Non-Targeted Detection of Synthetic Oligonucleotides in Equine Serum Using Liquid Chromatography–High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Linearity and Limits of Detection and Quantitation
2.2. Accuracy, Precision, and Stability
2.3. Method Application
3. Discussion
3.1. Optimization of Liquid Chromatography and Mass Spectrometry
3.2. Sample Preparation and Extraction
3.3. Limitations
4. Materials and Methods
4.1. Chemicals, Reagents, and Equipment
4.2. Preparation of Reference Standards, Calibrators, and Quality Control Samples
4.3. Sample Preparation and Solid-Phase Extraction
4.4. LC-MS Analysis
4.5. Method Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohler, M.; Schänzer, W.; Thevis, M. RNA interference for performance enhancement and detection in doping control. Drug Test. Anal. 2011, 3, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Tozaki, T.; Hamilton, N.A. Control of gene doping in human and horse sports. Gene Ther. 2022, 29, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.M.; Kim, J.; El Zahar, N.M.; Bartlett, M.G. Bioanalysis and biotransformation of oligonucleotide therapeutics by liquid chromatography-mass spectrometry. Mass. Spectrum. Rev. 2020, 40, 334–358. [Google Scholar] [CrossRef]
- Crooke, S.T.; Vickers, T.A.; Liang, X. Phosphorothioate modified oligonucleotide–protein interactions. Nucleic Acids Res. 2020, 48, 5235–5253. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.T.; Witztum, J.L.; Bennett, C.F.; Baker, B.F. RNA-Targeted Therapeutics. Cell Metab. 2018, 27, 714–739. [Google Scholar] [CrossRef] [PubMed]
- Tozaki, T.; Karasawa, K.; Minamijima, Y.; Ishii, H.; Kikuchi, M.; Kakoi, H.; Hirota, K.I.; Kusano, K.; Nagata, S.I. Detection of phosphorothioated (PS) oligonucleotides in horse plasma using a product ion (m/z 94.9362) derived from the PS moiety for doping control. BMC Res. Notes 2018, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Walpurgis, K.; Delahaut, P.; Kohler, M.; Schänzer, W.; Thevis, M. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls. Drug Test. Anal. 2013, 5, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Kotapati, S.; Deshpande, M.; Jashnani, A.; Thakkar, D.; Xu, H.; Dollinger, G. The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021, 13, 931–954. [Google Scholar] [CrossRef] [PubMed]
- Tozaki, T.; Kwak, H.; Nakamura, K.; Takasu, M.; Ishii, H.; Ohnuma, A.; Kikuchi, M.; Ishige, T.; Kakoi, H.; Hirota, K.; et al. Sequence determination of phosphorothioated oligonucleotides using MALDI-TOF mass spectrometry for controlling gene doping in equestrian sports. Drug Test. Anal. 2021, 14, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Akiyama, M.; Taoka, M.; Yamauchi, Y.; Nobe, Y.; Ishikawa, H.; Takahashi, N.; Isobe, T. Ariadne: A database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data. Nucleic Acids Res. 2009, 37, e47. [Google Scholar] [CrossRef] [PubMed]
- Basiri, B.; van Hattum, H.; van Dongen, W.D.; Murph, M.M.; Bartlett, M.G. The role of fluorinated alcohols as mobile phase modifiers for LC-MS analysis of oligonucleotides. J. Am. Soc. Mass. Spectrom. 2017, 28, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Worth, A.J.; Mesaros, C.; Snyder, N.W.; Glickson, J.D.; Blair, I.A. Diisopropylethylamine/hexafluoroisopropanol-mediated ion-pairing ultra-high-performance liquid chromatography/mass spectrometry for phosphate and carboxylate metabolite analysis: Utility for studying cellular metabolism. Rapid Commun. Mass. Spectrom. 2016, 30, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Bartlett, M.G. Evaluation of mobile phase composition for enhancing sensitivity of targeted quantification of oligonucleotides using ultra-high performance liquid chromatography and mass spectrometry: Application to phosphorothioate deoxyribonucleic acid. J. Chromatogr. 2013, 1288, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Husser, C.; Brink, A.; Zell, M.; Müller, M.B.; Koller, E.; Schadt, S. Identification of GalNAc-Conjugated Antisense Oligonucleotide Metabolites Using an Untargeted and Generic Approach Based on High Resolution Mass Spectrometry. Anal. Chem. 2017, 89, 6821–6826. [Google Scholar] [CrossRef] [PubMed]
- Hannauer, F.; Black, R.; Ray, A.; Stulz, E.; Langley, G.; Holman, S. Review of fragmentation of synthetic single-stranded oligonucleotides by tandem mass spectrometry from 2014 to 2022. Rapid Commun. Mass Spectrom 2023, 37, e9596. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Racing Chemist. Guidelines for the Minimum Criteria for Identification by Chromatography and Mass Spectrometry; Association of Official Racing Chemists: Storrs, CT, USA, 2024. [Google Scholar]
- Hannauer, F.; Black, R.; Ray, A.; Stulz, E.; Langley, J.; Holmon, S. Advancements in the characterisation of oligonucleotides by high performance liquid chromatography-mass spectrometry in 2021: A short review. Anal. Sci. Adv. 2022, 3, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lin, J.; Srinivasan, K.; Kavetskaia, O.; Duncan, J.N. Strategies for bioanalysis of an oligonucleotide class macromolecule from rat plasma using liquid chromatographytandem mass spectrometry. Anal. Chem. 2007, 79, 3416–3424. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Grundy, J.S.; Geary, R.S. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin. Drug Metab. Toxicol. 2013, 9, 169–182. [Google Scholar] [CrossRef] [PubMed]
QC Low (75 ng/mL) | QC High (750 ng/mL) | ||||
---|---|---|---|---|---|
Scan Type | Percent Difference | RSD | Percent Difference | RSD | |
Day 1 | PRM-900 m/z | 39.6% | 5.9% | 15.5% | 12.4% |
PRM-1500 m/z | 46.6% | 8.0% | 58.7% | 11.7% | |
PRM-2100 m/z | 37.6% | 7.9% | 50.8% | 11.9% | |
AIF | 27.7% | 5.0% | 16.3% | 12.3% | |
Day 2 | PRM-900 m/z | 17.9% | 15.7% | 1.1% | 13.3% |
PRM-1500 m/z | 24.1% | 8.4% | 9.7% | 17.9% | |
PRM-2100 m/z | 17.4% | 9.6% | 4.4% | 18.0% | |
AIF | 22.5% | 10.6% | 2.0% | 12.9% | |
Day 3 | PRM-900 m/z | 37.0% | 18.3% | 10.2% | 7.0% |
PRM-1500 m/z | 31.1% | 14.8% | 11.1% | 9.5% | |
PRM-2100 m/z | 30.9% | 14.9% | 12.0% | 6.0% | |
AIF | 30.2% | 10.5% | 11.0% | 7.0% | |
Inter-Day | PRM-900 m/z | 31.5% | 20.1% | 2.1% | 15.3% |
PRM-1500 m/z | 34.0% | 18.0% | 12.6% | 32.3% | |
PRM-2100 m/z | 28.6% | 16.1% | 11.5% | 28.6% | |
AIF | 26.8% | 9.7% | 1.1% | 15.8% |
Scan Type | 24 h at ~25 °C | 24 h at 4 °C | 27 Days at 4 °C | 27 Days at −20 °C | 28 Days at −20 °C 1× Frz/Thaw | 28 Days at −20 °C 2× Frz/Thaw |
---|---|---|---|---|---|---|
PRM-900 m/z | ND | 51.7% | 4.0% | 61.1% | 44.3% | 53.0% |
PRM-1500 m/z | 26.9% | 51.5% | 4.7% | 55.9% | 50.3% | 55.5% |
PRM-2100 m/z | ND | 62.8% | 5.1% | 53.9% | 57.4% | 65.0% |
AIF | 28.5% | 54.4% | 3.9% | 59.9% | 48.7% | 54.8% |
Base Length | Name | PS Modified | Sequence |
---|---|---|---|
13 | PS-1 | 12 | 5′–rA* rU* rC* rA* rG* rG* rU* rC* rA* rC* rU* rG* rC–3′ |
20 | HorseMyostatin (MYO) | 19 | /52MOErC/*/i2MOErT/*/i2MOErT/* /i2MOErC/*/i2MOErA/*C* A*T*C* A*A*T* G*C*T* /i2MOErC/*/i2MOErT/*/i2MOErG/*/i2MOErC/*/32MOErC/ |
20 | EGL9 | 19 | /52MOErT/*/i2MOErT/*/i2MOErA/* /i2MOErC/*/i2MOErC/*T* T*G*G* C*A*T* C*C*C* /i2MOErA/*/i2MOErG/*/i2MOErT/*/i2MOErC/*/32MOErT/ |
16 | Beal | 4 | mC*mG*mArCrCrCrGrCdZdNrArUrUmC*mU*mC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmes, E.; Montgomery, J.; Alarcio, G.; Mendoza, H.G.; Blea, J.A.; Beal, P.A.; Moeller, B.C. Non-Targeted Detection of Synthetic Oligonucleotides in Equine Serum Using Liquid Chromatography–High-Resolution Mass Spectrometry. Int. J. Mol. Sci. 2024, 25, 5752. https://doi.org/10.3390/ijms25115752
Helmes E, Montgomery J, Alarcio G, Mendoza HG, Blea JA, Beal PA, Moeller BC. Non-Targeted Detection of Synthetic Oligonucleotides in Equine Serum Using Liquid Chromatography–High-Resolution Mass Spectrometry. International Journal of Molecular Sciences. 2024; 25(11):5752. https://doi.org/10.3390/ijms25115752
Chicago/Turabian StyleHelmes, Emily, Jacob Montgomery, Gwendolyne Alarcio, Herra G. Mendoza, Jeffrey A. Blea, Peter A. Beal, and Benjamin C. Moeller. 2024. "Non-Targeted Detection of Synthetic Oligonucleotides in Equine Serum Using Liquid Chromatography–High-Resolution Mass Spectrometry" International Journal of Molecular Sciences 25, no. 11: 5752. https://doi.org/10.3390/ijms25115752