextrin–Ethanol Inclusion Complex: Layer-Type Structure with Dimeric Motif. Carbohydr. Res. 2008, 343, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Aree, T. Effect of the Ring Size and Asymmetry of Cyclodextrins on Their Inclusion Ability: A Theoretical Study. J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 439–445. [Google Scholar] [CrossRef]
- Harata, K. The Structure of the Cyclodextrin Complex. IX. The Crystal Structure of α-Cyclodextrin–m-Nitroaniline (1:1) Hexahydrate Complex. Bull. Chem. Soc. Jpn. 1980, 53, 2782–2786. [Google Scholar] [CrossRef]
- Steiner, T.; Geβler, K. Aromatic Molecules Included into and Contacting the Outer Surface of Cyclomaltohexaose (α-Cyclodextrin): Crystal Structure of α-Cyclodextrin-(Benzyl Alcohol)2-Hexahydrate. Carbohydr. Res. 1994, 260, 27–38. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Aree, T. Supramolecular Assemblies of Citalopram and Escitalopram in β-Cyclodextrin Dimeric Cavity: Crystallographic and Theoretical Insights. Carbohydr. Polym. 2024, 329, 121771. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, J.; Jia, T.; Li, S.; Li, N.; Hou, H.; Zhong, R.-L.; Fan, Z.; Guo, M. A Comparison Study of Graphene-Cyclodextrin Conjugates for Enhanced Electrochemical Performance of Tyramine Compounds. Carbohydr. Polym. 2019, 209, 258–265. [Google Scholar] [CrossRef]
- Shaikh, R.; Singh, R.; Walker, G.M.; Croker, D.M. Pharmaceutical Cocrystal Drug Products: An Outlook on Product Development. Trends Pharmacol. Sci. 2018, 39, 1033–1048. [Google Scholar] [CrossRef]
- Frömming, K.-H.; Szejtli, J. Cyclodextrins in Pharmacy; Topics in Inclusion Science; Springer: Dordrecht, The Netherlands, 1994; Volume 5, ISBN 978-90-481-4242-2. [Google Scholar]
- Kim, Y.; Oksanen, D.A.; Massefski, W., Jr.; Blake, J.F.; Duffy, E.M.; Chrunyk, B. Inclusion Complexation of Ziprasidone Mesylate with β-Cyclodextrin Sulfobutyl Ether. J. Pharm. Sci. 1998, 87, 1560–1567. [Google Scholar] [CrossRef]
- Bruker. APEX2, SADABS and SHELXTL; Bruker AXS: Karlsruhe, Germany, 2014. [Google Scholar]
- Bruker. SAINT and XPREP; Bruker AXS: Karlsruhe, Germany, 2008. [Google Scholar]
- Allen, F.H.; Bruno, I.J. Bond Lengths in Organic and Metal-Organic Compounds Revisited: X-H Bond Lengths from Neutron Diffraction Data. Acta Crystallogr. Sect. B 2010, 66, 380–386. [Google Scholar] [CrossRef]
- Schnupf, U.; Momany, F.A. DFT Energy Optimization of a Large Carbohydrate: Cyclomaltohexaicosaose (CA-26). J. Phys. Chem. B 2012, 116, 6618–6627. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN09; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lopes, J.F.; Nascimento, C.S.; Anconi, C.P.A.; Santos, H.F.D.; Almeida, W.B.D. Inclusion Complex Thermodynamics: The β-Cyclodextrin and Sertraline Complex Example. J. Mol. Graph. Model. 2015, 62, 11–17. [Google Scholar] [CrossRef]
- Cremer, D.; Pople, J.A. General Definition of Ring Puckering Coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358. [Google Scholar] [CrossRef]
Interaction | D–H | H···A | D···A | ∠(DHA) | Interaction | D–H | H···A | D···A | ∠(DHA) |
---|---|---|---|---|---|---|---|---|---|
X-ray a | DFT f | ||||||||
β-CD–TRM base (1) | β-CD(r)–TRM g | ||||||||
N1X–H1···O35 i b | 0.86 | 2.18 | 2.85(1) | 134.6 | O62–H···Cg1X c | 0.97 | 2.82 | 3.723 | 155.9 |
N1X–H2···O65A ii | 0.86 | 2.26 | 3.09(4) | 160.6 | O65–H···Cg1X | 0.97 | 3.01 | 3.972 | 170.1 |
O1X–H···O1W iii | 0.82 | 2.13 | 2.89(2) | 153.9 | |||||
O61–H···O1X iv | 0.82 | 1.95 | 2.76(2) | 170.3 | |||||
C51–H···Cg1X c | 0.98 | 3.37 | 4.201(9) | 143.6 | |||||
β-CD–TRM HCl (2) | β-CD(e)–TRM g | 0.82 | 2.05 | 2.803(5) | 152.1 | ||||
N1Y–H3···O61 v | 0.89 | 1.91 | 2.773(5) | 163.0 | O61–H···O1Y | 0.98 | 1.94 | 2.908 | 172.2 |
N1Y–H1···O65 vi | 0.89 | 1.90 | 2.782(5) | 174.0 | O1Y–H···O62 | 0.99 | 1.83 | 2.788 | 162.0 |
N1Y–H2···O4W | 0.89 | 1.91 | 2.804(5) | 179.0 | C52–H···Cg1Y d | 1.10 | 3.48 | 4.510 | 157.7 |
O1Y–H···O21 vii | 0.82 | 1.99 | 2.786(4) | 164.7 | C55–H···Cg1Y | 1.10 | 3.77 | 4.723 | 146.4 |
C52–H···Cg1Y d | 0.98 | 3.21 | 4.133(4) | 158.1 | β-CD(e)–TRM(f) g | ||||
C56–H···Cg1Y | 0.98 | 3.64 | 4.554(4) | 156.8 | N1Y–H1···O61 | 1.02 | 2.28 | 3.296 | 172.7 |
α-CD–TRM HCl (3) | α-CD–TRM(excl) g | ||||||||
O22–H···O1Z viii | 0.82 | 2.56 | 3.36(5) | 168.9 | O1Z–H···O31 | 0.98 | 1.95 | 2.877 | 156.7 |
C41–H···Cg1Z e | 0.98 | 2.765 | 3.728(4) | 167.6 | C41–H···Cg1Z e | 1.09 | 3.145 | 4.198 | 161.5 |
C61–H2···Cg1Z | 0.97 | 4.022 | 4.730(8) | 132.3 | C12–H···Cg1Z | 1.09 | 4.000 | 2.913 | 173.5 |
C12–H···Cg1Z | 0.98 | 3.128 | 4.061(4) | 150.5 | α-CD–TRM(incl) g | ||||
N1Z–H2···O63 | 1.03 | 2.11 | 3.109 | 165.3 | |||||
O61–H···N1Z | 1.00 | 1.86 | 2.846 | 167.1 |
1 | 2 | 3 | |
---|---|---|---|
β-CD–Tyramine base | β-CD–Tyramine HCl | α-CD–Tyramine HCl | |
CCDC number | 2255519 | 2255520 | 2339039 |
Abbreviated formula | β-CD·0.5TRM·7.6H2O | β-CD·TRM·HCl·4H2O | α-CD·0.5(TRM·HCl)·10H2O |
Chemical formula | (C6H10O5)7·0.5C8H11NO ·7.6H2O | (C6H10O5)7·C8H11NO·HCl ·4H2O | (C6H10O5)6·0.5(C8H11NO·HCl) ·10H2O |
Formula weight | 1330.81 | 1380.67 | 1217.13 |
Crystal habit, color | Plate, colorless | Rod, colorless | Block, colorless |
Crystal size (mm) | 0.06 × 0.18 × 0.20 | 0.20 × 0.22 × 0.28 | 0.32 × 0.34 × 0.50 |
Crystal system | Monoclinic | Monoclinic | Orthorhombic |
Space group | P21 (No. 4) | P21 (No. 4) | P21212 (No. 18) |
a, b, c (Å) | 15.0853(5), 10.3163(4), 20.8865(7) | 12.5272(2), 18.5421(4), 14.0470(3) | 16.6951(4), 21.9562(6), 8.2681(2) |
α, β, γ (°) | 90, 109.344(1), 90 | 90, 109.918(1), 90 | 90, 90, 90 |
V (Å3) | 3067.0(2) | 3067.7(1) | 3030.8(1) |
Z | 2 | 2 | 2 |
Dc (g cm−3) | 1.441 | 1.495 | 1.334 |
μ (mm−1) | 1.133 | 1.508 | 1.264 |
F(000) | 1411 | 1468 | 1279 |
Diffractometer | PROSPECTOR Kappa CCD (Bruker) | ||
Operating power (kV, mA) | 50, 0.600 | ||
Wavelength (Å) | CuKα, 1.54178 | ||
Temperature (K) | 296(2) | ||
Crystal–detector dist. (mm) | 40 | ||
Data collection | ω–φ scan, 1.2° step, 3 s expose | ω–φ scan, 1.0° step, 6 s expose | ω–φ scan, 0.8° step, 4 s expose |
Frames collected | 2226 | 3030 | 1571 |
Θ range (°) | 4.39–68.34 | 3.35–68.29 | 5.30–68.46 |
Resolution (Å) | 0.83 | 0.83 | 0.83 |
Coverage (%), Rint | 98.8, 0.0454 | 99.7, 0.0508 | 99.4, 0.0223 |
Reflns collected/unique/observed | 39,293/11,029/9080 | 42,676/11,053/9509 | 20,632/5523/5261 |
Data/parameters/restraints | 11,029/841/27 | 11,053/854/15 | 5523/412/33 |
R1 a, wR2 (I > 2σ(I)) b | 0.0551, 0.1532 | 0.0371, 0.0852 | 0.0724, 0.2078 |
R1, wR2 (all data), S | 0.0649, 0.1640, 1.037 | 0.0471, 0.0904, 1.039 | 0.0746, 0.2132, 1.041 |
Δρmin, Δρmax (e Å−3) | −0.24, 0.36 | −0.28, 0.26 | −0.48, 0.56 |
Flack parameter x | −0.06(8) | 0.01(1) | 0.41(2) c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aree, T. Variation of Cyclodextrin (CD) Complexation with Biogenic Amine Tyramine: Pseudopolymorphs of β-CD Inclusion vs. α-CD Exclusion, Deep Atomistic Insights. Int. J. Mol. Sci. 2024, 25, 7983. https://doi.org/10.3390/ijms25147983
Aree T. Variation of Cyclodextrin (CD) Complexation with Biogenic Amine Tyramine: Pseudopolymorphs of β-CD Inclusion vs. α-CD Exclusion, Deep Atomistic Insights. International Journal of Molecular Sciences. 2024; 25(14):7983. https://doi.org/10.3390/ijms25147983
Chicago/Turabian StyleAree, Thammarat. 2024. "Variation of Cyclodextrin (CD) Complexation with Biogenic Amine Tyramine: Pseudopolymorphs of β-CD Inclusion vs. α-CD Exclusion, Deep Atomistic Insights" International Journal of Molecular Sciences 25, no. 14: 7983. https://doi.org/10.3390/ijms25147983