The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis
Abstract
:1. Introduction
2. ZIP8
2.1. ZIP8 Mutations and Manganese Deficiency
2.2. The Molecular Mechanism Underlying ZIP8 Loss and Manganese Deficiency
3. ZIP14
3.1. ZIP14 Mutations and Manganese Overload
3.2. The Molecular Mechanism Underlying ZIP14 Deficiency and Manganese Toxicity
4. ZnT10
4.1. ZnT10 Mutations and Manganese Overload
4.2. The Molecular Mechanism Underlying ZnT10’s Function in Manganese Metabolism
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordberg, G. Handbook on the Toxicology of Metals, 3rd ed.; Academic Press: Cambridge, MA, USA, 2007; p. 975. [Google Scholar]
- Reaney, S.H.; Kwik-Uribe, C.L.; Smith, D.R. Manganese oxidation state and its implications for toxicity. Chem. Res. Toxicol. 2002, 15, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Lankford, W.T. United States Steel Corporation; Association of Iron and Steel Engineers. In The Making, Shaping, and Treating of Steel, 10th ed.; Association of Iron and Steel Engineers: Pittsburgh, PA, USA, 1985; p. 1572. [Google Scholar]
- Simonelli, L.; Sorrentino, A.; Marini, C.; Ramanan, N.; Heinis, D.; Olszewski, W.; Mullaliu, A.; Birrozzi, A.; Laszczynski, N.; Giorgetti, M.; et al. Role of manganese in lithium- and manganese-rich layered oxides cathodes. J. Phys. Chem. Lett. 2019, 10, 3359–3368. [Google Scholar] [CrossRef]
- Hagelstein, K. Globally sustainable manganese metal production and use. J. Environ. Manag. 2009, 90, 3736–3740. [Google Scholar] [CrossRef] [PubMed]
- Aschner, M.; Guilarte, T.R.; Schneider, J.S.; Zheng, W. Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicol. Appl. Pharmacol. 2007, 221, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossgrove, J.; Zheng, W. Manganese toxicity upon overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Guilarte, T.R. Manganese and parkinson’s disease: A critical review and new findings. Environ. Health Perspect. 2010, 118, 1071–1080. [Google Scholar] [CrossRef] [Green Version]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese is essential for neuronal health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef]
- Munder, M. Arginase: An emerging key player in the mammalian immune system. Br. J. Pharmacol. 2009, 158, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.B.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.W. Arginase: An old enzyme with new tricks. Trends Pharmacol. Sci. 2015, 36, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Ram, B.P.; Munjal, D.D. Galactosyltransferases: Physical, chemical, and biological aspects. CRC Crit. Rev. Biochem. 1985, 17, 257–311. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.H. The role of manganese superoxide dismutase in health and disease. J. Inherit. Metab. Dis. 1998, 21, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Besio, R.; Alleva, S.; Forlino, A.; Lupi, A.; Meneghini, C.; Minicozzi, V.; Profumo, A.; Stellato, F.; Tenni, R.; Morante, S. Identifying the structure of the active sites of human recombinant prolidase. Eur. Biophys. J. 2010, 39, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Baly, D.L.; Keen, C.L.; Hurley, L.S. Pyruvate carboxylase and phosphoenolpyruvate carboxykinase activity in developing rats: Effect of manganese deficiency. J. Nutr. 1985, 115, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C. Modern Nutrition in Health and Disease, 11th ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; p. 1616. [Google Scholar]
- Tuschl, K.; Clayton, P.T.; Gospe, S.M., Jr.; Gulab, S.; Ibrahim, S.; Singhi, P.; Aulakh, R.; Ribeiro, R.T.; Barsottini, O.G.; Zaki, M.S.; et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in slc30a10, a manganese transporter in man. Am. J. Hum. Genet. 2012, 90, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Pesch, B.; Casjens, S.; Weiss, T.; Kendzia, B.; Arendt, M.; Eisele, L.; Behrens, T.; Ulrich, N.; Pundt, N.; Marr, A.; et al. Occupational exposure to manganese and fine motor skills in elderly men: Results from the heinz nixdorf recall study. Ann. Work Expo. Health 2017, 61, 1118–1131. [Google Scholar] [CrossRef]
- Kendzia, B.; Van Gelder, R.; Schwank, T.; Hagemann, C.; Zschiesche, W.; Behrens, T.; Weiss, T.; Bruning, T.; Pesch, B. Occupational exposure to inhalable manganese at german workplaces. Ann. Work Expo. Health 2017, 61, 1108–1117. [Google Scholar] [CrossRef]
- Clarke, C.; Upson, S. A global portrait of the manganese industry-a socioeconomic perspective. Neurotoxicology 2017, 58, 173–179. [Google Scholar] [CrossRef]
- Aschner, M. Manganese: Brain transport and emerging research needs. Environ. Health Perspect. 2000, 108 (Suppl. 3), 429–432. [Google Scholar]
- Huang, C.C.; Chu, N.S.; Lu, C.S.; Calne, D.B. Cock gait in manganese intoxication. Mov. Disord. 1997, 12, 807–808. [Google Scholar] [CrossRef]
- Roth, J.A. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol. Res. 2006, 39, 45–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, S. Familial manganese-induced neurotoxicity due to mutations in slc30a10 or slc39a14. Neurotoxicology 2018, 64, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.L.; Zheng, W. Manganese toxicity upon overexposure: A decade in review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in health and disease. Met. Ions Life Sci. 2013, 13, 199–227. [Google Scholar]
- Boycott, K.M.; Beaulieu, C.L.; Kernohan, K.D.; Gebril, O.H.; Mhanni, A.; Chudley, A.E.; Redl, D.; Qin, W.; Hampson, S.; Kury, S.; et al. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene slc39a8. Am. J. Hum. Genet. 2015, 97, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hogrebe, M.; Gruneberg, M.; DuChesne, I.; von der Heiden, A.L.; Reunert, J.; Schlingmann, K.P.; Boycott, K.M.; Beaulieu, C.L.; Mhanni, A.A.; et al. Slc39a8 deficiency: A disorder of manganese transport and glycosylation. Am. J. Hum. Genet. 2015, 97, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Tuschl, K.; Meyer, E.; Valdivia, L.E.; Zhao, N.; Dadswell, C.; Abdul-Sada, A.; Hung, C.Y.; Simpson, M.A.; Chong, W.K.; Jacques, T.S.; et al. Mutations in slc39a14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat. Commun. 2016, 7, 11601. [Google Scholar] [CrossRef] [Green Version]
- Quadri, M.; Federico, A.; Zhao, T.; Breedveld, G.J.; Battisti, C.; Delnooz, C.; Severijnen, L.A.; Di Toro Mammarella, L.; Mignarri, A.; Monti, L.; et al. Mutations in slc30a10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am. J. Hum. Genet. 2012, 90, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Takeda, T.-A.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 2017, 67, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Peralta, M.; He, L.; Jorge-Nebert, L.F.; Wang, B.; Miller, M.L.; Eppert, B.L.; Afton, S.; Nebert, D.W. Zip8 zinc transporter: Indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS ONE 2012, 7, e36055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydemir, T.B.; Liuzzi, J.P.; McClellan, S.; Cousins, R.J. Zinc transporter zip8 (slc39a8) and zinc influence ifn-gamma expression in activated human t cells. J. Leukoc. Biol. 2009, 86, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Girijashanker, K.; Dalton, T.P.; Reed, J.; Li, H.; Soleimani, M.; Nebert, D.W. Zip8, member of the solute-carrier-39 (slc39) metal-transporter family: Characterization of transporter properties. Mol. Pharmacol. 2006, 70, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.G.; Cowley, M.J.; Gayevskiy, V.; Roscioli, T.; Thorburn, D.R.; Prelog, K.; Bahlo, M.; Sue, C.M.; Balasubramaniam, S.; Christodoulou, J. A slc39a8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J. Inherit. Metab. Dis. 2017, 40, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Schneider, S.N.; Dragin, N.; Girijashanker, K.; Dalton, T.P.; He, L.; Miller, M.L.; Stringer, K.F.; Soleimani, M.; Richardson, D.D.; et al. Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a slc39a8-transgenic mouse line. Am. J. Physiol. Cell Physiol. 2007, 292, C1523–C1535. [Google Scholar] [CrossRef] [Green Version]
- Nebert, D.W.; Liu, Z. Slc39a8 gene encoding a metal ion transporter: Discovery and bench to bedside. Hum. Genom. 2019, 13, 51. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallstrom, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma, Z.; Davis, C.; Pope, B.D.; et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014, 515, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Ajjimaporn, A.; Botsford, T.; Garrett, S.H.; Sens, M.A.; Zhou, X.D.; Dunlevy, J.R.; Sens, D.A.; Somji, S. Zip8 expression in human proximal tubule cells, human urothelial cells transformed by cd+2 and as+3 and in specimens of normal human urothelium and urothelial cancer. Cancer Cell Int. 2012, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, J.R.; Liu, M.J.; Bao, S.; Crawford, M.; Nana-Sinkam, P.; Cormet-Boyaka, E.; Knoell, D.L. Cadmium-mediated toxicity of lung epithelia is enhanced through nf-kappab-mediated transcriptional activation of the human zinc transporter zip8. Am. J. Physiol.-Lung Cell Mol. Physiol. 2012, 302, L909–L918. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, I.F.; Alarcon, N.O.; Zhao, N. Manganese uptake by a549 cells is mediated by both zip8 and zip14. Nutrients 2019, 11, 1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.N.; Liu, Z.; Wang, B.; Miller, M.L.; Afton, S.E.; Soleimani, M.; Nebert, D.W. Oral cadmium in mice carrying 5 versus 2 copies of the slc39a8 gene: Comparison of uptake, distribution, metal content, and toxicity. Int. J. Toxicol. 2014, 33, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Jenkitkasemwong, S.; Duarte, S.; Sparkman, B.K.; Shawki, A.; Mackenzie, B.; Knutson, M.D. Zip8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J. Biol. Chem. 2012, 287, 34032–34043. [Google Scholar] [CrossRef] [Green Version]
- Nebert, D.W.; Galvez-Peralta, M.; Hay, E.B.; Li, H.; Johansson, E.; Yin, C.; Wang, B.; He, L.; Soleimani, M. Zip14 and zip8 zinc/bicarbonate symporters in xenopus oocytes: Characterization of metal uptake and inhibition. Metallomics 2012, 4, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; He, L.; Dong, H.; Dalton, T.P.; Nebert, D.W. Generation of a slc39a8 hypomorph mouse: Markedly decreased zip8 zn (2) (+)/(hco(3)(-))(2) transporter expression. Biochem. Biophys. Res. Commun. 2011, 410, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Vann, D.R.; Doulias, P.T.; Wang, T.; Landesberg, G.; Li, X.; Ricciotti, E.; Scalia, R.; He, M.; Hand, N.J.; et al. Hepatic metal ion transporter zip8 regulates manganese homeostasis and manganese-dependent enzyme activity. J. Clin. Investig. 2017, 127, 2407–2417. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.M.; Morgan, H.E.; Johnson, A.; Nicholson, R.I. Structure-function analysis of a novel member of the liv-1 subfamily of zinc transporters, zip14. FEBS Lett. 2005, 579, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Fujishiro, H.; Yano, Y.; Takada, Y.; Tanihara, M.; Himeno, S. Roles of zip8, zip14, and dmt1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 2012, 4, 700–708. [Google Scholar] [CrossRef]
- Pinilla-Tenas, J.J.; Sparkman, B.K.; Shawki, A.; Illing, A.C.; Mitchell, C.J.; Zhao, N.; Liuzzi, J.P.; Cousins, R.J.; Knutson, M.D.; Mackenzie, B. Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am. J. Physiol. Cell Physiol. 2011, 301, C862–C871. [Google Scholar] [CrossRef] [Green Version]
- Girijashanker, K.; He, L.; Soleimani, M.; Reed, J.M.; Li, H.; Liu, Z.; Wang, B.; Dalton, T.P.; Nebert, D.W. Slc39a14 gene encodes zip14, a metal/bicarbonate symporter: Similarities to the zip8 transporter. Mol. Pharmacol. 2008, 73, 1413–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, N.; Nagase, T.; Miyajima, N.; Sazuka, T.; Tanaka, A.; Sato, S.; Seki, N.; Kawarabayasi, Y.; Ishikawa, K.; Tabata, S. Prediction of the coding sequences of unidentified human genes. Ii. The coding sequences of 40 new genes (kiaa0041-kiaa0080) deduced by analysis of cdna clones from human cell line kg-1. DNA Res. 1994, 1, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Liuzzi, J.P.; Aydemir, F.; Nam, H.; Knutson, M.D.; Cousins, R.J. Zip14 (slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. USA 2006, 103, 13612–13617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troche, C.; Aydemir, T.B.; Cousins, R.J. Zinc transporter slc39a14 regulates inflammatory signaling associated with hypertrophic adiposity. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E258–E268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeglam, A.; Abugrara, A.; Kabuka, M. Autosomal-recessive iron deficiency anemia, dystonia and hypermanganesemia caused by new variant mutation of the manganese transporter gene slc39a14. Acta Neurol. Belg. 2018, 119, 379–384. [Google Scholar] [CrossRef]
- Rodan, L.H.; Hauptman, M.; D’Gama, A.M.; Qualls, A.E.; Cao, S.; Tuschl, K.; Al-Jasmi, F.; Hertecant, J.; Hayflick, S.J.; Wessling-Resnick, M.; et al. Novel founder intronic variant in slc39a14 in two families causing manganism and potential treatment strategies. Mol. Genet. Metab. 2018, 124, 161–167. [Google Scholar] [CrossRef]
- Marti-Sanchez, L.; Ortigoza-Escobar, J.D.; Darling, A.; Villaronga, M.; Baide, H.; Molero-Luis, M.; Batllori, M.; Vanegas, M.I.; Muchart, J.; Aquino, L.; et al. Hypermanganesemia due to mutations in slc39a14: Further insights into mn deposition in the central nervous system. Orphanet J. Rare Dis. 2018, 13, 28. [Google Scholar] [CrossRef]
- Juneja, M.; Shamim, U.; Joshi, A.; Mathur, A.; Uppili, B.; Sairam, S.; Ambawat, S.; Dixit, R.; Faruq, M. A novel mutation in slc39a14 causing hypermanganesemia associated with infantile onset dystonia. J. Gene Med. 2018, 20, e3012. [Google Scholar] [CrossRef]
- Aydemir, T.B.; Kim, M.H.; Kim, J.; Colon-Perez, L.M.; Banan, G.; Mareci, T.H.; Febo, M.; Cousins, R.J. Metal transporter zip14 (slc39a14) deletion in mice increases manganese deposition and produces neurotoxic signatures and diminished motor activity. J. Neurosci. 2017, 37, 5996–6006. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Gao, H.; Wang, J.; Qiang, Y.; Imam, M.U.; Li, Y.; Wang, J.; Zhang, R.; Zhang, H.; Yu, Y.; et al. Manganese transporter slc39a14 deficiency revealed its key role in maintaining manganese homeostasis in mice. Cell Discov. 2017, 3, 17025. [Google Scholar] [CrossRef]
- Liu, C.; Hutchens, S.; Jursa, T.; Shawlot, W.; Polishchuk, E.V.; Polishchuk, R.S.; Dray, B.K.; Gore, A.C.; Aschner, M.; Smith, D.R.; et al. Hypothyroidism induced by loss of the manganese efflux transporter slc30a10 may be explained by reduced thyroxine production. J. Biol. Chem. 2017, 292, 16605–16615. [Google Scholar] [CrossRef] [Green Version]
- Jenkitkasemwong, S.; Akinyode, A.; Paulus, E.; Weiskirchen, R.; Hojyo, S.; Fukada, T.; Giraldo, G.; Schrier, J.; Garcia, A.; Janus, C.; et al. Slc39a14 deficiency alters manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice. Proc. Natl. Acad. Sci. USA 2018, 115, E1769–E1778. [Google Scholar] [CrossRef] [Green Version]
- Scheiber, I.F.; Wu, Y.; Morgan, S.E.; Zhao, N. The intestinal metal transporter zip14 maintains systemic manganese homeostasis. J. Biol. Chem. 2019, 294, 9147–9160. [Google Scholar] [CrossRef]
- Aydemir, T.B.; Thorn, T.L.; Ruggiero, C.H.; Pompilus, M.; Febo, M.; Cousins, R.J. Intestine-specific deletion of metal transporter zip14 (slc39a14) causes brain manganese overload and locomotor defects of manganism. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G673–G681. [Google Scholar] [CrossRef]
- Cousins, R.J.; Liuzzi, J.P.; Lichten, L.A. Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 2006, 281, 24085–24089. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Kambe, T. The functions of metallothionein and zip and znt transporters: An overview and perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef] [Green Version]
- Seve, M.; Chimienti, F.; Devergnas, S.; Favier, A. In silico identification and expression of slc30 family genes: An expressed sequence tag data mining strategy for the characterization of zinc transporters’ tissue expression. BMC Genom. 2004, 5, 32. [Google Scholar] [CrossRef]
- Kambe, T. Molecular architecture and function of znt transporters. Curr Top. Membr 2012, 69, 199–220. [Google Scholar]
- Kambe, T.; Suzuki, T.; Nagao, M.; Yamaguchi-Iwai, Y. Sequence similarity and functional relationship among eukaryotic zip and cdf transporters. Genom. Proteom. Bioinform. 2006, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sreedharan, S.; Stephansson, O.; Schioth, H.B.; Fredriksson, R. Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters. Gene 2011, 478, 11–18. [Google Scholar] [CrossRef]
- Fujishiro, H.; Yoshida, M.; Nakano, Y.; Himeno, S. Interleukin-6 enhances manganese accumulation in sh-sy5y cells: Implications of the up-regulation of zip14 and the down-regulation of znt10. Metallomics 2014, 6, 944–949. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Illades, D.; Chen, P.; Zogzas, C.E.; Hutchens, S.; Mercado, J.M.; Swaim, C.D.; Morrisett, R.A.; Bowman, A.B.; Aschner, M.; Mukhopadhyay, S. Slc30a10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J. Neurosci. 2014, 34, 14079–14095. [Google Scholar] [CrossRef]
- Nishito, Y.; Tsuji, N.; Fujishiro, H.; Takeda, T.A.; Yamazaki, T.; Teranishi, F.; Okazaki, F.; Matsunaga, A.; Tuschl, K.; Rao, R.; et al. Direct comparison of manganese detoxification/efflux proteins and molecular characterization of znt10 protein as a manganese transporter. J. Biol. Chem. 2016, 291, 14773–14787. [Google Scholar] [CrossRef] [Green Version]
- Tuschl, K.; Mills, P.B.; Parsons, H.; Malone, M.; Fowler, D.; Bitner-Glindzicz, M.; Clayton, P.T. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia—A new metabolic disorder. J. Inherit. Metab. Dis. 2008, 31, 151–163. [Google Scholar] [CrossRef]
- Zaki, M.S.; Issa, M.Y.; Elbendary, H.M.; El-Karaksy, H.; Hosny, H.; Ghobrial, C.; El Safty, A.; El-Hennawy, A.; Oraby, A.; Selim, L.; et al. Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel slc30a10 mutations and further phenotype delineation. Clin. Genet. 2018, 93, 905–912. [Google Scholar] [CrossRef]
- Gulab, S.; Kayyali, H.R.; Al-Said, Y. Atypical neurologic phenotype and novel slc30a10 mutation in two brothers with hereditary hypermanganesemia. Neuropediatrics 2018, 49, 72–75. [Google Scholar] [CrossRef]
- Mukhtiar, K.; Ibrahim, S.; Tuschl, K.; Mills, P. Hypermanganesemia with dystonia, polycythemia and cirrhosis (hmdpc) due to mutation in the slc30a10 gene. Brain Dev. 2016, 38, 862–865. [Google Scholar] [CrossRef]
- Quadri, M.; Kamate, M.; Sharma, S.; Olgiati, S.; Graafland, J.; Breedveld, G.J.; Kori, I.; Hattiholi, V.; Jain, P.; Aneja, S.; et al. Manganese transport disorder: Novel slc30a10 mutations and early phenotypes. Mov. Disord. 2015, 30, 996–1001. [Google Scholar] [CrossRef]
- Tavasoli, A.; Arjmandi Rafsanjani, K.; Hemmati, S.; Mojbafan, M.; Zarei, E.; Hosseini, S. A case of dystonia with polycythemia and hypermanganesemia caused by slc30a10 mutation: A treatable inborn error of manganese metabolism. BMC Pediatr. 2019, 19, 229. [Google Scholar] [CrossRef]
- Yapici, Z.; Tuschl, K.; Eraksoy, M. Hypermanganesemia with dystonia 1: A novel mutation and response to iron supplementation. Mov. Disord. Clin. Pract. 2020, 7, 94–96. [Google Scholar] [CrossRef]
- Xia, Z.; Wei, J.; Li, Y.; Wang, J.; Li, W.; Wang, K.; Hong, X.; Zhao, L.; Chen, C.; Min, J.; et al. Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of atp2c1 in maintaining manganese homeostasis. PLoS Genet. 2017, 13, e1006892. [Google Scholar] [CrossRef]
- Hutchens, S.; Liu, C.; Jursa, T.; Shawlot, W.; Chaffee, B.K.; Yin, W.; Gore, A.C.; Aschner, M.; Smith, D.R.; Mukhopadhyay, S. Deficiency in the manganese efflux transporter slc30a10 induces severe hypothyroidism in mice. J. Biol. Chem. 2017, 292, 9760–9773. [Google Scholar] [CrossRef] [Green Version]
- Mercadante, C.J.; Prajapati, M.; Conboy, H.L.; Dash, M.E.; Herrera, C.; Pettiglio, M.A.; Cintron-Rivera, L.; Salesky, M.A.; Rao, D.B.; Bartnikas, T.B. Manganese transporter slc30a10 controls physiological manganese excretion and toxicity. J. Clin. Investig. 2019, 129, 5442–5461. [Google Scholar] [CrossRef]
- Taylor, C.A.; Hutchens, S.; Liu, C.; Jursa, T.; Shawlot, W.; Aschner, M.; Smith, D.R.; Mukhopadhyay, S. Slc30a10 transporter in the digestive system regulates brain manganese under basal conditions while brain slc30a10 protects against neurotoxicity. J. Biol. Chem. 2019, 294, 1860–1876. [Google Scholar] [CrossRef] [Green Version]
Subject and Reference | ZIP8 Mutation | Amino Acid Change | Gender | Age of Onset | Blood Manganese |
---|---|---|---|---|---|
A-1 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | F | Birth | ND |
B-1 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | M | Birth | 20 nmol/L (Erythrocyte) (NR 273–728) |
C-1 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | M | Birth | 20 nmol/L (NR 78–289) |
D-1 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | F | Birth | 14.2 nmol/L (NR 5.3–40.8) |
D-2 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | F | Birth | 5.5 nmol/L (NR 5.3–40.8) |
E-1 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | M | Birth | 18.4 nmol/L (NR 5.3–40.8) |
F-1 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | F | Birth | 1.1 mcg/L (NR 5–12.4) |
F-2 ƒ § Ç [30] | c.[112G>C];[112G>C] | p.[Gly38Arg] | M | Birth | 1.1 mcg/L (NR 5–12.4) |
F-3 ƒ § Ç [30] | † | † | N/A | Birth | N/A |
G-1 £ [31] | c.[112G>C];[1019T>A] | p.[Gly38Arg];[Ile340Asn] | F | <4 months | ND |
H-2 £ [31] | c.[97G>A;1004G>C];[610G>T] | p.[Val33Met; Ser335Thr]; [Gly204Cys] | F | <1 year | ND |
I-1 § Ç [38] | c.[338G>C];[338G>C] | p.[Cys113Ser] | F | 4 months | ND |
I-2 § Ç [38] | c.[338G>C];[338G>C] | p.[Cys113Ser] | F | 3 months | ND |
Subject and Reference | ZIP14 Mutation | Amino Acid Change | Gender | Age of Onset | Blood Manganese |
---|---|---|---|---|---|
A-1 § Ç [32] | c.[292T>G];[292T>G] | p.[Phe98Val] | F | 7 Months | 2887 nmol/L (NR 73–325) |
A-2 § Ç [32] | c.[292T>G];[292T>G] | p.[Phe98Val] | F | 6 Months | N/A |
B-1 § Ç [32] | c.[313G>T];[313G>T] | p.[Glu105*] | F | 7 months | 8101 nmol/L (NR 73–325) |
B-2 § Ç [32] | † | † | F | 7 months | N/A |
C-1 § Ç [32] | c.[477_478del];[477_478del] | p.[S160Cysfs*5] | F | 3 years | 963 nmol/L (NR 73–325) |
D-1 Ç [32] | c.[1147G>A];[1147G>A] | p.[Gly383Arg] | M | 10 months | 965 nmol/L (NR 145.6) |
E-1 § Ç [32] | c.[1407C>G];[1407C>G] | p.[Asn469Lys] | F | 2 years | 2280 nmol/L (NR 73–325) |
E-2 § Ç [32] | c.[1407C>G];[1407C>G] | p.[Asn469Lys] | F | 2 years | 3830 nmol/L (NR 73–325) |
E-3 § Ç [32] | c.[1407C>G];[1407C>G] | p.[Asn469Lys] | M | 2 years | 1260 nmol/L (NR 73–325) |
F-1 § Ç [60] | c.[311G>T];[311G>T] | p.[Ser104Ile] | M | 11 months | 10.5 mcg/L (Plasma) (NR 0.4–0.9) |
F-2 § Ç [60] | ‡ | ‡ | M | 10 months | N/A |
G-1 § [61] | c.[382C>T];[382C>T] | p.[Arg128Trp] | F | 2 months | 3640 nmol/L (NR 73–375) |
H-1 ƒ § Ç [59] | c.[751-9C>G];[751-9C>G] | p.[His251Profs*26] | F | 8 months | 64.2 mcg/L (Serum) (NR 4–16.5) |
I-1 ƒ [59] | c.[751-9C>G];[751-9C>G] | p.[His251Profs*26] | F | 18 months | 78 mcg/L (Serum) (NR 4–16.5) |
J-1 § Ç [58] | c.[1136C>T];[1136C>T] | p.[Pro379Leu] | F | 15 months | 150 nmol/L (NR <10) |
Subject and Reference | ZnT10 Mutation | Amino Acid Change | Gender | Age of Onset | Blood Manganese |
---|---|---|---|---|---|
A-1 § Ç [18] | Deletion of exons 1 and 2 | N/A | F | 3 years | 6180 nmol/L (NR <320) |
A-2 § Ç [18] | Deletion of exons 1 and 2 | N/A | F | 3 years | 3767 nmol/L (NR <320) |
A-3 § Ç [18] | Deletion of exons 1 and 2 | N/A | M | 5 years | 5096 nmol/L (NR <320) |
A-4 § Ç [18] | Deletion of exons 1 and 2 | N/A | M | 5 years | 6370 nmol/L (NR <320) |
B-1 Ç Ð [33] | c.[507delG];[500T>C] | p.[Pro170Leufs*22] | M | 2 years | 231.6 nmol/L (NR <32.8) |
B-2 Ç Ð [33] | c.[507delG];[500T>C] | p.[Pro170Leufs*22] | M | 14 years | 2626 nmol/L (NR 183–352) |
B-3 Ç Ð [33] | † | † | F | 10 years | N/A |
C-1 Ç Ð [33] | c.[1235delA];[1235delA] | p.[Gln412Argfs*26] | M | 47 years | 104 mcg/L (NR 3–8) |
C-2 Ç Ð [33] | c.[1235delA];[1235delA] | p.[Gln412Argfs*26] | M | 57 years | 106 mcg/L (NR 3–8) |
D-1 § Ç [18] | c.[266T>C];[266T>C] | p.[Leu89Pro] | F | 2 years | 2109 nmol/L (NR <320) |
D-2 § Ç [18] | c.[266T>C];[266T>C] | p.[Leu89Pro] | F | 2 years | 1636 nmol/L (NR <320) |
D-3 § Ç [18] | c.[266T>C];[266T>C] | p.[Leu89Pro] | F | 2 years | 1600 nmol/L (NR <320) |
E-1 § [18] | c.[292_402del];[292_402del] | p.[Val98_Phe134del] | F | 4 years | 1145 nmol/L (NR <320) |
F-1 § Ç [18] | c.[314_322del];[314_322del] | p.[Ala105_Pro107del] | M | 2 years | N/A |
F-2 § Ç [18] | c.[314_322del];[314_322del] | p.[Ala105_Pro107del] | F | 11 years | 3285 nmol/L (NR <320) |
G-1 § [18] | c.[585del];[585del] | p.[Thr196Profs*17] | M | 14 years | 3480 nmol/L (NR <320) |
H-1 § [18] | c.[765_767del];[765_767del] | p.[Val256del] | F | 11 years | 3272 nmol/L (NR <320) |
I-1 § Ç [18] | c.[922C>T];[922C>T] | p.[Gln308*] | M | 2 years | NA |
I-2 § Ç [18] | c.[922C>T];[922C>T] | p.[Gln308*] | F | 3 years | 3114 nmol/L (NR <320) |
J-1 § [18] | c.[1046T>C];[1046T>C] | p.[Leu349Pro] | F | 5 years | 2366 nmol/L (NR <320) |
K-1 § Ç [81] | c.[496_553del58];[496_553del58] | p.[Ala166Glnfs*7] | F | 3 years | 9.8 mcg/L (serum) (NR 0.3–1.8) |
L-1 § Ç [81] | c.[492delC];[492delC] | p.[Gly165Alafs*27] | M | 3 years | 19.5 mcg/L (serum) (NR 0.3–1.8) |
L-2 § Ç [81] | c.[492delC];[492delC] | p.[Gly165Alafs*27] | F | 1 year | 23.9 mcg/L (serum) (NR 0.3–1.8) |
L-3 § Ç [81] | c.[492delC];[492delC] | p.[Gly165Alafs*27] | F | 3 years | 29.5 mcg/L (serum) (NR 0.3–1.8) |
M-1 § Ç [81] | c.[460C>T];[460C>T] | p.[Gln154*] | F | 4.5 years | 42 mcg/L (serum) (NR 0.3–1.8) |
N-1 Ç € [80] | c.[1006C>T] | p.[His336Tyr] | M | 10 years | 14,972 nmol/L (NR <320) |
N-2 Ç € [80] | c.[1006C>T] | p.[His336Tyr] | M | 8 years | 1511 nmol/L (NR <320) |
N-3 Ç € [80] | c.[1006C>T] | p.[His336Tyr] | M | 6 years | 539 nmol/L (NR <320) |
O-1 § Ç [79] | c.[359G>A] | p.[Gly120Asp] | M | 4 years | 2808 nmol/L (NR 100–260) |
O-2 § Ç [79] | c.[359G>A] | p.[Gly120Asp] | M | 6 years | 2056 nmol/L (NR 100–260) |
P-1 § Ç [78] | c.[957 + 1G>C] (Splice site mutation) | N/A | M | 10 years | 2900 nmol/L (NR <320) |
P-2 § Ç [78] | c.[957 + 1G>C] (Splice site mutation) | N/A | M | 2 years | 3340 nmol/L (NR <320) |
Q-1 § Ç [78] | c.[119A>C] | p.[Asp40A] | M | 1 year 6 months | 3200 nmol/L (NR <320) |
R-1 § Ç [78] | c.[122_124delCCT] | p.[Ser41del] | M | 1 year 6 months | 3310 nmol/L (NR <320) |
S-1 § Ç [78] | c.[90C>G] | p.[Tyr30*] | M | 1 year 3 months | 2980 nmol/L (NR <320) |
T-1 § Ç [78] | c.[780_782delCAT] | p.[Iso260del] | F | 1 year 6 months | 3125 nmol/L (NR <320) |
T-2 § Ç [78] | c.[780_782delCAT] | p.[Iso260del] | F | 1 year 3 months | 3300 nmol/L (NR <320) |
U-1 ƒ § Ç [78] | c.[77T>C] | p.[Leu26Pro] | M | 2 year | 3245 nmol/L (NR <320) |
U-2 ƒ § Ç [78] | c.[77T>C] | p.[Leu26Pro] | F | 1 year 6 months | 3120 nmol/L (NR <320) |
V-1 ƒ § Ç [78] | c.[77T>C] | p.[Leu26Pro] | F | 4 years | 2750 nmol/L (NR <320) |
W-1 ƒ § Ç [82] | c.[1006C>T] | p.[His336Tyr] | M | 10 years | 3000 nmol/L (NR <320) |
X-1 § Ç [83] | c.[1188dup] | p.[Leu397Thrfs*15] | F | 1 year 6 months | 1946 nmol/L (at age of 7) (NR <273) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winslow, J.W.W.; Limesand, K.H.; Zhao, N. The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis. Int. J. Mol. Sci. 2020, 21, 3304. https://doi.org/10.3390/ijms21093304
Winslow JWW, Limesand KH, Zhao N. The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis. International Journal of Molecular Sciences. 2020; 21(9):3304. https://doi.org/10.3390/ijms21093304
Chicago/Turabian StyleWinslow, James W.W., Kirsten H. Limesand, and Ningning Zhao. 2020. "The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis" International Journal of Molecular Sciences 21, no. 9: 3304. https://doi.org/10.3390/ijms21093304