Impact of CYP3A5 Polymorphisms on Pediatric Asthma Outcomes
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Asthma Outcomes and Genotype
2.3. ICS PK Analysis
2.4. Cortisol PK Analysis
3. Discussion
4. Materials and Methods
4.1. Setting and Study Population
4.2. e-Asthma Tracker
4.3. Study Procedures and DNA Collection and Analysis
4.4. PK Study Enrollment and Procedures
4.5. Bioanalytical Assay
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Most Recent National Asthma Data. Available online: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm (accessed on 4 January 2020).
- Nurmagambetov, T.; Kuwahara, R.; Garbe, P. The Economic Burden of Asthma in the United States, 2008–2013. Ann. Am. Thorac. Soc. 2018, 15, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.; Braileanu, G.; Palmer, T.; Stevens, P. The Economic Burden of Pediatric Asthma in the United States: Literature Review of Current Evidence. Pharmacoeconomics 2019, 37, 155–167. [Google Scholar] [CrossRef] [PubMed]
- CDC. Asthma Severity among Children with Current Asthma. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/asthma/asthma_stats/severity_child.htm (accessed on 4 January 2020).
- Alizadeh Bahmani, A.H.; Slob, E.M.A.; Bloemsma, L.D.; Brandstetter, S.; Corcuera-Elosegui, P.; Gorenjak, M.; Harner, S.; Hashimoto, S.; Hedman, A.M.; Kabesch, M.; et al. Medication use in uncontrolled pediatric asthma: Results from the SysPharmPediA study. Eur. J. Pharm. Sci. 2023, 181, 106360. [Google Scholar] [CrossRef] [PubMed]
- Burbank, A.J.; Atkinson, C.E.; Espaillat, A.E.; Schworer, S.A.; Mills, K.; Rooney, J.; Loughlin, C.E.; Phipatanakul, W.; Hernandez, M.L. Race-specific spirometry equations may overestimate asthma control in Black children and adolescents. Respir. Res. 2023, 24, 203. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Balantac, Z.; Gillette, C.; Farooqui, N.; Tervonen, T.; Thomas, C.; Gilbert, I.; Gandhi, H.; Israel, E. Suboptimal Control of Asthma Among Diverse Patients: A US Mixed Methods Focus Group Study. J. Asthma Allergy 2022, 15, 1511–1526. [Google Scholar] [CrossRef] [PubMed]
- Selberg, S.; Karlsson Sundbaum, J.; Konradsen, J.R.; Backman, H.; Hedman, L.; Lindberg, A.; Stridsman, C. Multiple manifestations of uncontrolled asthma increase the risk of severe COVID-19. Respir. Med. 2023, 216, 107308. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.W.; Ghushchyan, V.; Kavati, A.; Navaratnam, P.; Friedman, H.S.; Ortiz, B. Trends in Asthma Control, Treatment, Health Care Utilization, and Expenditures Among Children in the United States by Place of Residence: 2003–2014. J. Allergy Clin. Immunol. Pract. 2019, 7, 1835–1842.e2. [Google Scholar] [CrossRef]
- AAAAI. Inhaled Corticosteroids. Available online: https://www.aaaai.org/tools-for-the-public/drug-guide/inhaled-corticosteroids (accessed on 4 January 2022).
- Averell, C.M.; Laliberte, F.; Germain, G.; Duh, M.S.; Rousculp, M.D.; MacKnight, S.D.; Slade, D.J. Impact of adherence to treatment with inhaled corticosteroids/long-acting beta-agonists on asthma outcomes in the United States. Ther. Adv. Respir. Dis. 2022, 16, 17534666221116997. [Google Scholar] [CrossRef]
- Cardet, J.C.; Papi, A.; Reddel, H.K. “As-Needed” Inhaled Corticosteroids for Patients with Asthma. J. Allergy Clin. Immunol. Pract. 2023, 11, 726–734. [Google Scholar] [CrossRef]
- Sadatsafavi, M.; Lynd, L.D.; De Vera, M.A.; Zafari, Z.; FitzGerald, J.M. One-year outcomes of inhaled controller therapies added to systemic corticosteroids after asthma-related hospital discharge. Respir. Med. 2015, 109, 320–328. [Google Scholar] [CrossRef]
- Roche, N.; Garcia, G.; de Larrard, A.; Cancalon, C.; Benard, S.; Perez, V.; Mahieu, A.; Vieu, L.; Demoly, P. Real-life impact of uncontrolled severe asthma on mortality and healthcare use in adolescents and adults: Findings from the retrospective, observational RESONANCE study in France. BMJ Open 2022, 12, e060160. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Cano, R.; Torrego, A.; Bartra, J.; Sanchez-Lopez, J.; Palomino, R.; Picado, C.; Valero, A. Follow-up of patients with uncontrolled asthma: Clinical features of asthma patients according to the level of control achieved (the COAS study). Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2017, 49, 1501885. [Google Scholar] [CrossRef] [PubMed]
- MMWR. Asthma Hospitalizations and Readmissions among Children and Young Adults—Wisconsin, 1991–1995; 1997; 0149-2195 (Print). 0149-2195 (Linking); 8 August 1997; pp. 726–729. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/00048786.htm (accessed on 4 January 2020).
- Li, D.; German, D.; Lulla, S.; Thomas, R.G.; Wilson, S.R. Prospective study of hospitalization for asthma. A preliminary risk factor model. Am. J. Respir. Crit. Care Med. 1995, 151, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.; Pearce, N.; Burgess, C.; Woodman, K.; Robson, B.; Beasley, R. Markers of risk of asthma death or readmission in the 12 months following a hospital admission for asthma. Int. J. Epidemiol. 1992, 21, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.A.; Bland, J.M.; Thompson, J.M. Risk factors for readmission to hospital for asthma in childhood. Thorax 1994, 49, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Vargas, P.A.; Perry, T.T.; Robles, E.; Jo, C.H.; Simpson, P.M.; Magee, J.M.; Feild, C.R.; Hakkak, R.; Carroll, P.A.; Jones, S.M. Relationship of body mass index with asthma indicators in head start children. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2007, 99, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Achieving asthma control. Curr. Med. Res. Opin. 2005, 21 (Suppl. S4), S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Bloomberg, G.R.; Banister, C.; Sterkel, R.; Epstein, J.; Bruns, J.; Swerczek, L.; Wells, S.; Yan, Y.; Garbutt, J.M. Socioeconomic, family, and pediatric practice factors that affect level of asthma control. Pediatrics 2009, 123, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Bateman, E.D.; Frith, L.F.; Braunstein, G.L. Achieving guideline-based asthma control: Does the patient benefit? Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2002, 20, 588–595. [Google Scholar] [CrossRef]
- Chapman, K.R.; Boulet, L.P.; Rea, R.M.; Franssen, E. Suboptimal asthma control: Prevalence, detection and consequences in general practice. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2008, 31, 320–325. [Google Scholar] [CrossRef]
- Rabe, K.F.; Adachi, M.; Lai, C.K.; Soriano, J.B.; Vermeire, P.A.; Weiss, K.B.; Weiss, S.T. Worldwide severity and control of asthma in children and adults: The global asthma insights and reality surveys. J. Allergy Clin. Immunol. 2004, 114, 40–47. [Google Scholar] [CrossRef] [PubMed]
- NHLBI. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007; NHLBI: Bethesda, MD, USA, 2007. Available online: https://www.nhlbi.nih.gov/resources/expert-panel-report-3-epr-3-guidelines-diagnosis-and-management-asthma-summary-report (accessed on 4 January 2020).
- Stempel, D.A.; McLaughin, T.P.; Stanford, R.H.; Fuhlbrigge, A.L. Patterns of asthma control: A 3-year analysis of patient claims. J. Allergy Clin. Immunol. 2005, 115, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Cukovic, L.; Sutherland, E.; Sein, S.; Fuentes, D.; Fatima, H.; Oshana, A.; Rahman, A. An evaluation of outpatient pediatric asthma prescribing patterns in the United States. Int. J. Sci. Res. Arch. 2023, 9, 344–349. [Google Scholar] [CrossRef]
- Belhassen, M.; Nibber, A.; Van Ganse, E.; Ryan, D.; Langlois, C.; Appiagyei, F.; Skinner, D.; Laforest, L.; Soriano, J.B.; Price, D. Inappropriate asthma therapy-a tale of two countries: A parallel population-based cohort study. NPJ Prim. Care Respir. Med. 2016, 26, 16076. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, A.; Denny, J.; Roden, D.M.; Brilliant, M.H.; Ingram, C.; Kitchner, T.E.; Linneman, J.G.; Shaffer, C.M.; Weeke, P.; Xu, H.; et al. CMTR1 is associated with increased asthma exacerbations in patients taking inhaled corticosteroids. Immun. Inflamm. Dis. 2015, 3, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Keskin, O.; Farzan, N.; Birben, E.; Akel, H.; Karaaslan, C.; Maitland-van der Zee, A.H.; Wechsler, M.E.; Vijverberg, S.J.; Kalayci, O. Genetic associations of the response to inhaled corticosteroids in asthma: A systematic review. Clin. Transl. Allergy 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Dolset, M.I.; Obeso, D.; Rodriguez-Coira, J.; Tarin, C.; Tan, G.; Cumplido, J.A.; Cabrera, A.; Angulo, S.; Barbas, C.; Sokolowska, M.; et al. Understanding uncontrolled severe allergic asthma by integration of omic and clinical data. Allergy 2022, 77, 1772–1785. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hua, L.; Bao, C.; Kong, L.; Hu, J.; Liu, C.; Li, Z.; Xu, S.; Liu, X. Inhibition of Spleen Tyrosine Kinase Restores Glucocorticoid Sensitivity to Improve Steroid-Resistant Asthma. Front. Pharmacol. 2022, 13, 885053. [Google Scholar] [CrossRef]
- Cardoso-Vigueros, C.; von Blumenthal, T.; Ruckert, B.; Rinaldi, A.O.; Tan, G.; Dreher, A.; Radzikowska, U.; Menz, G.; Schmid-Grendelmeier, P.; Akdis, C.A.; et al. Leukocyte redistribution as immunological biomarker of corticosteroid resistance in severe asthma. Clin. Exp. Allergy 2022, 52, 1183–1194. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, X.; Ma, Z.; Sun, Y.; Shu, C.; Zhu, Y.; Zhang, Y.; Hu, S.; Fu, X.; Liu, L. Association of CYP3A5 Gene Polymorphisms and Amlodipine-Induced Peripheral Edema in Chinese Han Patients with Essential Hypertension. Pharmacogenomics Pers. Med. 2021, 14, 189–197. [Google Scholar] [CrossRef]
- Wang, S.B.; Huang, T. The early detection of asthma based on blood gene expression. Mol. Biol. Rep. 2019, 46, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.K.; Moore, C.D.; Romero, E.G.; Ward, R.M.; Yost, G.S.; Reilly, C.A. Regulation of CYP3A genes by glucocorticoids in human lung cells. F1000Res 2013, 2, 173. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.D.; Roberts, J.K.; Orton, C.R.; Murai, T.; Fidler, T.P.; Reilly, C.A.; Ward, R.M.; Yost, G.S. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab. Dispos. 2013, 41, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Lamba, J.; Hebert, J.M.; Schuetz, E.G.; Klein, T.E.; Altman, R.B. PharmGKB summary: Very important pharmacogene information for CYP3A5. Pharmacogenet. Genom. 2012, 22, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Murai, T.; Reilly, C.A.; Ward, R.M.; Yost, G.S. The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme. Chem. Res. Toxicol. 2010, 23, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.K.; Moore, C.D.; Ward, R.M.; Yost, G.S.; Reilly, C.A. Metabolism of beclomethasone dipropionate by cytochrome P450 3A enzymes. J. Pharmacol. Exp. Ther. 2013, 345, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef] [PubMed]
- Stockmann, C.; Reilly, C.A.; Fassl, B.; Gaedigk, R.; Nkoy, F.; Stone, B.; Roberts, J.K.; Uchida, D.A.; Leeder, J.S.; Sherwin, C.M.; et al. Effect of CYP3A5*3 on asthma control among children treated with inhaled beclomethasone. J. Allergy Clin. Immunol. 2015, 136, 505–507. [Google Scholar] [CrossRef]
- Stockmann, C.; Fassl, B.; Gaedigk, R.; Nkoy, F.; Uchida, D.A.; Monson, S.; Reilly, C.A.; Leeder, J.S.; Yost, G.S.; Ward, R.M. Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J. Pediatr. 2013, 162, 1222–1227. [Google Scholar] [CrossRef]
- Nkoy, F.L.; Fassl, B.A.; Wilkins, V.L.; Johnson, J.; Unsicker, E.H.; Koopmeiners, K.J.; Jensen, A.; Frazier, M.; Gaddis, J.; Malmgren, L.; et al. Ambulatory Management of Childhood Asthma Using a Novel Self-management Application. Pediatrics 2019, 143, e20181711. [Google Scholar] [CrossRef] [PubMed]
- Nkoy, F.L.; Stone, B.L.; Fassl, B.A.; Koopmeiners, K.; Halbern, S.; Kim, E.H.; Poll, J.; Hales, J.W.; Lee, D.; Maloney, C.G. Development of a novel tool for engaging children and parents in asthma self-management. AMIA Annu. Symp. Proc. 2012, 2012, 663–672. [Google Scholar] [PubMed]
- Nkoy, F.L.; Stone, B.L.; Fassl, B.A.; Uchida, D.A.; Koopmeiners, K.; Halbern, S.; Kim, E.H.; Wilcox, A.; Ying, J.; Greene, T.H.; et al. Longitudinal validation of a tool for asthma self-monitoring. Pediatrics 2013, 132, e1554–e1561. [Google Scholar] [CrossRef] [PubMed]
- Nkoy, F.L.; Wilkins, V.L.; Fassl, B.A.; Sheng, X.; Stone, B.L. Impact of a self-monitoring application on pediatric asthma disparities. Int. J. Med. Inform. 2020, 144, 104294. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.Y.; Islahudin, F.; Ali Nasiruddin, A.Y.; Abdul Gafor, A.H.; Wong, H.S.; Bavanandan, S.; Mohd Saffian, S.; Md Redzuan, A.; Mohd Tahir, N.A.; Makmor-Bakry, M. Effects of CYP3A5 Polymorphism on Rapid Progression of Chronic Kidney Disease: A Prospective, Multicentre Study. J. Pers. Med. 2021, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, M.L.; Wojciechowski, P.; Dziewonska, M.; Rys, P. Adrenal suppression by inhaled corticosteroids in patients with asthma: A systematic review and quantitative analysis. Allergy Asthma Proc. 2016, 37, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kachroo, P.; Stewart, I.D.; Kelly, R.S.; Stav, M.; Mendez, K.; Dahlin, A.; Soeteman, D.I.; Chu, S.H.; Huang, M.; Cote, M.; et al. Metabolomic profiling reveals extensive adrenal suppression due to inhaled corticosteroid therapy in asthma. Nat. Med. 2022, 28, 814–822. [Google Scholar] [CrossRef]
- Brennan, V.; Martin-Grace, J.; Greene, G.; Heverin, K.; Mulvey, C.; McCartan, T.; Lombard, L.; Walsh, J.; Hale, E.M.; Srinivasan, S.; et al. The Contribution of Oral and Inhaled Glucocorticoids to Adrenal Insufficiency in Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 2614–2623. [Google Scholar] [CrossRef]
- Brus, R. Effects of high-dose inhaled corticosteroids on plasma cortisol concentrations in healthy adults. Arch. Intern. Med. 1999, 159, 1903–1908. [Google Scholar] [CrossRef]
- Barnes, P.J. Inhaled Corticosteroids. Pharmaceuticals 2010, 3, 514–540. [Google Scholar] [CrossRef] [PubMed]
- Vink, N.M.; Boezen, H.M.; Postma, D.S.; Rosmalen, J.G. Basal or stress-induced cortisol and asthma development: The TRAILS study. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2013, 41, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Haen, E.; Hauck, R.; Emslander, H.P.; Langenmayer, I.; Liebl, B.; Schopohl, J.; Remien, J.; Fruhmann, G. Nocturnal asthma. Beta 2-adrenoceptors on peripheral mononuclear leukocytes, cAMP- and cortisol-plasma concentrations. Chest 1991, 100, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Landstra, A.M.; Postma, D.S.; Boezen, H.M.; van Aalderen, W.M. Role of serum cortisol levels in children with asthma. Am. J. Respir. Crit. Care Med. 2002, 165, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.S.; Liu, J.N.; Kim, J.H.; Nam, Y.H.; Choi, G.S.; Park, H.S.; Premier Researchers Aiming New Era in Asthma and Allergic Diseases (PRANA) Study Group. The impact of asthma control on salivary cortisol level in adult asthmatics. Allergy Asthma Immunol. Res. 2014, 6, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Pate, C.A.; Qin, X.; Johnson, C.; Zahran, H.S. Asthma disparities among U.S. children and adults. J. Asthma 2023, 60, 2214–2223. [Google Scholar] [CrossRef] [PubMed]
- Akin-Imran, A.; Bajpai, A.; McCartan, D.; Heaney, L.G.; Kee, F.; Redmond, C.; Busby, J. Ethnic variation in asthma healthcare utilisation and exacerbation: Systematic review and meta-analysis. ERJ Open Res. 2023, 9, 00591-2022. [Google Scholar] [CrossRef]
- Baptist, A.P.; Apter, A.J.; Gergen, P.J.; Jones, B.L. Reducing Health Disparities in Asthma: How Can Progress Be Made. J. Allergy Clin. Immunol. Pract. 2023, 11, 737–745. [Google Scholar] [CrossRef]
- Greiner, B.; Cronin, K.; Salazar, L.; Hartwell, M. Asthma-related disparities in emergency department use and clinical outcomes among Spanish-speaking Hispanic patients. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2023, 130, 254–255. [Google Scholar] [CrossRef]
- Nkoy, F.L.; Stone, B.L.; Knighton, A.J.; Fassl, B.A.; Johnson, J.M.; Maloney, C.G.; Savitz, L.A. Neighborhood Deprivation and Childhood Asthma Outcomes, Accounting for Insurance Coverage. Hosp. Pediatr. 2018, 8, 59–67. [Google Scholar] [CrossRef]
- Nathan, R.A.; Sorkness, C.A.; Kosinski, M.; Schatz, M.; Li, J.T.; Marcus, P.; Murray, J.J.; Pendergraft, T.B. Development of the asthma control test: A survey for assessing asthma control. J. Allergy Clin. Immunol. 2004, 113, 59–65. [Google Scholar] [CrossRef] [PubMed]
Criteria | Category | Median (IQR) or n | CYP3A5*3/*3 | CYP3A5*1/*x | p-Value |
---|---|---|---|---|---|
Age (yr) | n/a * | 8.35 (5.51–11.3) | 8.0 (5.0–11.0) | 9.0 (7.0–11.5) | 0.242 |
Sex | Male Female | 108 58 | 77 45 | 31 13 | 0.381 |
Race | White American Indian Black Native Hawaiian Unknown | 149 2 2 10 3 | 113 1 1 5 2 | 36 1 1 5 1 | 0.347 |
Ethnicity | Hispanic Latino Non-Hispanic/Latino Unknown | 26 137 3 | 20 100 2 | 6 37 1 | 0.884 |
FP-treated | Yes No | 99 67 | 73 49 | 26 18 | 0.931 |
BDP | Yes No | 53 113 | 42 80 | 11 33 | 0.250 |
BDP-treated | Yes No | 6 160 | 6 116 | 0 44 | 0.134 |
Outcomes | Genotype | OR | 95% CI | p-Value |
---|---|---|---|---|
Asthma Control | CYP3A5*3/*3 | 1 | 1 | 1 |
CYP3A5*1/*x | 0.98 | 0.97–0.98 | <0.001 | |
Asthma Exacerbations | CYP3A5*3/*3 | 1 | 1 | 1 |
CYP3A5*1/*x | 6.43 | 4.56–9.07 | <0.001 | |
Hospital Admissions | CYP3A5*3/*3 | 1 | 1 | 1 |
CYP3A5*1/*x | 1.66 | 1.43–1.93 | <0.001 |
Outcome | Genotype | Median | Interquartile Range |
---|---|---|---|
Asthma Control | CYP3A5*3/*3 | 20 | 16–23 |
CYP3A5*1/*3 | 19 | 15–23 | |
CYP3A5*1/*1 | 19 | 16–22 | |
Outcome | Genotype | Odds | 95% CI |
Asthma Exacerbations | CYP3A5*3/*3 | 0.009 | 0.007–0.013 |
CYP3A5*1/*3 | 0.053 | 0.043–0.065 | |
CYP3A5*1/*1 | 0.097 | 0.062–0.152 | |
Hospital Admissions | CYP3A5*3/*3 | 0.104 | 0.094–0.114 |
CYP3A5*1/*3 | 0.158 | 0.139–0.180 | |
CYP3A5*1/*1 | 0.331 | 0.247–0.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkoy, F.L.; Stone, B.L.; Deering-Rice, C.E.; Zhu, A.; Lamb, J.G.; Rower, J.E.; Reilly, C.A. Impact of CYP3A5 Polymorphisms on Pediatric Asthma Outcomes. Int. J. Mol. Sci. 2024, 25, 6548. https://doi.org/10.3390/ijms25126548
Nkoy FL, Stone BL, Deering-Rice CE, Zhu A, Lamb JG, Rower JE, Reilly CA. Impact of CYP3A5 Polymorphisms on Pediatric Asthma Outcomes. International Journal of Molecular Sciences. 2024; 25(12):6548. https://doi.org/10.3390/ijms25126548
Chicago/Turabian StyleNkoy, Flory L., Bryan L. Stone, Cassandra E. Deering-Rice, Angela Zhu, John G. Lamb, Joseph E. Rower, and Christopher A. Reilly. 2024. "Impact of CYP3A5 Polymorphisms on Pediatric Asthma Outcomes" International Journal of Molecular Sciences 25, no. 12: 6548. https://doi.org/10.3390/ijms25126548