On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny
Abstract
:1. Introduction
2. The Mast Cell
2.1. Sentinel Cell
2.2. Main Mediators
2.2.1. Biogenic Amines Histamine and Serotonin
2.2.2. Proteoglycans
2.2.3. Proteases
2.2.4. Cytokines, Chemokines, and Growth Factors
2.2.5. Lipid Mediators and Nitric Oxide
2.3. Physiological Role Unclear
2.4. Effects on Cell Proliferation, Tissue Remodeling, and Angiogenesis
2.4.1. Complex Integration of Molecular, Cellular, and ECM Events in MC-Mediated Angiogenesis
2.4.2. Role in Inflammation and Wound Healing
2.5. Role in Reproduction
2.6. Role in Health and Homeostasis
ROLES OF CONNECTIVE TISSUE MAST CELLS IN SUCCEEDING GENERATIONS CONTRIBUTING TO PERPETUATION OF MAMMALS AND OTHER VERTEBRATES |
GENERATION #n |
1.1 Embryonic and Fetal Life |
MCs are generated from endothelial cells *** and participate in the creation of the first organ **, blood vessels, that later develops into the body’s largest network. Critical role in inflammation; potentially lethal **. Critical role in wound healing/tissue repair **. |
1.2 Birth throughout Life |
Critical role in commonplace inflammation; potentially lethal ***. Critical role in commonplace wound healing/tissue repair; potentially lethal ***. |
1.3 Female Sex System beginning at Menarche |
Ovulation ***. Pregnancy ***. Childbirth *. |
GENERATION #n + 1 |
2.1 Embryonic and Fetal Life |
MCs are generated from endothelial cells *** and participate in the creation of the first organ **, blood vessels, that later develops into the body’s largest network. For any newly created embryo, go to 1.1 above and there is an endless loop: 2.1, 2.2, 2.3, 3.1, 3.2, etc. |
Table. Connective tissue mast cells (MCs) are definitely ***, probably **, or likely * key players in the creation of a permanent loop of life-promoting and life-sustaining events in succeeding generations, safe-guarding the offspring. References are given in the text. |
3. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MC | connective tissue mast cell |
SCF | stem cell factor |
VEGF | vascular endothelial growth factor |
bFGF | basic fibroblast growth factor |
MMC | mucosal mast cell |
ECM | extracellular matrix |
MMP | matrix metalloproteinase |
COX | cyclooxygenase |
PG | prostaglandin |
NO | nitric oxide |
IL | interleukin |
IgE | immunoglobulin E |
References
- Wong, G.W.; Zhou, L.; Kimata, K.; Lam, B.K.; Satoh, N.; Stevens, R.L. Ancient origin of mast cells. Biochem. Biophys. Res. Commun. 2014, 451, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Travan, L.; Ribatti, D. The phylogenetic profile of mast cells. Methods Med. Biol. 2015, 1220, 11–27. [Google Scholar]
- Baccari, G.C.; Pinelli, C.; Santillo, A.; Menucci, S.; Rastogi, R.K. Mast cells in nonmammalian vertebrates: An overview. Int. Rev. Cell Mol. Biol. 2011, 290, 1–53. [Google Scholar] [PubMed]
- Cavalcante, M.C.M.; Allodi, S.; Valente, A.P.; Straus, A.H.; Takahashi, H.K.; Mourao, P.A.S.; Pawao, M.S.G. Occurrence of heparin in the invertebrate Styela plicata (Tunicata) is restricted to cell layers facing the outside environment: An ancient role in defense? J. Biol. Chem. 2000, 275, 36189–36196. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Gaudenzio, N.; Tsai, M. Mast cells in inflammation and disease: Recent progress and ongoing concerns. Ann. Rev. Immunol. 2020, 38, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.S.; Jawdat, D.M. Mast cells in innate immunity. J. Allergy Clin. Immunol. 2004, 114, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Dileepan, K.N.; Raveendran, V.V.; Sharma, R.; Abraham, H.; Barua, R.; Singh, V.; Sharma, R.; Sharma, M. Mast cell-mediated immune regulation in health and disease. Front. Med. 2023, 10, 1213320. [Google Scholar] [CrossRef] [PubMed]
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast cell: A multi-functional master cell. Front. Immunol. 2016, 6, 620. [Google Scholar] [CrossRef]
- Dudeck, A.; Köberle, M.; Goldmann, O.; Meyer, N.; Dudeck, J.; Lemmens, S.; Rohde, M.; Roldan, N.G.; Dietze-Schwonberg, K.; Orinska, Z.; et al. Mast cells as protectors of health. J. Allergy Clin. Immunol. 2019, 144, S4–S18. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Zenclussen, A.C. Mast cells—Good guys with a bad image? Am. J. Reprod. Immunol. 2018, 80, e13002. [Google Scholar] [CrossRef] [PubMed]
- Hellman, L.; Akula, S.; Fu, Z.; Wernersson, S. Mast cell and basophil granule proteases—In vivo targets and function. Front. Imunnol. 2022, 13, 918305. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Do mast cells contribute to the continued survival of vertebrates? APMIS 2022, 130, 618–624. [Google Scholar] [CrossRef]
- Chia, S.L.; Kapoor, S.; Carvalho, C.; Bajenoff, M.; Gentek, R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol. Rev. 2023, 315, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Weller, P.; Grabbe, J.; Gibbs, B.; Zauberbier, T.; Henz, B.M. Human mast cells produce and differentially express both soluble and membrane-bound stem cell factor. Scand. J. Immunol. 1999, 49, 495–500. [Google Scholar]
- Annese, T.; Tamma, R.; Bozza, M.; Zito, A.; Ribatti, D. Autocrine/paracrine loop between SCF+/c-Kit+ mast cells promotes cutaneous melanoma progression. Front. Immunol. 2022, 13, 794974. [Google Scholar] [CrossRef] [PubMed]
- Molderings, G.J.; Afrin, L.B. A survey of the currently known mast cell mediators with potential relevance for therapy of mast cell-induced symptoms. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 2881–2891. [Google Scholar] [CrossRef]
- Moon, T.C.; Befus, A.D.; Kulka, M. Mast cell mediators: Their differential release and the secretory pathways involved. Front. Immunol. 2014, 5, 569. [Google Scholar] [CrossRef] [PubMed]
- Weimerhaus, M.; Carvalho, C.; Rignault, R.; Waeckel-Enee, E.; Dussiot, M.; van Endert, P.; Maciel, T.T.; Hermine, O. Mast cell-mediated inflammation relies on insulin-regulated aminopeptidase controlling cytokine export from the Golgi. J. Allergy Clin. Immunol. 2023, 151, 1595–1608. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.S.; Maurer, M.; Metcalfe, D.D.; Pejler, G.; Sagi-Eisenberg, R.; Nilsson, G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 2022, 77, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Köberle, M.; Metz, M.; Biedermann, T. Mast cells: Promoters of health and modulators of disease. J. Allergy Clin. Immunol. 2019, 144 (Suppl. S4), S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Gentek, R.; Ghigo, C.; Hoeffel, G.; Bulle, M.J.; Msallam, R.; Gautier, G.; Launay, P.; Chen, J.; Ginhoux, F.; Bejenoff, M. Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 2018, 48, 1160–1171. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S.; Xu, J.; Zhang, X.; Han, D.; Liu, J.; Xia, M.; Yi, L.; Shen, Q.; Lu, L.; et al. Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 2018, 49, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Boisset, J.C.; van Cappellen, W.; Andrieu-Soler, C.; Galjart, N.; Dzierzak, E.; Robin, C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010, 464, 116–120. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 2003, 9, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Tauber, M.; Basso, L.; Martin, J.; Bostan, L.; Pinto, M.M.; Thierry, G.R.; Houmadi, R.; Serhan, N.; Loste, A.; Blériot, C.; et al. Landscape of mast cell populations across organs in mice and humans. J. Exp. Med. 2023, 220, e20230570. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.F.; Barrett, N.A.; Austen, K.F. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 2016, 17, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Frossi, B.; Mion, F.; Sibilano, R.; Danelli, L.; Pucillo, C.E.M. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol. Rev. 2018, 282, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Enerbäck, L. Mast cell heterogeneity: The evolution of the concept of a specific mucosal mast cell. In Mast Cell Differentiation and Heterogeneity; Befus, A.D., Bienenstock, J., Denburg, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; pp. 1–26. [Google Scholar]
- Katz, H.R.; Stevens, R.L.; Austen, K.F. Heterogeneity of mammalian mast cells differentiated in vivo and in vitro. J. Allergy Clin. Immunol. 1985, 76 Pt 2, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Grigorev, I.P.; Korzhevskii, D.E. Mast cells in the vertebrate brain: Localization and function. J. Evolut. Biochem. Physiol. 2020, 57, 16–32. [Google Scholar] [CrossRef]
- Katsoulis-Dimitriou, K.; Kotrba, J.; Voss, M.; Dudeck, J.; Dudeck, A. Mast cell functions linking innate sensing to adaptive immunity. Cells 2020, 9, 2538. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, E.; Pejler, G.; Ringvall, M.; Lunderius, C.; Toasini-Johansson, B.; Kusche-Gullberg, M.; Eriksson, I.; Ledin, J.; Hellman, L.; Kjellen, L. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 1999, 400, 773–776. [Google Scholar] [CrossRef]
- Wernersson, S.; Pejler, G. Mast cell secretory granules: Armed for battle. Nat. Rev. Immunol. 2014, 14, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Mulloy, B.; Lever, R.; Page, C.P. Mast cell glycosaminoglycans. Glycoconj. J. 2017, 34, 351–361. [Google Scholar] [CrossRef]
- Herrera-Heredia, S.A.; Hsu, H.P.; Kao, C.Y.; Tsai, Y.H.; Yamaguchi, Y.; Roers, A.; Hsu, C.L.; Dzhagalov, I.L. Heparin is required for the formation of granules in connective tissue mast cells. Front. Immunol. 2022, 13, 1000405. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Dai, Y. Heparin: An intervenor in cell communication. J. Cell. Mol. Med. 2010, 14, 175–180. [Google Scholar] [CrossRef]
- Humphries, D.E.; Wong, G.W.; Friend, D.S.; Gurish, M.F.; Qiu, W.T.; Huang, C.; Sharpe, A.H.; Stevens, R.L. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 1999, 400, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Henningsson, F.; Ledin, J.; Lunderius, C.; Wilen, M.; Hellman, L.; Pejler, G. Altered storage of proteases in mast cells from mice lacking heparin: A possible role for heparin in carboxypeptidase a processing. Biol. Chem. 2002, 383, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Peysselon, F.; Ricard-Blum, S. Heparin-protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis. Matrix Biol. 2014, 35, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Kan, M.; Wang, F.; Xu, J.; Crabb, J.W.; Hou, J.; McKeehan, W.L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993, 259, 1918–1921. [Google Scholar] [CrossRef]
- Neufeld, G.; Tessler, S.; Gitay-Goren, H.; Cohen, T.; Levi, B.Z. Vascular endothelial growth factor and its receptors. Prog. Growth Factor Res. 1994, 5, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Raab, G.; Klagsbrun, M. Heparin-binding EGF-like growth factor. Biochim. Biophys. Acta 1997, 1333, F179–F199. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.S.; Portales-Cervantes, L.; Leong, E. Mast cell responses to viruses and pathogen products. Int. J. Mol. Sci. 2019, 20, 4241. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L.; Jackson, C.L.; Angelini, G.D.; George, S.J. Activation and matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arther. Thromb. Vasc. Biol. 1998, 18, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, I. Extracellular matrix remodeling: The role of matrix metalloproteinases. J. Pathol. 2003, 200, 448–464. [Google Scholar] [CrossRef]
- Tchougounova, E.; Lundequist, A.; Fajardo, I.; Winberg, J.O.; Abrink, M.; Pejler, G. A key role for mast cell chymase in the activation of pro-matrix metalloproteinase-9 and pro-matrix metalloproteinase-2. J. Biol. Chem. 2005, 280, 9291–9296. [Google Scholar] [CrossRef]
- Kanbe, N.; Tanaka, A.; Kanbe, M.; Itakura, A.; Kurosaw, M.; Matsuda, H. Human mast cells produce matrix metalloproteinase 9. Eur. J. Immunol. 1999, 29, 2645–2649. [Google Scholar] [CrossRef]
- Xu, K.; Cai, Z.; Yang, F.; Chen, M. Activation-induced upregulation of MMP9 in mast cells is a positive feedback mediator for mast cell activation. Mol. Med. Rep. 2017, 15, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.Z.M.; Jamur, M.C.; Oliver, C. Mast cell function: A new vision of an old cell. J. Histochem. Cytochem. 2014, 62, 698–738. [Google Scholar] [CrossRef] [PubMed]
- Detoraki, A.; Staiano, R.I.; Granata, F.; Giannattasio, G.; Prevete, N.; de Paulis, A.; Ribatti, D.; Genovese, A.; Triggiani, M.; Marone, G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J. Allergy Clin. Immunol. 2009, 123, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Gately, S.; Li, W.W. Multiple roles of COX-2 in tumor angiogenesis: A target for antiangiogenic therapy. Semin. Oncol. 2004, 31 (Suppl. S7), 2–11. [Google Scholar] [CrossRef]
- Wang, D.; DuBois, R.N. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proc. Natl. Acad. Sci. USA 2004, 101, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Chiarugi, V.; Magnelli, L.; Gallo, O. Cox-2, iNOS and p53 as play-makers of tumor angiogenesis. Int. J. Mol. Med. 1998, 2, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Enerbäck, L.; Franzén, L. Mast cell activation and tissue cell proliferation. Cell Tissue Res. 1976, 170, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Andersson, R.G. On the role of arachidonic acid metabolites in mast-cell mediated mitogenesis in the rat. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1984, 46, 83–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Daaka, Y. PGE2 promotes angiogenesis through EP4 and PKA Cy pathway. Blood 2011, 118, 5355–5364. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Nitric oxide suppresses bFGF- and IL-1-alpha-mediated but not VEGF165-mediated angiogenesis in natively vascularized mammalian tissue. APMIS 1998, 106, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Imanishi, M.; Fujikura, D.; Sugiyama, M.; Tanimoto, K.; Mochiji, Y.; Takahashi, Y.; Hiura, K.; Watanabe, M.; Kashimoto, T.; et al. New inducible mast cell-deficient mouse model (Mcpt5/Cma1dtr). Biochem. Biophys. Res. Commun. 2021, 551, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Rodewald, H.R.; Feyerabend, T.B. Widespread immunological functions of mast cells: Fact or fiction? Immunity 2012, 37, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Franzén, L.; Norrby, K. Immunological challenge causes mitogenic stimulation in normal connective tissue cells. APMIS 1982, 90, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Intradermal mast-cell secretion causing cutaneous mitogenesis. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1983, 42, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Jakobsson, A.; Sörbo, J. Mast-cell-mediated angiogenesis: A novel experimental model using the rat mesentery. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1986, 52, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Mast cells and angiogenesis. APMIS 2002, 110, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Effect of heparin, histamine, and serotonin on the density-dependent inhibition of replication in two fibroblastic cell lines. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1973, 15, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Mast cell histamine, a local mitogen acting via H2-receptors in nearby tissue cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1980, 34, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Evidence of mast-cell histamine being mitogenic in intact tissue. Agents Actions 1985, 16, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Sörbo, J.; Jakobsson, A.; Norrby, K. Mast-cell histamine is angiogenic through the receptors for histamine1 and histmine2. Int. J. Exp. Pathol. 1994, 75, 43–50. [Google Scholar]
- Qin, L.; Zhao, D.; Xu, J.; Ren, X.; Terwilliger, E.F.; Parangi, S.; Lawler, J.; Dvorak, H.F.; Zeng, H. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood 2013, 121, 2154–2164. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Wang, C.; Pan, R.; Gao, X.; Wei, Z.; Xia, Y.; Dai, Y. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor. J. Cell. Biochem. 2013, 114, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.A.; Park, C.J.; Shaughnessy, M.; Cowles, R.A. Serotonin as a mitogen in the gastrointestinal tract: Revisiting a familiar molecule in a new role. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Kim, Y.G.; Kim, K.; Osonoi, S.; Wang, S.; Saunders, D.C.; Wang, J.; Yang, K.; Kim, H.; Lee, J.; et al. Serotonin regulates adult b-cell mass by perinatal cell proliferation. Diabetes 2020, 69, 205–214. [Google Scholar] [CrossRef]
- Norrby, K. Effect of heparin on cell population kinetics, mitosis and topoinhibition. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1971, 9, 292–310. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Sörbo, J. Heparin enhances angiogenesis by a systemic mode of action. Int. J. Exp. Pathol. 1992, 73, 147–155. [Google Scholar] [PubMed]
- Norrby, K.; Ostergaard, P. Basic FGF-mediated de novo angiogenesis is more effectively suppressed by low-molecular-weight heparin than by high-molecular-weight heparin. Int. J. Microcirc. Clin. Exp. 1996, 16, 8–15. [Google Scholar] [CrossRef]
- Norrby, K.; Ostergaard, P. A 5.0-kD heparin fraction systemically suppresses VEGF165-mediated angiogenesis. Int. J. Microcirc. 1997, 17, 314–321. [Google Scholar] [CrossRef]
- Norrby, K. TNF-alpha and de novo mammalian angiogenesis. Microvasc. Res. 1996, 52, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Interleukin-8 and de novo mammalian angiogenesis. Cell Prolif. 1996, 29, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K. Interleukin-1-alpha and de novo mammalian angiogenesis. Microvasc. Res. 1997, 54, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Norrby, K.; Eneström, S. Cellular and extracellular changes following mast-cell secretion in avascular rat mesentery. An electron-microscopic study. Cell Tiss. Res. 1984, 235, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Klagsbrun, M. The affinity of fibroblast growth factors (FGFs) for heparin; FGF-heparan sulfate interactions in cells and extracellular matrix. Curr. Opin. Cell Biol. 1990, 2, 857–863. [Google Scholar] [CrossRef]
- Ragipoglu, D.; Bülow, J.; Hauff, K.; Voss, M.; Haffner-Luntzer, M.; Dudeck, A.; Ignatius, A.; Fischer, V. Mast cells drive systemic inflammation and compromised bone repair after trauma. Front. Immunol. 2022, 13, 883707. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Alysandratos, K.D.; Angelidou, A.; Delivanis, D.A.; Sismanopoulos, N.; Zhang, B.; Asadi, S.; Vasiadi, M.; Weng, Z.; Miniati, A.; et al. Mast cells and inflammation. Biochim. Biophys. Acta 2012, 1822, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kurashima, Y. Two sides of the coin: Mast cells as a key regulator of allergy and acute chronic inflammation. Cells 2021, 190, 1615. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.M.; Mesfin, J.M.; Karkanitsa, M.; Ungerleider, J.L.; Zelus, E.; Zhang, Y.; Kawakami, Y.; Kawakami, Y.; Kawakami, T.; Christman, K.L. Immunomodulatory contribution of mast cells to the regenerative biomaterial microenvironment. Regen. Med. 2023, 8, 53. [Google Scholar] [CrossRef]
- Tonnesen, M.G.; Feng, X.; Clark, R.A.F. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000, 5, 40–46. [Google Scholar] [CrossRef]
- Noli, C.; Miolo, A. The mast cell in wound healing. Vet. Dermatol. 2002, 12, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.F.Y. The role of mast cells in wound healing. Int. Wound J. 2010, 7, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Komi, D.E.A.; Khomtchouk, K.; Maria, P.L.S. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312. [Google Scholar] [CrossRef]
- Bacci, S. Fine regulation during wound healing by mast cells, a physiological role not yet clarified. Int. J. Mol. Sci. 2022, 23, 1820. [Google Scholar] [CrossRef]
- Atiakshin, D.; Soboleva, M.; Nikityuk, D.; Alexeeva, N.; Klochkova, S.; Kostin, A.; Shishina, V.; Buchwalow, I.; Tiemann, M. Mast cells in regeneration of the skin in burn wound with special emphasis on molecular hydrogen effect. Pharmaceuticals 2023, 16, 348. [Google Scholar] [CrossRef] [PubMed]
- Wulff, B.C.; Wilgus, T.A. Mast cell activity in the healing wound: More that meet the eye? Exp. Dermatol. 2013, 22, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Weller, K.; Foitzik, K.; Paus, R.; Syska, W.; Maurer, M. Mast cells are required for normal healing of skin wounds in mice. FASEB J 2006, 20, 2366–2368. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Opitz, M.; Henz, B.M.; Paus, R. The mast cell products histamine and serotonin stimulate and TNF-alpha inhibits the proliferation of murine epidermal keratinocytes in situ. J. Dermatol. Sci. 1997, 16, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Woidacki, K.; Jensen, F.; Zenclussen, A.C. Mast cells as novel mediators of reproductive processes. Front. Immunol. 2013, 4, 29. [Google Scholar] [CrossRef]
- Woidacki, K.; Zenclussen, A.C.; Siebenhaar, F. Mast cell-mediated and associated disorders in pregnancy: A risky game with an uncertain outcome? Front. Immunol. 2014, 5, 231. [Google Scholar] [CrossRef] [PubMed]
- Laoharatchatathanin, T.; Rienrakwong, D.; Hatsugai, Y.; Terashima, R.; Yonezawa, T.; Kurusu, S.; Kawaminami, M. Mast cell dynamics in the ovary are governed by GnRH and Prolactin. Endocrinology 2023, 164, bqad144. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.S.; Woad, K.J.; Hammond, A.J.; Laird, M.; Hunter, M.G.; Mann, G.E. Angiogenesis and vascular function in the ovary. Reproduction 2009, 138, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Zierau, O.; Zenclussen, A.C.; Jensen, F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol. 2012, 3, 169. [Google Scholar] [CrossRef] [PubMed]
- Teles, A.; Zenclussen, A.C. How cells of the immune system prepare the endometrium for implantation. Semin. Reprod. Med. 2014, 32, 358–364. [Google Scholar] [PubMed]
- Hamouzova, P.; Cizek, P.; Bartoskova, A.; Vitasek, R.; Tichy, F. Changes in the mast cell distribution in the canine ovary and uterus throughout the estrus cycle. Reprod. Domest. Anim. 2020, 55, 479–485. [Google Scholar] [CrossRef]
- Jensen, F.; Woudwyk, M.; Teles, A.; Woidacki, K.; Taran, F.; Costa, S.; Mallfertheiner, S.F.; Zenclussen, A.C. Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation. PLoS ONE 2010, 5, e14409. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Woidacki, K.; Knöfler, M.; Meinhardt, G.; Nowak, D.; Velicky, P.; Pollheimer, J.; Zenclussen, A.C. Chymase-producing cells of the innate immune system are required for decidual vascular remodeling and fetal growth. Sci. Rep. 2017, 7, 45106. [Google Scholar] [CrossRef] [PubMed]
- Saito, H. Role of mast cell protease in tissue remodeling. Chem. Immunol. Allergy 2005, 87, 80–84. [Google Scholar] [PubMed]
- Himelreich-Peric, M.; Katusic-Bojanac, A.; Hohsteter, M.; Sincic, N.; Muzic-Radovic, V.; Jezek, D. Mast cells in the mammalian testis and epididymis—Animal models and detection methods. Int. J. Mol. Sci. 2022, 23, 2547. [Google Scholar] [CrossRef] [PubMed]
- Di Persio, S.; Neuhaus, N. Human spermatogonial stem cells and their niche in male (in)fertility: Novel concepts from single-cell RNA-sequencing. Hum. Reprod. 2023, 38, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Agier, J.; Pastwinska, J.; Brzezinska-Blaszczyk, E. An overview of mast cell pattern recognition receptors. Inflamm. Res. 2018, 67, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Hafez, S.M.N.A. Age-related changes in the dermal mast cells and the associated changes in the dermal collagen and cells: A histological and electron microscopy study. Acta Histochem. 2019, 121, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, S.M.; Barron, M.J.; Watson, R.E.B.; Griffiths, C.E.M.; Bulfone-Paus, S. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive interstitial peptide-positive nerve fibers. Br. J. Dermatol. 2019, 180, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Stamenov, N.; Kotov, G.; Iliev, A.; Landzhov, B.; Kirkov, V.; Stanchev, S. Mast cells and basic fibroblast growth factor in physiological aging of rat heart and kidney. Biotech. Histochem. 2022, 97, 504–505. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norrby, K. On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny. Int. J. Mol. Sci. 2024, 25, 4499. https://doi.org/10.3390/ijms25084499
Norrby K. On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny. International Journal of Molecular Sciences. 2024; 25(8):4499. https://doi.org/10.3390/ijms25084499
Chicago/Turabian StyleNorrby, Klas. 2024. "On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny" International Journal of Molecular Sciences 25, no. 8: 4499. https://doi.org/10.3390/ijms25084499