Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro
Abstract
:1. Introduction
2. Results
2.1. Comparison of Changes in RBC Morphology in Open (Normoxemia) and Closed (Hypoxemia/Anoxemia) Glass Tubes
2.2. Quantitative Estimation of Hypoxemia Level during Storage Time: Quantification of Hemoglobin Derivatives by Nonlinear Curve Fitting of Experimental Optical Spectra
2.3. Comparison of the Changes in the Levels of Hemoglobin Derivatives in Open and Closed Tubes
2.4. Probability of Hemoglobin Derivative Conversion during a Switch from Hypoxemia/Anoxemia to Normoxemia
2.5. Comparison of Hemolysis Levels during Storage of RBCs in Open and Closed Tubes
3. Discussion
3.1. Anoxemia, Hypoxemia, Normoxemia, Hyperoxemia, Redox Balance, and ROS
3.2. Kinetic Model of ROS Change. Redox Imbalance. Hypothesis of Hypoxemia Optimal Level
- (1)
- Let us consider the functioning of the oxidative system, determined by the oxygen concentration. As a result of the oxidative system, the ROS are generated depending on the oxygen concentration at a rate .
- (2)
- Let us consider the functioning of the antioxidant system determined by the oxygen concentration. As a result of antioxidant system, the ROS are eliminated depending on the oxygen concentration at a rate .
- (3)
- Let , where a is the oxidant system performance constant. Let , where b is the antioxidant system performance constant.
4. Materials and Methods
4.1. Stages of Experiments
4.2. Preparation of RBC Suspension
4.3. Spectrophotometry and Nonlinear Curve Fitting Method for the Estimation of the Hemoglobin Derivative Levels
4.4. Investigation of RBC Morphology by Atomic Force Microscopy
4.5. Statistics
4.5.1. Statistical Analysis
4.5.2. Sample Statistics of RBC Morphology
4.5.3. Sample Statistics of Hemoglobin Derivative Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, S.; Peng, Y.; Liu, J. Research advances in erythrocyte regeneration sources and methods in vitro. Cell Regen. 2018, 7, 45–49. [Google Scholar] [CrossRef]
- Besedina, N.A.; Skverchinskaya, E.A.; Ivanov, A.S.; Kotlyar, K.P.; Morozov, I.A.; Filatov, N.A.; Mindukshev, I.V.; Bukatin, A.S. Microfluidic characterization of red blood cells microcirculation under oxidative stress. Cells 2021, 10, 3552. [Google Scholar] [CrossRef]
- O’Driscoll, B.R.; Smith, R. Oxygen Use in Critical Illness. Respir. Care 2019, 64, 1293–1307. [Google Scholar] [CrossRef]
- Humaloja, J.; Ashton, N.J.; Skrifvars, M.B. Selected Articles from the Annual Update in Intensive Care and Emergency Medicine. Crit. Care 2022, 26, 81. [Google Scholar] [CrossRef] [PubMed]
- Machogu, E.M.; Machado, R.F. How I treat hypoxia in adults with hemoglobinopathies and hemolytic disorders. Blood 2018, 132, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.F.; Mackman, N.; Kisiel, W.; Stern, D.M.; Pinsky, D.J. Hypoxia/Hypoxemia-Induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2029–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richalet, J.-P. The invention of hypoxia. J. Appl. Physiol. 2021, 130, 1573–1582. [Google Scholar] [CrossRef]
- Singer, M.; Young, P.J.; Laffey, J.G.; Asfar, P.; Taccone, F.S.; Skrifvars, M.B.; Meyhoff, C.S.; Radermacher, P. Dangers of hyperoxia. Crit. Care 2021, 25, 440. [Google Scholar] [CrossRef]
- He, H.-W.; Liu, D.-W. Permissive hypoxemia/conservative oxygenation strategy: Dr. Jekyll or Mr. Hyde? J. Thorac. Dis. 2016, 8, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Karzai, W.; Schwarzkopf, K. Hypoxemia during one-lung ventilation: Prediction, prevention, and treatment. Anesthesiology 2009, 110, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Piraino, T.; Fan, E. Acute life-threatening hypoxemia during mechanical ventilation. Curr. Opin. Crit. Care 2017, 23, 541–548. [Google Scholar] [CrossRef]
- Cajanding, R.J.M. Silent hypoxia in COVID-19 pneumonia: State of knowledge, pathophysiology, mechanisms, and management. AACN Adv. Crit. Care 2022, 33, 143–153. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, H. Oxygen therapy strategies and techniques to treat hypoxia in COVID-19 patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10239–10246. [Google Scholar] [CrossRef]
- Rinalducci, S.; Ferru, E.; Blasi, B.; Turrini, F.; Zolla, L. Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. Blood Transfus. 2012, 10 (Suppl. S2), s55–s62. [Google Scholar] [CrossRef]
- Orlov, Y.P.; Govorova, N.V.; Korpacheva, O.V.; Afanasyev, V.V.; Khilenko, I.A. On the Possibility of Using Succinate in Hypoxia Developing in COVID-19. Gen. Reanimatol. 2021, 17, 78–98. [Google Scholar] [CrossRef]
- Moroz, V.V.; Chernysh, A.M.; Kozlova, E.K. Coronavirus SARS-CoV-2: Hypotheses of Impact on the Circulatory System, Prospects for the Use of Perfluorocarbon Emulsion, and Feasibility of Biophysical Research Methods. Gen. Reanimatol. 2020, 16, 4–13. [Google Scholar] [CrossRef]
- Marzocchi, B.; Ciccoli, L.; Tani, C.; Leoncini, S.; Rossi, V.; Bini, L.; Perrone, S.; Buonocore, G. Hypoxia-induced post-translational changes in red blood cell protein map of newborns. Pediatr. Res. 2005, 58, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Perrone, S.; Tataranno, M.L.; Stazzoni, G.; Del Vecchio, A.; Buonocore, G. Oxidative injury in neonatal erythrocytes. J. Matern. Fetal. Neonatal Med. 2012, 25, 104–108. [Google Scholar] [CrossRef]
- Bonifacio, S.L.; Hutson, S. The term newborn: Evaluation for hypoxic-ischemic encephalopathy. Clin. Perinatol. 2021, 48, 681–695. [Google Scholar] [CrossRef]
- AbdelMassih, A.; Fouda, R.; Essam, R.; Negm, A.; Khalil, D.; Habib, D.; Afdal, G.; Ismail, H.-A.; Aly, H.; Genedy, I.; et al. COVID-19 during pregnancy should we really worry from vertical transmission or rather from fetal hypoxia and placental insufficiency? A systematic review. Egypt. Pediatr. Assoc. Gaz. 2021, 69, 12. [Google Scholar] [CrossRef]
- Perepelitsa, S.A.; Sergunova, V.A.; Gudkova, O.E. The effect of perinatal hypoxia on red blood cell morphology in newborns. Gen. Reanimatol. 2017, 13, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, X.; Noviana, M.; Hou, M. Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim. Biophys. Sin. 2018, 50, 621–634. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.; Nemkov, T.; Sun, K.; Liu, H.; Song, A.; Monte, A.A.; Subudhi, A.W.; Lovering, A.T.; Dvorkin, D.; Julian, C.G.; et al. AltitudeOmics: Red blood cell metabolic adaptation to high altitude hypoxia. J. Proteome Res. 2016, 15, 3883–3895. [Google Scholar] [CrossRef] [Green Version]
- Dosek, A.; Ohno, H.; Acs, Z.; Taylor, A.W.; Radak, Z. High altitude and oxidative stress. Respir. Physiol. Neurobiol. 2007, 158, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Deile, M.; Damm, M.; Heller, A.R. Inhalative Anästhetika. Anaesthesist 2013, 62, 493–504. [Google Scholar] [CrossRef]
- Jin, M.; Cheng, Y.; Yang, Y.; Pan, X.; Lu, J.; Cheng, W. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery: Study protocol for a prospective, randomized controlled clinical trial. Medicine 2017, 96, e7857. [Google Scholar] [CrossRef]
- Ogura, K.; Takahashi, W.; Morita, Y. A case of hypoxic encephalopathy induced by the inhalation of helium that resolved with no neurological complications: A case report and analysis of similar cases. Acute Med. Surg. 2019, 6, ams2.414. [Google Scholar] [CrossRef] [PubMed]
- Carreres, L.; Mercey-Ressejac, M.; Kurma, K.; Ghelfi, J.; Fournier, C.; Manches, O.; Chuffart, F.; Rousseaux, S.; Minoves, M.; Decaens, T.; et al. Chronic intermittent hypoxia increases cell proliferation in hepatocellular carcinoma. Cells 2022, 11, 2051. [Google Scholar] [CrossRef]
- Kozlova, E.; Chernysh, A.; Manchenko, E.; Sergunova, V.; Moroz, V. Nonlinear biomechanical characteristics of deep deformation of native RBC membranes in normal state and under modifier action. Scanning 2018, 2018, 1810585. [Google Scholar] [CrossRef]
- Kozlova, E.; Chernysh, A.; Moroz, V.; Sergunova, V.; Gudkova, O.; Manchenko, E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci. Rep. 2017, 7, 7846. [Google Scholar] [CrossRef] [Green Version]
- Ciccoli, L.; De Felice, C.; Paccagnini, E.; Leoncini, S.; Pecorelli, A.; Signorini, C.; Belmonte, G.; Valacchi, G.; Rossi, M.; Hayek, J. Morphological changes and oxidative damage in Rett Syndrome erythrocytes. Biochim. Biophys. Acta 2012, 1820, 511–520. [Google Scholar] [CrossRef]
- Strijkova-Kenderova, V.; Todinova, S.; Andreeva, T.; Bogdanova, D.; Langari, A.; Danailova, A.; Krumova, S.; Zlatareva, E.; Kalaydzhiev, N.; Milanov, I.; et al. Morphometry and stiffness of red blood cells-signatures of neurodegenerative diseases and aging. Int. J. Mol. Sci. 2021, 23, 227. [Google Scholar] [CrossRef]
- Kozlova, E.; Sherstyukova, E.; Sergunova, V.; Kozlov, A.; Gudkova, O.; Inozemtsev, V.; Chernysh, A. The Toxic Influence of Excess Free Iron on Red Blood Cells in the Biophysical Experiment: An In Vitro Study. J. Toxicol. 2022, 2022, 7113958. [Google Scholar] [CrossRef]
- Bellavia, L.; DuMond, J.F.; Perlegas, A.; Bruce King, S.; Kim-Shapiro, D.B. Nitroxyl accelerates the oxidation of oxyhemoglobin by nitrite. Nitric Oxide Biol. Chem. 2013, 31, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Kozlova, E.; Chernysh, A.; Kozlov, A.; Sergunova, V.; Sherstyukova, E. Assessment of carboxyhemoglobin content in the blood with high accuracy: Wavelength range optimization for nonlinear curve fitting of optical spectra. Heliyon 2020, 6, e04622. [Google Scholar] [CrossRef]
- Maehira, A.; Che, D.-C.; Matsumoto, T. Change in surface properties of hemoglobin induced by heme reaction with O2 and CO. Jpn. J. Appl. Phys. 2022, 61, 075003. [Google Scholar] [CrossRef]
- Kozlova, E.; Chernysh, A.; Moroz, V.; Kozlov, A.; Sergunova, V.; Sherstyukova, E.; Gudkova, O. Two-step process of cytoskeletal structural damage during long-term storage of packed red blood cells. Blood Transfus. 2021, 19, 124–134. [Google Scholar] [CrossRef]
- Sherstyukova, E.; Chernysh, A.; Moroz, V.; Kozlova, E.; Sergunova, V.; Gudkova, O. The relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs. Vox Sang. 2021, 116, 405–415. [Google Scholar] [CrossRef]
- Yoshida, T.; Prudent, M.; D’alessandro, A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 2019, 17, 27–52. [Google Scholar] [CrossRef]
- Mustafa, I.; Al Marwani, A.; Mamdouh Nasr, K.; Abdulla Kano, N.; Hadwan, T. Time dependent assessment of morphological changes: Leukodepleted packed red blood cells stored in SAGM. BioMed Res. Int. 2016, 2016, 4529434. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wei, H.-W.; Shen, H.-C.; Li, Z.-Z.; Cheng, Y.; Duan, L.-S.; Yin, L.; Yu, J.; Guo, J.-R. To study the effect of oxygen carrying capacity on expressed changes of erythrocyte membrane protein in different storage times. Biosci. Rep. 2020, 40, BSR20200799. [Google Scholar] [CrossRef] [PubMed]
- Ciana, A.; Achilli, C.; Gaur, A.; Minetti, G. Membrane remodelling and vesicle formation during ageing of human red blood cells. Cell. Physiol. Biochem. 2017, 42, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Dumont, L.J.; D’Alessandro, A.; Szczepiorkowski, Z.M.; Yoshida, T. CO2-dependent metabolic modulation in red blood cells stored under anaerobic conditions. Transfusion 2016, 56, 392–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolla, L.; D’Alessandro, A. An efficient apparatus for rapid deoxygenation of erythrocyte concentrates for alternative banking strategies. J. Blood Transfus. 2013, 2013, 896537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittman, R.N.; Yoshida, T.; Omert, L.A. Effect of hypoxic blood infusion on pulmonary physiology. Front. Physiol. 2022, 13, 842510. [Google Scholar] [CrossRef]
- Qiang, Y.; Liu, J.; Dao, M.; Du, E. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. Lab Chip 2021, 21, 3458–3470. [Google Scholar] [CrossRef]
- Revin, V.V.; Gromova, N.V.; Revina, E.S.; Prosnikova, K.V.; Revina, N.V.; Bochkareva, S.S.; Stepushkina, O.G.; Grunyushkin, I.P.; Tairova, M.R.; Incina, V.I. Effects of polyphenol compounds and nitrogen oxide donors on lipid oxidation, membrane-skeletal proteins, and erythrocyte structure under hypoxia. BioMed Res. Int. 2019, 2019, 6758017. [Google Scholar] [CrossRef]
- Rifkind, J.M.; Abugo, O.O.; Nagababu, E.; Ajmani, R.S.; Metter, E.J.; Demehin, A.; Manoharan, P.T.; Balagopalakrishna, C.; Chrest, F.J. Role of altered blood properties in the propagation of ischemic blood flow: Contribution of aging and oxidative stress. In Ischemic Blood Flow in the Brain; Springer: Tokyo, Japan, 2001; pp. 369–380. [Google Scholar]
- Rifkind, J.M.; Nagababu, E. Hemoglobin redox reactions and red blood cell aging. Antioxid. Redox Signal. 2013, 18, 2274–2283. [Google Scholar] [CrossRef] [Green Version]
- Rajashekaraiah, V.; Pallavi, M.; Choudhary, A.; Bhat, C.; Banerjee, P.; Ranjithvishal; Laavanyaa, S.; Nithindran, S. Reactive oxygen species and antioxidant interactions in erythrocytes. In The Erythrocyte—A Unique Cell; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Zehnder, L.; Schulzki, T.; Goede, J.S.; Hayes, J.; Reinhart, W.H. Erythrocyte storage in hypertonic (SAGM) or isotonic (PAGGSM) conservation medium: Influence on cell properties. Vox Sang. 2008, 95, 280–287. [Google Scholar] [CrossRef]
- Revin, V.; Grunyushkin, I.; Gromova, N.; Revina, E.; Abdulvwahid, A.S.A.; Solomadin, I.; Tychkov, A.; Kukina, A. Effect of hypoxia on the composition and state of lipids and oxygen-transport properties of erythrocyte haemoglobin. Biotechnol. Biotechnol. Equip. 2017, 31, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Dasgupta, R. Effects of acute hypoxic exposure on oxygen affinity of human red blood cells. Appl. Opt. 2017, 56, 439. [Google Scholar] [CrossRef]
- Kiefmann, R.; Rifkind, J.M.; Nagababu, E.; Bhattacharya, J. Red blood cells induce hypoxic lung inflammation. Blood 2008, 111, 5205–5214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grygorczyk, R.; Orlov, S.N. Effects of hypoxia on erythrocyte membrane properties-implications for intravascular hemolysis and purinergic control of blood flow. Front. Physiol. 2017, 8, 1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almac, E.; Bezemer, R.; Hilarius-Stokman, P.M.; Goedhart, P.; de Korte, D.; Verhoeven, A.J.; Ince, C. Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo. Transfusion 2014, 54, 3178–3185. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Gevi, F.; Zolla, L. Red blood cell metabolism under prolonged anaerobic storage. Mol. Biosyst. 2013, 9, 1196. [Google Scholar] [CrossRef]
- Tozoni, S.S.; Dias, G.F.; Bohnen, G.; Grobe, N.; Pecoits-Filho, R.; Kotanko, P.; Moreno-Amaral, A.N. Uremia and hypoxia independently induce eryptosis and erythrocyte redox imbalance. Cell. Physiol. Biochem. 2019, 53, 794–804. [Google Scholar] [CrossRef]
- Bencheikh, L.; Nguyen, K.-A.; Chadebech, P.; Kiger, L.; Bodivit, G.; Jouard, A.; Pakdaman, S.; Adypagavane, S.; Audureau, E.; Tebbakha, K.; et al. Preclinical evaluation of the preservation of red blood cell concentrates by hypoxic storage technology for transfusion in sickle cell disease. Haematologica 2022, 107, 1944–1949. [Google Scholar] [CrossRef]
- Yoshida, T.; Shevkoplyas, S.S. Anaerobic storage of red blood cells. Blood Transfus. 2010, 8, 220–236. [Google Scholar] [CrossRef]
- Bardyn, M.; Martin, A.; Dögnitz, N.; Abonnenc, M.; Dunham, A.; Yoshida, T.; Prudent, M. Oxygen in red blood cell concentrates: Influence of donors’ characteristics and blood processing. Front. Physiol. 2020, 11, 616457. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Yoshida, T.; Nestheide, S.; Nemkov, T.; Stocker, S.; Stefanoni, D.; Mohmoud, F.; Rugg, N.; Dunham, A.; Cancelas, J.A. Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery. Transfusion 2020, 60, 786–798. [Google Scholar] [CrossRef]
- Burns, J.M.; Yoshida, T.; Dumont, L.J.; Yang, X.; Piety, N.Z.; Shevkoplyas, S.S. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. Blood Transfus. 2016, 14, 80–88. [Google Scholar] [CrossRef]
- Yoshida, T.; AuBuchon, J.P.; Tryzelaar, L.; Foster, K.Y.; Bitensky, M.W. Extended storage of red blood cells under anaerobic conditions. Vox Sang. 2007, 92, 22–31. [Google Scholar] [CrossRef]
- Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Rogers, S.C.; Said, A.; Corcuera, D.; McLaughlin, D.; Kell, P.; Doctor, A. Hypoxia limits antioxidant capacity in red blood cells by altering glycolytic pathway dominance. FASEB J. 2009, 23, 3159–3170. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, N.; Xiong, Y.; Zhang, J.; Zhao, D.; Yin, Y.; Song, L.; Yin, Y.; Wang, J.; Luan, X.; et al. Downregulated recycling process but not de novo synthesis of glutathione limits antioxidant capacity of erythrocytes in hypoxia. Oxid. Med. Cell. Longev. 2020, 2020, 7834252. [Google Scholar] [CrossRef]
- Grebowski, J.; Kazmierska-Grebowska, P.; Cichon, N.; Konarska, A.; Wolszczak, M.; Litwinienko, G. Fullerenol C60(OH)36 protects the antioxidant enzymes in human erythrocytes against oxidative damage induced by high-energy electrons. Int. J. Mol. Sci. 2022, 23, 10939. [Google Scholar] [CrossRef]
- Manchenko, E.A.; Kozlova, E.K.; Sergunova, V.A.; Chernysh, A.M. Homogeneous Deformation of Native Erythrocytes During Long-Term Storage. Gen. Reanimatol. 2019, 15, 4–10. [Google Scholar] [CrossRef]
- Dias, G.F.; Grobe, N.; Rogg, S.; Jörg, D.J.; Pecoits-Filho, R.; Moreno-Amaral, A.N.; Kotanko, P. The role of eryptosis in the pathogenesis of renal anemia: Insights from basic research and mathematical modeling. Front. Cell Dev. Biol. 2020, 8, 598148. [Google Scholar] [CrossRef]
- Aggarwal, N.R.; Brower, R.G. Targeting Normoxemia in Acute Respiratory Distress Syndrome May Cause Worse Short-Term Outcomes Because of Oxygen Toxicity. Ann. Am. Thorac. Soc. 2014, 11, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, A.; Caretto, S.; Leone, A.; Bove, A.; Nisi, R.; De Gara, L. ROS Production and Scavenging under Anoxia and Re-Oxygenation in Arabidopsis Cells: A Balance between Redox Signaling and Impairment. Front. Plant Sci. 2016, 7, 1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buehler, P.W.; Alayash, A.I. Redox biology of blood revisited: The role of red blood cells in maintaining circulatory reductive capacity. Antioxid. Redox Signal. 2005, 7, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, F.; Marcott, C.; Dinarelli, S.; Longo, G.; Girasole, M.; Dietler, G.; Knowles, T. Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. Int. J. Mol. Sci. 2018, 19, 2582. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Bell, J.B.; Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: A new mechanism for nitrite-induced vasodilation. Am. J. Physiol. Circ. Physiol. 2009, 297, H1494–H1503. [Google Scholar] [CrossRef] [Green Version]
- Golubev, A.M. Personalized Critical Care Medicine (Review). Gen. Reanimatol. 2022, 18, 45–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlova, E.; Sherstyukova, E.; Sergunova, V.; Grechko, A.; Kuzovlev, A.; Lyapunova, S.; Inozemtsev, V.; Kozlov, A.; Chernysh, A. Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro. Int. J. Mol. Sci. 2023, 24, 11043. https://doi.org/10.3390/ijms241311043
Kozlova E, Sherstyukova E, Sergunova V, Grechko A, Kuzovlev A, Lyapunova S, Inozemtsev V, Kozlov A, Chernysh A. Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro. International Journal of Molecular Sciences. 2023; 24(13):11043. https://doi.org/10.3390/ijms241311043
Chicago/Turabian StyleKozlova, Elena, Ekaterina Sherstyukova, Viktoria Sergunova, Andrey Grechko, Artem Kuzovlev, Snezhanna Lyapunova, Vladimir Inozemtsev, Aleksandr Kozlov, and Aleksandr Chernysh. 2023. "Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro" International Journal of Molecular Sciences 24, no. 13: 11043. https://doi.org/10.3390/ijms241311043