Chronic Low Grade Inflammation in Pathogenesis of PCOS
Abstract
:1. Inflammatory Markers
1.1. C-Reactive Protein (CRP)
1.2. Pro-Inflammatory Cytokines and Chemokines
1.3. White Blood Cell Count (WBC)
1.4. AGEs (Advanced Glycation End-Products) and Oxidative Stress
2. Obesity, Insulin Resistance and Inflammatory Process
3. Endothelial Inflammation and Risk of Cardiovascular Disease
4. An Inflammatory Process in PCOS as a Risk Factor for Early Pregnancy
5. Summary
Funding
Conflicts of Interest
References
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Aziz, M.; Sidelmann, J.J.; Faber, J.; Wissing, M.-L.M.; Naver, K.V.; Mikkelsen, A.-L.; Nilas, L.; Skouby, S.O. Polycystic ovary syndrome: Cardiovascular risk factors according to specific phenotypes. AOGS 2015, 94, 1082–1089. [Google Scholar] [CrossRef]
- Lim, S.S.; Davies, M.J.; Norman, R.J.; Moran, L.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 618–637. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Pereira, S.S.; Alvarez-Leite, J.I. Low grade inflammation, obesity, and diabetes. Cur. Obes. Rep. 2014, 3, 422–431. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Giugliano, D.; Esposito, K. Review from inflammation to sexual dysfunctions: A journey through diabetes, obesity, and metabolic syndrome. Endocrinol. Investig. 2018, 41, 1249–1258. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Liang, X.Y.; Yang, X.; Li, Y.; Wei, L. Low grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome. Eur. J. Obst. Gynecol. Reprod. Biol. 2011, 159, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Boulman, N.; Levy, Y.; Leiba, R.; Shachar, S.; Linn, R.; Zinder, O.; Blumenfeld, Z. Increased C-reactive protein levels in the polycystic ovary syndrome: A marker of cardiovascular disease. J. Clin. Endocrinol. Metab. 2004, 89, 2160–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnicka, E.; Kunicki, M.; Suchta, K.; Machura, P.; Grymowicz, M.; Smolarczyk, R. Inflammatory Markers in Women with Polycystic Ovary Syndrome. Biomed Res. Int. 2020, 2020, 4092470. [Google Scholar] [CrossRef] [PubMed]
- Mažibrada, I.; Djukić, T.; Perović, S.; Plješa-Ercegovac, M.; Plavšić, L.; Bojanin, D.; Bjekić-Macut, J.; Simić, P.D.; Simić, T.; Savić-Radojević, A.; et al. The association of hs-CRP and fibrinogen with anthropometric and lipid parameters in non-obese adolescent girls with polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 2018, 27, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Franik, G.; Sadlocha, M.; Madej, P.; Owczarek, A.; Skrzypulec-Plinta, V.; Plinta, R.; Chudek, J.; Olszanecka-Glinianowicz, M. Circulating omentin-1 levels and inflammation in polycystic ovary syndrome. Ginekol. Pol. 2020, 91, 308–312. [Google Scholar] [CrossRef] [PubMed]
- McClung, J.; Karl, P. Iron deficiency and obesity: The contribution of inflammation and diminished iron absorption. Nutr. Rev. 2009, 67, 100–104. [Google Scholar] [CrossRef]
- Kelly, C.C.J.; Lyall, H.; Petrie, J.R.; Gould, G.W.; Connell, J.M.C.; Sattar, N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2001, 86, 2453–2455. [Google Scholar] [CrossRef] [PubMed]
- Tola, E.N.; Yalcin, S.E.; Dugan, N. The predictive effect of inflammatory markers and lipid accumulation product index on clinical symptoms associated with polycystic ovary syndrome in nonobese adolescents and younger aged women. Eur. J. Obst. Gynecol. Reprod. Biol. 2017, 214, 168–172. [Google Scholar] [CrossRef]
- Souza Dos Santos, A.C.; Soares, N.P.; Costa, E.C.; Ferrezini de Sa, J.C.; Azevedo, G.D.; Lemos, T.M. The impact of body mass on inflammatory markers and insulin resistance in polycystic ovary syndrome. Gynecol. Endocrinol. 2015, 31, 225–228. [Google Scholar] [CrossRef]
- Orio, F., Jr.; Palomba, S.; Cascella, T.; Di Biase, S.; Manguso, F.; Tauchmanova, L.; Nardo, L.G.; Labella, D.; Savastano, S.; Russo, T.; et al. The increase of leukocytes as a new putative marker of low-grade chronic inflammation and early cardiovascular risk in polycystic ovary syndrome. J. Clin. Endocrinol. Metabol. 2005, 90, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Escobar Morreale, H.F.; Laque-Ramirez, M.; Gonzalez, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2011, 95, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Toulis, K.A.; Goulis, D.G.; Mintziori, G.; Kintiraki, E.; Eukarpidis, E.; Mouratoglou, S.-A.; Pavlaki, A.; Stergianos, S.; Poulasouchidou, M.; Tzellos, T.G.; et al. Meta-analysis of cardiovascular disease risk markers in polycystic ovary syndrome. Hum. Reprod. Update 2011, 17, 741–760. [Google Scholar] [CrossRef] [Green Version]
- Diamanti-Kandrakis, E.; Paterakis, T.; Alexandraki, K.; Piperi, C.H.; Aessopos, A.; Katsikis, I.; Katsilambros, N.; Kreatsas, G.; Panidis, D. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Eur. J. Clin. Investig. 2006, 21, 1426–1431. [Google Scholar] [CrossRef] [Green Version]
- Deligeoroglou, E.; Vrachnis, N.; Athanasopoulos, N.; Iliodromiti, Z.; Sifakis, S.; Siristatidis, C.; Creatsas, G.; Iliodromiti, S. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol. Endocrinol. 2012, 28, 974–978. [Google Scholar] [CrossRef]
- Kaya, C.; Pabuccu, R.; Berker, B. Plasma interleukin-18 levels are increased in the polycystic ovary syndrome: Relationship of carotid intima-media wall thickness and cardiovascular risk factors. Fertil. Steril. 2010, 93, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Botella-Carretero, J.I.; Villuendas, G.; Sancho, J.; San Millan, J.L. Serum interleukin-18 concentrations are increased in the polycystic ovary syndrome: Relationship to insulin resistance and to obesity. J. Clin. Endocrinol. Metab. 2004, 89, 806–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glintborg, D.; Andersen, M.; Richelsen, B.; Bruun, J.M. Plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha are increased in patients with polycystic ovary syndrome (PCOS) and associated with adiposity, but unaffected by pioglitazone treatment. Clin. Endocrinol. 2009, 7, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Qiao, J.; Yang, Y.; Wang, L.; Li, R. Elevated C-reactive protein and monocyte chemoattractant protein-1 in patients with polycystic ovary syndrome. Eur. J. Obs. Gynecol. Reprod. Biol. 2011, 157, 53–56. [Google Scholar] [CrossRef] [PubMed]
- De Jager, S.C.; Kraaijeveld, A.O.; Grauss, R.W.; de Jager, W.; Liem, S.S.; van der Hoeven, B.L.; Prakken, B.J.; Putter, H.; van Berkel, T.J.C.; Atsma, D.E.; et al. CCL3 (MIP-1 alpha) levels are elevated during acute coronary syndromes and show strong prognostic power for future ischemic events. J. Mol. Cell Cardiol. 2008, 45, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Duleba, A.J.; Dokras, A. Is PCOS an inflammatory process? Fertil. Steril. 2012, 97, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Olszanecka-Gilnianowicz, M.; Banś, M.; Zahorska-Markiewicz, B.; Janowska, J.; Kocełak, P.; Madej, P.; Klimek, K. Is the polycystic ovary syndrome associated with chronic inflammation per se? Eur. J. Obs. Gynecol. Reprod. Biol. 2007, 133, 197–202. [Google Scholar] [CrossRef]
- Liu, M.; Gao, J.; Zhang, Y.; Li, P.; Wang, H.; Ren, X.; Changmin, L. Serum levels of TSP-1, NFĸB and TGF-ß1 in polycystic ovarian syndrome (PCOS) patients in northern China suggest PCOS is associated with chronic inflammation. Clin. Endocrinol. 2015, 83, 913–922. [Google Scholar] [CrossRef]
- Kolbus, A.; Walch, K.; Nagele, F.; Wenzl, R.; Unfried, G.; Huber, J.C. Interleukin -1α but not interleukin-1ß gene polymorphism is associated with polycystic ovary syndrome. J. Reprod. Immunol. 2007, 73, 188–193. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, S.; Wang, J.; Liu, J.; Ni, F.; Liu, C.; Yan, J.; Mu, Y.; Cao, Y.; Ma, X. Lack of association between interleukin -1a gene (IL-1a) C (-889) T variant and polycystic ovary syndrome in Chinese women. Endocrine 2009, 35, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Calvo, R.M.; Sancho, J.; San Milan, J.L. TNF-αand hyperandrogenism: A clinical, biochemical, and molecular genetic study. J. Clin. Endocrinol. Metab. 2001, 86, 3761–3767. [Google Scholar] [PubMed]
- Yun, J.H.; Choi, J.W.; Lee, K.J.; Shin, J.S.; Baek, K.H. The promoter -1031(T/C) polymorphism in tumor necrosis factor-αassociated with polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2011, 9, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, C.R.; Craig, J.E.; Hussey, N.D.; Norman, J.R. No association between the -308 polymorphism in the tumor necrosis factor alpha (TNF-α) promoter region and polycystic ovaries. Mol. Hum. Reprod. 1999, 5, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.W.; Giles, W.H.; Croft, J.B. White blood cell count: An independent predictor of coronary heart disease mortality among a national cohort. J. Clin. Epidemiol. 2001, 54, 16–22. [Google Scholar] [CrossRef]
- Papolou, O.; Livadas, S.; Karachalios, A.; Tolia, N.; Kokkoris, P.; Tripolitakis, K.; Diamanti-Kandrakis, E. White blood cells levels and PCOS: Direct and indirect relationship with obesity and insulin resistance, but not with hyperandrogenemia. Hormones 2015, 14, 91–100. [Google Scholar]
- Herlihy, A.C.; Kelly, R.E.; Hogan, J.L.; O’Connor, N.; Farah, N.; Turner, M.J. Polycystic ovary syndrome and peripheral blood white cell count. J. Obstet. Gynecol. 2011, 31, 242–244. [Google Scholar] [CrossRef]
- Phelan, N.; O’Connor, A.; Tun, T.K.; Correia, N.; Boran, G.; Roche, H.M. Leukocytosis in women with polycystic ovary syndrome (PCOS) is incompletely explained by obesity and insulin resistance. Clin. Endocrinol. 2013, 78, 107–113. [Google Scholar] [CrossRef]
- Mantalaris, A.; Panoskaltsis, S.; Sakai, Y.; Bourne, P.; Chang, C.; Messing, E.M.; Wu, J.H. Localization of androgen receptor expression in human bone marrow. J. Pathol. 2001, 193, 361–366. [Google Scholar] [CrossRef]
- Wiernik, P.H. Androgen therapy for acute myeloid and hairy cell leukemia. Cur. Treat. Options Oncol. 2018, 19, 519. [Google Scholar] [CrossRef]
- Garg, D.; Merhi, Z. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Rep. Biol. Endocrinol. 2016, 14, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merhi, Z. Advanced glycation end products and their relevance in female reproduction. Hum. Reprod. 2014, 29, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamanti-Kandarakis, E.; Piperi, C.; Kalofoutis, A.; Creatsas, G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin. Endocrinol. 2005, 62, 37–43. [Google Scholar] [CrossRef]
- Yang, P.; Feng, J.; Peng, Q.; Liu, X.; Fan, Z. Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. Oxidative Med. Cell. Longev. 2019, 9570616. [Google Scholar] [CrossRef]
- Zuo, T.; Zhu, M.; Xu, W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxidative Med. Cell. Longev. 2016, 8589318. [Google Scholar] [CrossRef] [Green Version]
- Murri, M.; Luque-Ramírez, M.; Insenser, M.; Ojeda-Ojeda, M.; Escobar-Morreale, H.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): A systematic review and meta-analysis. Hum. Reprod. Update 2013, 19, 268–288. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, Y.; Zhou, X.; Zheng, L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019, 17, 1–15. [Google Scholar] [CrossRef]
- Cozzolino, M.; Seli, E. Mitochondrial function in women with polycystic ovary syndrome. Curr. Opin. Obs. Gynecol. 2020, 32, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.; Isik, A.Z.; Eris, S.; Yigit, S.; Yalcin, Y.; Ozbay, P.O. Correlation of endometrial glycodelin expression and pregnancy outcome in cases with polycystic ovary syndrome treated with clomiphene citrate lpus metformine. A controlled study. Obstet. Gynecol. Int. 2015, 278591. [Google Scholar] [CrossRef]
- Gonzales, F.; Considine, R.V.; Abdelhadi, O.A.; Acton, A.J. Inflammation triggered by saturated fat ingestion is linked to insulin resistance and hyperandrogenism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2020, 105, 2152–2167. [Google Scholar] [CrossRef]
- Gonzales, F. Nutrient- induced inflammation in polycystic ovary syndrome: Role in the development of metabolic aberration and ovarian dysfunction. Semin. Reprod. Med. 2015, 33, 276–286. [Google Scholar]
- Stocco, C. Tissue physiology and pathology of aromatase. Steroids 2012, 77, 27–35. [Google Scholar] [CrossRef] [Green Version]
- De Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Psychol. 2020, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Akash, M.S. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016, 23, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chylikova, J.; Dvorackova, J.; Tauber, Z.; Kamarad, V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Republic 2018, 162, 79–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisser, S.B.; McLarren, K.W.; Kuroda, E.; Sly, L.M. Generation and characterization of murine alternatively activated macrophages. Meth. Molecul. Biolog. 2013, 946, 225–239. [Google Scholar]
- Lumeng, C.N.; DelProposto, J.B.; Westcott, D.J.; Saltiel, A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008, 57, 3239–3246. [Google Scholar] [CrossRef] [Green Version]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in AT macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, A.; Naffah de Souza, C.; Câmara, N.O.; Moraes-Vieira, P.M. The macrophage switch in obesity development. Front. Immunol. 2016, 637. [Google Scholar] [CrossRef] [Green Version]
- Boulenouar, S.; Michelet, X.; Duquette, D.; Alvarez, D.; Hogan, A.E.; Dold, C.; O’Connor, D.; Stutte, S.; Tavakkoli, A.; Winters, D.; et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 2017, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Chawla, A.; Nguyen, K.D.; Goh, Y.P. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 2011, 738–749. [Google Scholar] [CrossRef] [Green Version]
- Burhans, M.G.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of AT inflammation to the development of T2D mellitus. Compr. Physiol. 2018, 9, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, Y.; Kaneto, H.; Kawamori, D.; Hatazaki, M.; Miyatsuka, T.; Matsuoka, T.-A.; Kajimoto, Y.; Matsuhisa, M.; Yamasaki, Y.; Hori, M. Modulation of the JNK pathway in liver affects IR status. J. Biol. Chem. 2004, 279, 45803–45809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blüher, M.; Bashan, N.; Shai, I.; Harman-Boehm, I.; Tarnovscki, T.; Avinaoch, E.; Stumvoll, M.; Dietrich, A.; Klöting, N.; Rudich, A. Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body Insulin sensitivity. J. Clin. Endocrinol. Metab. 2009, 94, 2507–2515. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.C.; Lee, J. Cellular and molecular players in AT inflammation in the development of obesity-induced IR. Biochim. Biophys. Acta 2014, 1842, 446–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, J.; Weyer, U.; Immig, K.; Klöting, N.; Blüher, M.; Eilers, J.; Bechmann, I.; Gericke, M. Local proliferation of macrophages in AT during obesity-induced inflammation. Diabetologia 2014, 562–571. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Phan, J.D.; Leung, K.L.; Grogan, T.R.; Ding, X.; Li, X.; Hoyos, L.R.; Abbott, D.H.; Chazenbalk, G.D. Adipose insulin resistance in normalweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2019, 104, 2171–2183. [Google Scholar] [CrossRef]
- Meng, C. Nitric oxide (NO) levels in patients with polycystic ovary syndrome (PCOS): A meta-analysis. J. Int. Med. Res. 2019, 47, 4083–4094. [Google Scholar] [CrossRef]
- Lagana, A.S.; Rossetti, P.; Sapia, F.; Chiofalo, B.; Buscema, M.; Valenti, G.; Rapisarda, A.M.C.; Vitale, S.V. Evidence-based and patient-oriented inositol treatment in polycystic ovary syndrome: Changing the perspective of the disease. Int. J. Endocrinol. Metab. 2017, 15, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Facchinetti, F.; Unfer, V.; Dewailly, D.; Kamenov, Z.A.; Diamanti-Kandarakis, E.; Laganà, A.S.; Nestler, J.E.; Soulage, C.O. Inositols in polycystic ovary syndrome: An overview on the advances. Trends Endocrinol. Metab. 2020, 31, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Gambineri, A.; Pelusi, C.; Vicennati, V.; Pagotto, U.; Pasquali, R. Obesity and the polycystic ovary syndrome. Int. J. Obes. 2002, 26, 883–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.S.; Qasim, A.; Reilly, M.P. Leptin resistance. A possible interface of inflammation and metabolism in obesity related cardiovascular disease. J. Am. Coll. Cardiol. 2008, 52, 1201–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriques, F.; Bedard, A.H.; Luiz Batista Junior, M. Adipose Tissue Inflammation and Metabolic Disorders. Adipose Tissue Update 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef]
- Heilbronn, L.K.; Liu, B. Do ATMs promote IR or AT remodelling in humans? Horm. Mol. Biol. Clin. Investig. 2014, 20, 3–13. [Google Scholar] [CrossRef]
- Reilly, S.M.; Saltiel, A.R. Adapting to obesity with AT inflammation. Nat. Rev. Endocrinol. 2017, 13, 633–643. [Google Scholar] [CrossRef]
- Shukla, P.; Mukherjee, S. Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion 2020, 52, 24–39. [Google Scholar] [CrossRef]
- Kandaraki, E.; Chatzigeorgiou, A.; Piperi, C.; Palioura, E.; Palimeri, S.; Korkolopoulou, P.; Koutsilieris, M.; Papavassiliou, A.G. Reduced ovarian glyoxalase-I activity by dietary glycotoxins and androgen excess: A causative link to polycystic ovarian syndrome. Mol. Med. 2012, 18, 1183–1189. [Google Scholar] [CrossRef]
- Milles, H.M.; Davies, M.J.; Morris, D.H.; Bankart, J.; Backledge, H.; Khunti, K.; Howlett, T.A. Diabetes and cardiovascular events in women with polycycstic ovary syndrome: A 20-year retrospective cohort study. Clin. Endocrinol. 2012. [Google Scholar] [CrossRef]
- Caglar, G.S.; Oztas, E.; Karadag, D.; Pabuccu, R.; Demirtas, S. Ischemia-modified albumin and cardiovascular risk markers in polycystic ovary syndrome with or without insulin resistance. Fertil. Steril. 2011, 95, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Nejabati, H.R.; Samandi, N.; Roshangar, L.; Nouri, M. N1-methylniconamide as a possible modulator of cardiovascular risk markers in polycystic ovary syndrome. Life Sci. 2019, 235. [Google Scholar] [CrossRef]
- Sthyapalan, T.; Atkin, S.L. Recent advances in cardiovascular aspects of polycystic ovary syndrome. Eur. J. Endocrinol. 2012, 166, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyskida, K.; Franik, G.; Pohl, N.; Markuszewski, L.; Owczarek, A.; Madej, P.; Chudek, J.; Olszanecka-Glinianowicz, M. Pentraxin 3 as a marker of endothelial dysfunction in young women with polycystic ovary syndrome. Scan J. Clin Lab. Investig. 2019, 79, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Sari, U.; Kaygusuz, I.; Kafali, H. Is Pentraxin 3 a new cardiovascular risk marker in polycystic ovary syndrome? Gynecol. Obstet. Investig. 2014, 78, 173–178. [Google Scholar] [CrossRef]
- Wyskida, K.; Franik, G.; Choręza, P.; Pohl, N.; Markuszewski, L.; Owczarek, A.; Madej, P.; Chudek, J.; Olszanecka-Glinianowicz, M. Pentraxin 3 levels in young women with and without polycystic ovary syndrome (PCOS) in relation to the nutritional status and systemic inflammation. Int. J. Endocrinol. 2014, 170, 401–409. [Google Scholar] [CrossRef]
- Sahin, F.K.; Sahin, S.B.; Balik, G.; Ural, U.M.; Tekin, Y.B.; Cure, M.C.; Senturk, S.; Yuce, S.; Cure, E. Does low pentraxin-3 levels associate with polycystic ovary syndrome and obesity? Int. J. Clin. Exp. Med. 2014, 7, 3512–3519. [Google Scholar]
- Camaioni, A.; Klinger, F.G.; Campagnolo, L.; Salusti, A. The influence of pentraxin 3 on the ovarian function and its impact on fertility. Front. Immunol. 2018, 9, 2808. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, C.; Zhou, Z.; Yang, Z.; Dai, T.; Huang, H.; Jin, L. Elevated ovarian pentraxin 3 in pilycystic ovary syndrome. J. Assist. Reprod Genet. 2021. [Google Scholar] [CrossRef]
- Jakubowicz, D.J.; Iuorno, M.J.; Jakubowicz, S.; Roberts, K.A.; Nestler, J.E. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 524–529. [Google Scholar] [CrossRef]
- Yu, H.-F.; Chen, H.-S.; Rao, D.-P.; Gong, J. Association between polycystic ovary syndrome and the risk of pregnancy complications. Medicine 2016, 95, 51. [Google Scholar] [CrossRef] [PubMed]
- Van der Spuy, Z.M.; Dryer, S.J. The pathogenesis of infertility and early pregnancy loss in polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2004, 18, 755–771. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, L.; Lei, Q.; Lin, M.-M.; Huang, X.; Chen, M.-H.; Zeng, Y.-H.; Zhou, C.-Q. Low aneuploidy rate in early pregnancy loss abortuses from patients with polycycstic ovary syndrome. Reprod. Biomed. Online 2016, 33, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Gu, F.; Jie, H.; Ding, C.; Zhao, Q.; Wang, Q.; Zhou, C. Early miscarriage rate in lean polycystic ovary syndrome women after euploid embryo transfer–A matched-pair study. RBM Online 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tersigni, C.; Vatish, M.; D’Ippolito, S.; Scambia, G.; Di Simone, N. Abnormal uterine inflammation in obstetric syndromes: Molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3. Mol. Hum. Reprod. 2020, 26, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-L.; Zhang, Y.-F.; Tian, Q.; Xue, Y.; An, R.-F. Effects of metformin on pregnancy outcomes in women with polycystic ovary syndrome. Medicine 2016, 95, 36. [Google Scholar] [CrossRef]
Authors Ref. | Year of Publication | Study Design | Main Findings |
---|---|---|---|
Kelly, C.C., Lyall, H., Petrie, J.R. et al. [14] | 2001 | Clinical study | elevated CRP concentration in PCOS patients versus control group |
Orio, F., Palomba, S., Casella, T. et al. [17] | 2005 | Clinical study | elevated CRP and WBC concentration in PCOS patients versus control group |
Souza Dos Santos A.C., Soares, N.P. et al. [16] | 2015 | Clinical study | elevated CRP concentration in PCOS patients versus control group |
Tola, E.N., Yalcin, S.E., Dugan, N. [15] | 2017 | Clinical study | elevated CRP concentration in PCOS patients versus control group WBC-distributed homogenously between PCOS and control group |
Rudnicka, E., Kunicki, M., Suchta, K. et al. [10] | 2020 | Clinical study | elevated CRP and WBC concentration in PCOS patients versus control group |
Escobar Morreale H.F., Laque-Ramirez, M., Gonzalez, F. [18] | 2011 | Systematic review and meta-analysis | elevated CRP concentration in PCOS patients versus control group, no statistically significant difference in IL-6 and TNF-αin PCOS patients versus control group |
Toulis, K.A., Goulis, D.G., Mintziori, G. et al. [19] | 2011 | Systematic review and meta-analysis | elevated CRP concentration in PCOS patients versus control group no statistically significant difference in IL-6 and TNF-αin PCOS patients versus control group |
Kaya, C., Pabuccu, R., Berker, B. et al. [22] | 2010 | Clinical study | elevated IL-18 concentration in PCOS patients versus control group |
Escobar-Morreale, H.F., Botella-Carretero, J., Villuendas, G. et al. [23] | 2004 | Clinical study | elevated IL-18 concentration in PCOS patients versus control group |
Glintborg, D., Andresen, M., Richelsen, B. et al. [24] | 2009 | Clinical study | elevated MCP-1 concentration in PCOS patients versus control group |
Franik, G., Sadlocha, M., Madej, P. et al. [12] | 2020 | Clinical study | decreased concentration of omentin -1 levels in PCOS patients versus control group |
Hu, W., Qiao, J., Yang, Y. et al. [25] | 2011 | Clinical study | elevated CRP and MCP-1 concentration in PCOS patients versus control group |
Papolou, O., Livadas, S., Karachalios, A. et al. [36] | 2015 | Clinical study | elevated WBC concentration in PCOS patients versus control group |
Herlihy, A.C., Kelly, R.E., Hogan, J.L. et al. [37] | 2011 | Clinical study | elevated WBC concentration in PCOS patients versus control group |
Phelan, N., O’Connor, A., Tun, K. et al. [38] | 2013 | Clinical study | elevated WBC concentration in PCOS patients versus control group |
Garg, D., Merhi, Z. [41] | 2016 | Clinical study | elevated AGEs concentration in PCOS patients versus control group |
Merhi, Z. [42] | 2014 | Review | elevated AGEs concentration in PCOS patients versus control group |
Diamanti-Kandarakis, E., Piperi, C., Kalofoutis, A. et al. [43] | 2005 | Clinical study | elevated AGEs and RAGE concentration in PCOS patients versus control group |
Zhang, J., Bao, Y., Zhou, X. et al. [47] | 2019 | Review | mitochondrial dysfunction plays a role in pathogenesis of PCOS by increasing ROS and oxidative stress |
Cozzolino, M., Seli, E. [48] | 2020 | Review | mitochondrial dysfunction plays a role in pathogenesis of PCOS by increasing ROS and oxidative stress |
Uysal, S., Isik, A.Z., Eris, S. et al. [49] | 2015 | Clinical study | decreased endometrial glycodelin (induce apoptosis of monocytes) expression in PCOS women with miscarriage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.M.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. https://doi.org/10.3390/ijms22073789
Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, Smolarczyk R, Meczekalski B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. International Journal of Molecular Sciences. 2021; 22(7):3789. https://doi.org/10.3390/ijms22073789
Chicago/Turabian StyleRudnicka, Ewa, Katarzyna Suchta, Monika Grymowicz, Anna Calik-Ksepka, Katarzyna Smolarczyk, Anna M. Duszewska, Roman Smolarczyk, and Blazej Meczekalski. 2021. "Chronic Low Grade Inflammation in Pathogenesis of PCOS" International Journal of Molecular Sciences 22, no. 7: 3789. https://doi.org/10.3390/ijms22073789